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A nonlinear plane longitudinal elastic displacement wave is studied theoretically and numerically using

theMurnaghanmodel for two forms of initial profile: harmonic and bell-shaped. Amajor novelty is that

the evolution of waves is analyzed by approximate methods taking into account the first three

approximations. The harmonic wave is analyzed only to comparewith the new results for the bell-shaped

wave. Some significant differences between the evolution of waves are shown. The initially symmetric

profiles transform differently due to distortion: symmetrically (for the harmonic profile) and

asymmetrically (for the bell-shaped profile). The third approximation introduces the fourth harmonic

for the harmonic wave when this wave is analyzed by themethod of successive approximations, while the

bell-shaped wave is characterized in the third approximation differently when using the method of

constraints on the displacement gradient. At relatively long distances from the beginning of the

propagation, the one-hump bell-shapedwave transforms into a two-hump one. These humps adjoin each

other halving their lengths. The third approximation allows us to observe new wave effects: the

asymmetry of the left and right humps about their peaks and the asymmetry of the humps about each

other; the lowering of the left hump and the rise of the right one. The results obtained are analyzed.

Keywords: nonlinear elastic P-wave; Murnaghan potential; approximate method; harmonic and bell-shaped

initial wave profiles; evolution; distortion

1. Introduction. In the presented study, the five-constant Murnaghan model of nonlinear elastic deformation of a

material is used [1–3, 5, 7–11]. The Murnaghan elastic potential is known to be quadratically and cubically nonlinear in the

components of the Cauchy–Green strain tensor �
nm n m m n k n k m
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(� �, , , ,A B C are the Murnaghan elastic constants).

We consider the case where the Murnaghan potential is expressed in terms of the displacement gradients taking into

account only the quadratically and cubically nonlinear components:

� �W u u u A u u
m m i k k i i k m

� � � � �( / ) ( ) ( / ) ( ) ( / )
, , , , ,

1 2 1 4 1 4
2 2

� � �
i m k
u

,

International Applied Mechanics, Vol. 56, No. 5, September, 2020

1063-7095/20/5605-0581 ©2020 Springer Science+Business Media, LLC 581

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3 Nesterova St., Kyiv, Ukraine

03057; *e-mail: rushch@inmech.kiev.ua. Translated from Prikladnaya Mekhanika, Vol. 56, No. 5, pp. 65–77,

September–October 2020. Original article submitted October 30, 2019.

* This study was sponsored by the budget program “Support for Priority Areas of Scientific Research” (KPKVK 6541230).

DOI 10.1007/s10778-020-01036-4



� � � �( / )( ) ( ) ( / ) ( / )
, , , , ,

1 2 1 12 1 2
2

� B u u Au u u Bu
m m i k i k k m m i i k k i m m m m

u u C u
, , , ,

( / ) ( )� 1 3
3
. (2)

We consider motion in which the displacements depend only on one spatial coordinate and time u u x t
k k

� ( , )
1

(displacements along theOx
1
axis in the Cartesian coordinate systemOx x x

1 2 3
). In this case, potential (2) is simplified:
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From (3) nonlinear wave equations are obtained for three types of polarized plane waves (P-, SH-, SV- waves). The

simplest nonlinear wave equations are quadratically nonlinear. In particular, themotion of a P-wave is described by the equation
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Further, the analysis is limited to the problem where only a P-wave is initially excited in a material [2] and the main

nonlinear phenomenon is self-generation of waves. Then the nonlinear equation (4) takes the form
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where v
L

� �( ) /� � �2 is the phase velocity of the P-wave in the linear approximation.

Up to now, Eqs. (6) have been analyzed approximately using three methods of successive approximations, slowly

varying amplitudes, constraints on the displacement gradient [1–3, 5, 7–15]. Harmonic waves and solitary waves with different

initial profiles were studied. Most of the results are related to the analysis of the nonlinear behavior of waves in the first two

approximations. Harmonic waves, however, were studied in many approximations [8, 9, 12]. However, the features of wave

evolution are most clearly revealed in numerical simulation only. Since such a problem includes many parameters and the results

are strongly dependent on the choice of material, wavelength, and wave amplitude, the resulting scenarios of wave evolution

differ quite significantly. Therefore, any new numerical results obtained for new materials or new wave parameters always

complement the general picture of evolution.

In this study, the harmonic and bell-shaped profiles are selected to study the evolution of the bell-shaped wave. The

harmonic wave plays an auxiliary role here, although it has been analyzed numerically for new materials. The purpose of

combining the analysis for the two profiles is to compare the scenarios of harmonic and solitary waves with symmetrical profiles.

The main innovation in the analysis of a solitary wave is the inclusion of the third approximation. It should be noted that the use

of the third approximation has already been analyzed earlier for other materials, where it was found that the decisive factor for

revealing a observable evolution effect is the distance traveled by the wave.

2. Approximate Approach to the Analysis of the Evolution of the Initial Wave Profile Using the NonlinearWave

Equation (6). The problem of the evolution of a harmonic wave was studied earlier by the method of successive approximations

[1–3, 8]. According to the method, the recurrence relation u v u N u u
tt
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The solution for zero approximation is linear and has the following form for given initial maximum amplitude u
1 0( )

,

wave number k
L
, and frequency � [1–3, 11]:
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The corresponding solution for the first approximation is as follows [1–3, 8, 11]:
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The third approximation is as follows [9, 10]:
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Thus, the third approximation introduces the fourth harmonic into the solution. Accordingly, the fourth approximation

will introduce the eighth harmonic (at each step, the harmonics are doubled).

The solution within the first three approximations has the following form [8–11]:
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Thus, the evolution in three approximations is determined by the parameter Ì
L
, the initial amplitude, and the wave

number in the linear approximation. Next, we will perform a numerical simulation of the evolution of a harmonic wave for two

new materials and compare with a similar study of a bell-shaped wave.

According to [8–11], the analysis of the evolution of solitary waves by the method of successive approximations

involves severe mathematical difficulties; therefore, the method of constraint on the displacement gradient will be applied to the

analysis of the bell-shaped wave. To this end, we write Eq. (7) as

u v N u u u u v
tt L tt L1

2

1 1 1 1 11 1 1 1
0 1

, , , , ,
{( ) ( / ) } { }(� � �  � �� % )

,

2

1 11
0u � ,

	 
% � �� �N
1

2/ ( ) . (11)

According to the method, the initial wave profile is described by a sufficiently smooth function u x t F x( , ) ( )
1 1

0� � and

the wave propagates as a D’Alembert wave:
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where the variable velocity of the wave is defined by
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At the next step, the root in (13) is written as a series
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The smallness of%u
1 1,

allows us to represent the approximate solution (12) in the form of the first three approximations:
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It should be noted that earlier the approximate solution had the form of the first two approximations. Therefore,

approximation (15) introduces an element of novelty into the subsequent analysis.

The accuracy of (15) depends on how accurately condition (14) is satisfied, which includes constraints for two

parameters: % � �� � � � �3 2 3 2( ) / ( )A B C and u
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.
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Solution (15) can be expanded into a Taylor series:
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L
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Next, we need an expression for the displacement gradient, which can be easily derived from (17):

u x t F F a t v u
x L1 1 1 1 1
1

1 2
, ,
( , ) ( ) ( ) { ( / )* + � , + � + � , �

� �
� ) � � ) %

1
1 1 2[ ( / ) ]} ( )� * +t v aF

L
% �

�
.

This expression allows us to write solution (16) in the form
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The approximate solution (18) is general, and for different specific functions F, it describes nonlinear wave effects such

as occurrence of the second and third harmonics of a harmonic wave or new similar components of a solitary wave and increasing

amplitude with time.

Next, the wave profile is considered to have the form of a Gaussian function F x e
ax

( )
(( ) / )

1

2
1

2

�
�

(bell-shaped solitary

wave). For a solitary wave, a is the wavelength. This parameter is important for assessing the correlation of the wave to themodel

of small or large displacement gradients. The ratio of the maximum wave amplitude to the length just allows us to make such an

estimate.

3. Parameters of the Material and Wave in Numerical Simulation. Let us choose two metal composite materials

(matrix–aluminum, filler–tungsten) with the following mechanical parameters (SI system) [1, 8]:

Material 51 (the volume fraction of the matrix is 0.8)
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Material 52 (the volume fraction of the matrix is 0.6)
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The parameters of the harmonic wave are as follows: the wave velocity c k
L L

� ( / )� chosen earlier; the initial

frequency � selected from the ultrasonic wavelength range was used to calculate the wave number k c
L L

� ( / )� and the

wavelength by the formula L k
L

� ( / )2- (individual wavelength for each material) �� ,15 10
6

. , L � 0.018 (material 51);

�� ,15 10
6

. , L � 0.015 (material 52).

For a solitary wave with a profile described by a Gaussian function (which is a weight function), it is assumed that the

wavelength L is the interval (distance) for which the area outside this interval under the graph of the initial wave profile is

negligible.

Then, according to the 3�-rule, the length of the Gaussian (bell-shaped) wave e e
x x� �

�
( / ) [( / ) / ]

2 2 2
2 2� �

is equal to 6�.

Therefore, in the profile F x e
a x
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2
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2
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, the parameter a determines the wavelength by the formula � � ( / )1 a . For the two

materials chosen, the initial wavelength is the same: L � {0.0375, 0.0187}.

Consider 16 cases of the initial parameters of a P-wave (2 materials, 2 analytical representations of the profile, 2

wavelengths, 2 initial amplitudes).

4. Numerical Analysis of a Harmonic Wave. Formula (10) was used to plot two-dimensional curves of displacement

u
1
versus traveled distance x

1
. Eight sets of plots (two materials, two wavelengths, two maximum initial amplitudes) were

considered. Each set includes graphs with profiles that are superimposed on one another to compare approximations. The graphs

differ in the wave profile for different distances: from the initial position of the wave to the position at a distance of

approximately 20 wavelengths where the effect of nonlinearity and the distortion of the wave profile are significant.

Figure 1 shows the curves for Ì51 material, L � 0.018, �� ,15 10
6

. , a
o

� ,
�

1 10
6
.

Figure 1a corresponds to the initial stage of wave motion for all three approximations. Figure 1b corresponds to the

stage of wave motion when nonlinearity is just beginning to manifest. Figure 1c corresponds to longer wave motion

(approximately at a distance of 15 wavelengths) and the first approximation (the upper line for positive amplitude values), first +

second approximations (the lower line for positive amplitude values), and the first + second + third approximations (the line for

positive amplitude values, which coincides with the second one on the given interval). Figure 1d corresponds to twice as long

wave motion (about 30 wavelengths) and the first approximation (the upper line for positive amplitude values), first + second

approximations (the middle line for positive amplitude values), and first + second + third approximations (the lower line for

positive amplitude values).

It follows from the graphs that the evolution of the initial wave profile occurs symmetrically about the tops of the

curves. Figure 1b shows that when the wave moves over distances of five wavelengths, the nonlinearity of the material can be

ignored. However, Fig. 1 shows only the initial stage of evolution and the main trend of evolution is not yet visible. In the next

case, such a trend is already quite obvious.
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Figure 2 shows the curves for Ì52 material, L � 0.015, �� ,15 10
6

. , a
o

� ,
�

1 10
6
. From the graphs, it follows that the

evolution of the initial wave profile occurs for sufficiently short distances similar to the one shown in Fig. 1. Additional graphs

are shown for a twofold increase in the distance of wave propagation (Fig. 2e), a fourfold increase in the distance (Fig. 2f), and an

eightfold increase (Fig. 2g). The manifestation of nonlinearity is already more significant and the distortion of the profile is

visually observable.

The evolution of the initial wave profile shows a tendency to transform into the second harmonic profile in the presence

of the second approximation (halving of the wavelength and some decrease in the initial maximum amplitude) and into the fourth

harmonic profile for the first three approximations (quartering of the wavelength and slight increase in the initial maximum

amplitude).

It follows from the graphs that nonlinearity in both cases is manifested at different rates due to the difference in the

initial parameters of the problem. Noteworthy are the solutions in the form of the first two and first three approximations typical

for a harmonic wave. Both cases are represented by graphs that are asymmetric about the horizontal axis and show different rates

of evolution for positive and negative amplitudes (starting from Fig. 2c; the velocity is higher for positive values). The graphs go

down in the case of the first two approximations and go up in the case of three approximations. This shift of the graphs

corresponds to the phenomenon of lowering or raising the mean value of the amplitude about which the oscillations occur.

Figures 2d–g are intended to demonstrate this phenomenon. In a certain approximation, Fig. 2g shows a linear increase in the

mean value of the amplitude. However, for the manifestation of this phenomenon, the distances traveled by the wave must be

large.

5. Numerical Analysis of the Gaussian Wave. The initial wave profile F x e
a x

( )
[( ) / ]

1

2
1

2

�
�

is bell-shaped and

formula (18) takes the form
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The concepts of first, second, and third harmonics are inapplicable, and the functions e
a x c t
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can be considered the first, second, and third harmonics very approximately. However, the

approximate solution (19) is very similar to solution (10). The obvious difference between solutions (10) and (19) is in that the

nonlinear wave terms (21) do not explicitly depend on the wave phase � �� �k x t
L 1

, whereas, for wave (19), the square in the

second term and cube in the third term of wave phase � � �a x c t
L

( )
1

appears explicitly in the expression for the amplitude.

Formula (27) was used to plot two-dimensional curves of displacement u
1
versus traveled distance x

1
. There are eight

sets of plots (twomaterials, twowavelengths, twomaximum initial amplitudes). Each set includes 3 graphs forM51material and

4 graphs for M52 material with two profiles. Figures 3a, 4a, 3b, and 4b show two superimposed profiles, one representing the

first harmonic, and the other the first and second harmonics. It can be seen that nonlinearity is already observed at a distance of 50

wavelengths. Figures 3c, 4c, and 4d show two profiles, one corresponding to the first + second harmonics and the second to the

first + second + third harmonics. Figure 4d is similar to Fig. 4c, however, corresponds to a larger distance traveled by the wave. A

more developed tendency of the formation of two humps is observed here. Figures 3 and 4 differ in the initial amplitudes. For the

latter, the initial amplitude and traveled distance are chosen so that nonlinearity manifests itself significantly and the distortion of

the initial profile is well visually observed. In the graphs for the M51 material, the evolution of the profile is visible at a distance

of about 1000 wavelengths, while for the M52 material, distances are considered an order of magnitude larger. Figure 3 shows

the curves for Ì51 material, L � 0.0375, a
o

� ,
�

20 10
3

. .

Figure 4 shows the curves for M52 material, L � 0.0375, a
o

� ,
�

50 10
3

. .

From the graphs, it follows that the evolution of the initially symmetric wave profile occurs asymmetrically about the

peaks—of the four slopes of the two humps, the outer (first and fourth) humps are shallower. The maximum value of the

amplitude slowly increases as one hump transforms into two (see Figs. 3a, 4a and 3b, 4b). Figures 3c, 4c, and 4d show the graphs

for the first + second and first + second + third approximations. It can be seen that the third approximation increases the peak of

the first hump and decreases the peak of the second (the left peak rises and the right one falls). The central part of the graph goes

down to the axis and does not cross it, separating and splicing two humps. This new phenomenon, perhaps, has not been

previously described.

Thus, by allowing for the nonlinearity in analyzing the propagation of a Gaussian solitary wave, we can describe the

evolution of this profile, accompanied by new wave effects.

General Conclusions. A nonlinear elastic longitudinal plane displacement wave u x t( , )
1

has been analyzed

numerically for two types of symmetric initial profile: harmonic and bell-shaped. The wave profiles are described by two

functions: trigonometrical cos x
1
( )e

ix
1 and Gaussian e

x�
1

2
2/

.

What all the wave profiles have in common is that they distort during propagation due to the nonlinear interaction of the

wave with itself. However, these wave profiles distort differently.

A harmonic wave distorts the initial profile symmetrically relative to the upper vertex and for several sets of initial

parameters at short distances (or small times) of propagation only shows a tendency to the formation of two humps for the first

two approximations (formation of the second harmonic) and four humps instead of one for the first three approximations

(formation of the fourth harmonic). The third approximation reveals newwave effects: the dominance of the fourth harmonic and

the shift of oscillations to the first quadrant, when oscillations occur about the upwardly shifted mean value of the amplitude.
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A bell-shaped solitary wave no longer retains symmetry when it moves in a nonlinearly elastic medium. Like a

harmonic wave, for some initial sets of parameters, this wave does not change the wavelength and only shows a tendency

towards the formation of two humps instead of one when taking into account the first three approximations. At longer traveled

distances, two bell-shapedwaves form and adjoin each other and halve wavelength. The third approximationmakes it possible to

reveal new wave effects: asymmetry of the right and left humps about the peak of the hump and the asymmetry of the humps

themselves about each other, the sinking of the left and elevation of the right hump.
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