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The spatial theory of elasticity is used to develop two variants of the semianalytic finite-element method

for studying the frequencies of free vibrations and modes of distribution of displacements in them. The

calculation by the two methods serves as a proof of the reliability of the analysis. The frequencies of free

vibrations and the corresponding modes of distribution of displacements in a layered composite plate

with two opposite boundaries free and the other two hinged are analyzed. A plate with a free lower

surface, which is clamped to the lower surface and leaning on an elastic layer with finite thickness and

inertial properties is considered. The high accuracy of the proposed models in these problems is

demonstrated. It is pointed out that the inertial properties of the foundation should not be neglected.
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Introduction. The use of structural composite systems, in particular layered ones that are substantially orthotropic and

have constituent materials with essentially different moduli of elasticity has been increasing. They are in complicated

deformation conditions, have different boundary and interface conditions, and are subject to dynamic loads close to resonance.

These features can lead to three-dimensional dynamic deformation.

The use of direct exact methods of the spatial theory of elasticity for studying the free vibrations of such structures is

significantly complicated and limited to the consideration of hinged plates. In particular, such problems were considered in [2,

26, 29]. Classical approaches based on simplified Kirchhoff–Love hypotheses can lead in certain cases to significant errors in the

characteristics of free vibrations. Therefore, various refined versions of theories for studying the dynamic behavior of layered

structures continue to be developed [2, 11–14, 17, 20, 33, 36–38, etc.]. Different refinedmodels were used in [2, 4–10, 18, 19, 22,

23, 25, 33–37, 39–42, etc.] to study dynamic deformation. Various numerical-analytical methods of three-dimensional analysis

of layered structures continue to be developed [1, 3, 9, 11, 12, 15, 16, 21, 24, 30–32, 43]. Despite the abundance of studies on the

dynamic deformation of layered plates, we failed to find three-dimensional analyzes of the free vibrations of plates with two

opposite boundaries free and the other two hinged on an elastic layer with finite thickness and inertial properties, and also on a

perfectly rigid foundation. Such a case can be an integral part of a design model of transport facilities.

Problem Statement. The goal of this paper is to develop two versions of the semianalytical finite-element method that

allow analyzing the free vibrations of layered composite plates. In the first version of the semianalytical finite-element method,

to approximate the desired functions in the planar X coordinate, a finite-element approximation is used. The unknown functions

in the Y coordinate are represented as Fourier series, and the known polynomials are used in thickness (Z coordinate) [29]. In the

second version, polynomials are used to approximate the unknown functions in the plan in theX coordinate, Fourier series is used

in the Y coordinate, and the distribution of the unknown functions over the thickness of the structure is found based on the

analytical solution of the corresponding system of differential equations [28]. Solving problems by two methods in to find the
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frequencies of free vibrations and modes of distribution of displacements in them serves as an additional validation of the

calculated results. They do not compete but supplement each other. When determining the frequencies of free vibrations in a

model with an analytical solution of the corresponding system of differential equations for the unknown functions over the

thickness of the plate, the frequencies obtained from the model with a polynomial approximation of the unknown functions over

the thickness are used as starting points.

Using Fourier series for the approximation in plan in the Y coordinate in both versions introduces well-known

restrictions on the boundary conditions. A finite element approximation is used along the X coordinate, which significantly

expands the range of boundary conditions that can be considered (hinged, free, clamped). It is possible to consider perfect

bonding of the layers or sliding of the layers along a part of the surface perpendicular to the X coordinate. The combination of

conditions at the interface between the layers and on the boundary allows the consideration of composite structures with complex

configuration throughout the thickness perpendicular to the X coordinate. Due to the limited scope of the article, we restrict

ourselves to the consideration of the free vibrations of plates with a hinged edge along theX coordinate (a common case in design

models of transport structures). Structures with a free lower surface, with forbidden displacements on the lower surface and

resting on a foundation modeled by a layer of finite thickness and having inertial properties are considered.

Consider a layered structure with composite layers with three planes of elastic symmetry (orthotropic layers). The

physical and mechanical characteristics of orthotropic layers are related by
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The superscript (k) indicates a layer number. Directions 1, 2, and 3 are identical to the directions X, Y, Z, respectively.

The Z-axis is directed downward. In the second section, the summation is over the subscripts l and p (l �1 2 3, , , p �1 2 3, , ).

1. Version of the Semianalytical Finite-ElementMethod for Studying the Free Vibrations Based on a Polynomial

Approximation overe the Thickness of the Structure (V1).

We represent the vector of the required displacements as follows:
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With approximation (1.1), the components of the strain tensor of the layer are defined by
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The expressions for the stresses can be derived from Hooke’s law and formulas (1.2):
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With (1.2) and (1.3), the variation of the potential strain energy takes the form
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The variation of the kinetic energy can be written as follows:
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The unknown functions along the X-axis in plan of the structure are represented by linear, along the Y-axis,

trigonometric functions:
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where f x x L
u1

1( ) /� � , f x x L
u2

( ) /� ; Lis the length of the finite element along theX-axis;# is the frequency of free vibrations.

The equations of motion of a finite element are obtained based on the following variational equation:

� �Ï T� � 0. (1.7)

Using expressions (1.4) and (1.5), approximation (1.6), and performing the appropriate transformations of Eq. (1.7), we

obtain the algebraic equations of motion for a finite element
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The system of algebraic equations of equilibrium of a finite element is written for the amplitudes of tangential

displacements along theX-axis on the outer surfaces of the layer at the nodes of the finite element (U U
k k

111 121

( ) ( )
, at the first node and

U U
k k

112 122

( ) ( )
, at the second node); the amplitudes of tangential displacements along the Y-axis on the outer surfaces of the layer at

the nodes of the finite element (U U
k k
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k k

212 222

( ) ( )
, at the second node); the amplitudes of normal
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the Y-axis (U
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at the second node); the amplitudes of the compression functions (W
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at the first
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at the second node). In general, for one element, we have a system of eighteen equations with eighteen unknowns.

The location of the unknown nodal displacement amplitudes on the outer surfaces of the finite element allows the structure to be

modeled not only in plan but also across the thickness.

The equation for the layer with boundary conditions has the following matrix form:
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where { }
( )

v
k

1
are the displacement amplitudes on the upper surface of the layer; { }

( )
v

k

2
are the displacement amplitudes on the

lower surface of the layer; { }
( )

v
k

3
are the amplitudes of the shear and compression functions.

The free vibrations of a three-layer plate will be analyzed below. For this case, the equations of free vibrations have the

form
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Since the plate is divided into 100 finite elements, this problem has the following number of unknowns: 101(3 + 1)&3 +

101&3&3 = 2121. If there is a foundation modeled by a layer of finite thickness, the number of unknowns increases slightly:

101&(4 + 1)&3 + 101&4&3 = 2727. The capabilities of modern computers, as well as the availability of standard software for

solving Eqs. (1.10) allow us to solve this problem.

When a layer is divided into 64 sublayers, the number of unknowns increases significantly: 101&(64&3 + 1)&3 +

101&64&3&3 = 116655; if there is a foundation, then 101&(64&4 + 1)&3 + 101&64&4&3 = 155439. In this case, we use the

following algorithm. We write Eqs. (1.9) for a sublayer as follows:
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The amplitudes of the shear analogs of the displacements of a layer are internal; they are not combined with other layers

when designing a layered structure. They can be eliminated using a procedure similar to the well-known super-element

technology. Let us write the vector of amplitudes of shear analogs of layer displacements using Eqs. (1.11):
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Equations (1.12) can be written as follows:
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Next, we consider two adjacent layers. The governing system of equilibrium equations for them has a form similar to

(1.11), but now { }
( )

v
k

3
are the displacement amplitudes at the interface of the two layers under consideration. We reduce the

displacements{ }
( )

v
k

3
, similarly to the above procedure.We repeat this until we get a system of equations of the following form:
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where { }
( )

v
k

1
are the displacement amplitudes on the upper surface of the layer stack; { }v

n�1
are the displacement amplitudes on

the lower surface of the layer stack.

The frequencies of free vibrations are obtained from system (1.14) by the method of sequential refinement of the search

interval, using as the frequencies obtained from Eqs. (1.10) as the initial one.

This approach significantly reduces the number of operations when solving the governing system of equations

(operations with zeros are reduced substantially). Its benefits become especially obvious when the layer is divided into sublayers

(2, 4, 8, 16, 32, 64, etc.), and also if the structure consists of mutually alternating identical layers with different directions. The

results obtained are validated against the alternative calculation according to the method outlined below.

2. Version of the Semianalytical Finite-Element Method for Studying the Free Vibrations and Finding the

Distribution of the Unknown Functions over the Thickness of the Structure Based on the Analytical Solution of the

Corresponding System of Differential Equations (V2).

Let us introduce the following approximation of the unknown functions of displacements and stresses in the plan of a

finite element:
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displacements and stresses over thickness at the nodes of the finite element.

Using expressions for displacements (2.1), we find the strains from the kinematic equations:
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The governing system of equations for one finite element is
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Next, using Eqs. (2.2), we set up the governing system of differential equations for a layer and kinematic boundary

conditions:
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where i is the number of the point at which the unknown functions are determined.

The vector of unknown functions is represented as
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( )are its eigenvectors;

C
j

k( )
are the constants of integration determined from the interface conditions between the layers and the boundary conditions on

the outside surfaces at each node of the finite-element partition of the structure; J is the total number of required functions in the

layer. The frequencies of free vibrations are determined by the method of sequential refinement of the search interval. The

frequencies obtained by the model with polynomial approximation of the unknown functions over the thickness of the structure

are used as the initial frequencies.

3. Numerical Results. The proposed models were tested for the case of hinged boundary by comparing the results

obtained using the proposed methods and the analytical model [26, 29]. A good agreement of the calculation results was

obtained. To make the article shorter, such a calculation is not presented.

Let us consider the free vibrations of a three-layer plate with composite layers with the following physical and

mechanical characteristics: E E
1

1

2

1( ) ( )
/ � 25/1, E E
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1

3

1( ) ( )
� , G E
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1( ) ( )
/ � 0.5/1, G E

23
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/ � 0.2/1, G G

13

1

12

1( ) ( )
� ,

v v v
12

1

13

1

23

1( ) ( ) ( )
� � �0.25,    

( ) ( ) ( )1 2 3
� � � . The second layer is rotated 90°. The thickness of the second layer is equal to the

sum of the equal thicknesses of the outer layers.

The plate is square in plan a b L� � with L h/ � 5. The boundary Y Y b� �0, is hinged-movable; and the boundary

X X a� �0, is free (such a description is often found in design models of bridge structures). The calculations were carried out
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using the proposed semianalytical methods with a polynomial approximation of the unknown functions over the thickness of the

plate (V1) and with their analytical determination (V2). In the X-direction, the plate was divided into 100 elements.

Table 1 shows the three lowest vibration frequencies of the plate with free outer surfaces. They occur when n �1in

approximation (1.6) ( / )"ny b .

Figure 1 shows their shapes in such vibrations. (It is very important to consider not only the frequencies but also the

modes of free vibrations. In particular, in [27] it was shown that the dynamic coefficient of forced vibrations is strongly

dependent not only on the closeness of the frequencies of free and forced vibrations but also on the closeness between the mode

of displacement distribution under static load and displacement distribution at the frequency of free vibration). The left parts of

the figure show the displacements forY b� / 2, and the right parts of the figure show the displacements for X a� . The maximum

displacement in the figures is equal to h&0.3.

The plate undergoes transverse bending vibrations at the first frequency, torsional vibrations at the second frequency,

and bending vibrations in plan at the third frequency. The results obtained with the two methods considered are in good

agreement. To obtain reliable results with the V1 model, it is sufficient to consider one sublayer to calculate the frequencies and

to determine the displacement distribution.

The calculation according to the V1 model with the division of each layer into 64 sublayers and according to the V2

model was performed by the method of successive refinement of the search interval using the frequencies obtained with the V1

model as the initial frequencies, considering each layer within one sublayer. The figures for the three calculation options do not

differ. When dividing each layer into 64 sublayers, the results of the V1 model tend to the results of the V2 model. They

practically do not differ (coincide in four significant digits), which is an indirect confirmation of their reliability
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TABLE 1

# #  

2 2 2

3

1
� ( / )

( )
h E

Frequency number
V1 model; each layer

considered within one sublayer

V1 model; each layer is

divided into 64 sublayers
V2 model

1 3.39394e-002 3.38903e-002 3.38885e-002

2 5.16716e-002 5.13323e-002 5.13305e-002

3 1.705426e-001 1.69176e-001 1.69176e-001

a b c

Fig. 1
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0
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1

1

z/h

0

0

z/h
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Table 2 shows the results for the same structure, but with forbidden displacements on the lower surface (the design

model of the pavement on bridges and rocks).

Figure 2 shows the modes of such vibrations. Vibrations at the first lowest frequency occur when n �1, at the second

frequency when n � 2, and at the third when n � 3. At the first and third frequencies, the structure swings in plan along the axis X

with a slight bend. At the second frequency, the plate performs purely planar vibrations along the axisY . While the calculation

error for the V1 model with consideration of each layer within one sublayer did not exceed one percent, in this case it is slightly

higher but quite acceptable. The results obtained with the V1 model with each layer divided into 64 sublayers and with the V2

model are in good agreement, which confirms the reliability of the results obtained.

Table 3 shows the three lowest frequencies of free vibrations of the plate on an elastic foundation modeled by a layer of

finite thickness with the following physical and mechanical characteristics: E E
( ) ( )

/
4

3

1
� 6.07, v

( )4
� 0.25,   

( )4
� . The

thickness of the foundation is equal to the thickness of the plate. The bottom surface of the foundation is clamped.

Figure 3 shows the modes of such vibrations (they occur when n �1).

A feature of this structure is that the first two frequencies differ slightly. When such a plate vibrates without a

foundation (first example), the plate performs bending vibrations at the first lower frequency and torsional vibrations at the

second frequency. In this case, torsional vibrations take the first place, bending vibrations come second. At the third frequency,

torsional vibrations occur, but with the opposite sway of the plate in plan compared to the vibrations at the first frequency. The

error of the V1 model with each layer and foundation considered within one sublayer is higher than in the previous cases, but it

can be considered acceptable in engineering calculations. The results obtained with the V1 and V2 models practically coincides,

which confirms their reliability.
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TABLE 2

# #  

2 2 2

3

1
� ( / )

( )
h E

Frequency number
V1 model; each layer is

considered within one sublayer

V1 model; each layer is

divided into 64 sublayers
V2 model

1 8.24258e-001 8.04085e-001 8.03912e-001

2 1.38257e+000 1.35819e+000 1.35801e+000

3 2.32489e+000 2.29406e+000 2.29387e+000

a b c

Fig. 2
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To justify the need to take into account the inertial properties of the foundation in dynamic problems, we perform a

calculation using the V1 model and considering each layer within one sublayer for 
( )4

0� . The square of the first frequency of

free vibrations # #  

2 2 2

3

1
� ( / )

( )
h E is 2.07700e-001 (Hz)

2
. The plate performs torsional vibrations. The square of the second

frequency of free vibrations is 2.26554e-001 (Hz)
2
. At this frequency, the plate performs bending vibrations. At the third

frequency (#
2

= 2.88945e-001(Hz)
2
), the plate performs torsional vibrations. Neglecting the inertial properties of the

foundation can significantly overestimate the squares of the lowest natural frequencies (compare with the second column of

Table 3).

Conclusions. We have developed two versions of the semianalytical finite-element method for studying the free

vibrations of layered composite plates. The lower surface of the plate can be free, clamped, and rest on a layer of finite thickness.

Both approaches have their advantages and disadvantages. They are quite accurate. The disadvantages (a significant number of

stiffness characteristics and a high order of the governing equations in the case of polynomial approximation in thickness and the

need to find the roots of the characteristic system of equations and its eigenvectors in the case of the analytical determination of

the unknown functions along the thickness of the plate) are insignificant due to the capabilities of modern computer technology.

In the model with polynomial approximation of the unknown functions over the thickness of the structure, when each layer is

divided into 64 sublayers and in the model with analytical determination of the unknown functions over the thickness, the
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TABLE 3

# #  

2 2 2

3

1
� ( / )

( )
h E

Frequency number
V1 model; each layer is

considered within one sublayer

V1 model; each layer is

divided into 64 sublayers
V2 model

1 1.67454e-001 1.60512e-001 1.60498e-001

2 1.72637e-001 1.61355e-001 1.61345e-001

3 2.08077e-001 1.89205e-001 1.89189e-001

a b c

Fig. 3
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frequencies of free vibration are found by the method of sequential refinement of the search interval, with the determination of

the initial frequencies from the model with polynomial approximation of the unknown functions over the thickness when each

layer is considered within one layer. These approaches complement each other, contributing to the reliability of the results. The

studies show that to achieve acceptable accuracy of the first version of the semianalytical finite-element method, it is sufficient to

consider each layer within one sublayer, the frequencies and displacement distributions in such vibrations are acceptable. An

attempt to design the plate on a foundation neglecting its inertial properties led to unacceptable results.
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