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We presented the model of parametric vibrations of the hinged rectangular thermoviscoelastic

piezoelectric plate taking into account the shear strains and dissipative heating. A solution to this

problem is reduced to the classic Mathieu equation. We studied the effect of the temperature of

dissipative heating on the parametric vibrations of the plate.
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Introduction. A large number of publications are devoted to the forced vibrations of thin-walled elements made of

passive (without piezoelectric effect) and active (with piezoelectric effect) materials [1–4]. A number of studies on the forced

vibrations of thin-walled elements, taking into account the effect of dissipative heating were published in [5–15]. However, there

are very few published studies of the parametric vibrations of structural elements made of piezoelectric materials. There are no

studies of parametric vibrations taking into account the coupling of the electromechanical and temperature fields, such as the

dissipative heating caused by hysteresis losses in an inelastic material. Meanwhile, at a certain value of the amplitude of the

harmonic load, the temperature of dissipative heating can reach the point of material degradation when the active material loses

the piezoelectric effect and becomes passive [8–15]. In this case, it becomes impossible to cause parametric vibrations in an

element made of such a material by applying a harmonic potential difference. We will call such a load critical. For a passive

material, the critical load is the melting point or temperature at which the performance of the structure deteriorates. To determine

the critical load on a piezoelectric element, it is necessary to solve the related problem of thermoelectromechanics for various

amplitudes of harmonic load and find the temperature amplitude when the dissipative heating becomes equal to the Curie point.

In this case, a specific type of thermal destruction of an inelastic rectangular plate takes place, when it is not divided into parts,

but, as indicated above, ceases to fulfill its functional purpose due to the transformation of the active material of the plate into a

passive one.

The purpose of this article is to obtain a simple formula for the critical load. Here we will use the basic relations and

notation of the article [16].

1. Problem Formulation and Solution. We consider a three-layer rectangular plate with an inner passive layer of

thickness h
0
and two external identical piezoactive layers of thickness h

1
. The total thickness of the plate is H h h� �

0 1
2 . In
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plan, the plate has dimensions a b� . In the subcritical state, the planar displacements at the ends of the plate are taken to be zero.

The piezoelectric layers are covered by electrodes to which a potential difference

�

V V V t
0 0 1

� � cos � is applied. The governing

equations for forces and moments taking into account shear strains for such a plate have the following form [5–8]:
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In (1), the stiffness characteristics are determined by the formulas:
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ij
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ij

k

11
are the compliance, piezomoduli, and dielectric constants of the material of the kth (k = 0, 1, 2) layer. As

indicated above, it is hereinafter assumed that the piezoactive layers have the same electromechanical properties.

At zero tangential displacements of the ends of the plate in the subcritical momentless strain state � � �

1 2 12
0� � � and

from the first three constitutive equations (1) we have: T T T T
11 22 0 12

0� � �
�

, .

Then, if inertia forces act only in the normal direction, the equations of motion in the postcritical state take the following

form [13]:
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The kinematic characteristics are determined by the following formulas [16]:
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where w
x y

, ,� � are the normal deflection and angles of rotation.

Substituting (5) into the constitutive equations for the moments and transverse forces (1), and the obtained result into

the equations of motion (4), we get three equations for the deflection w and transverse shears � �

x y
, :
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If the ends of the plate are hinged, the solution of the system of equations (6) is found by the formulas that automatically

satisfy these boundary conditions:
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Substituting (7) into (6), we get the system of equations
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Solving the first two equations of (8) for X and Y , we obtain
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Substituting (10) into the third of Eqs. (8), we get a differential equation forW
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Let us represent Eq. (12) in the form
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Equation (14) is the classical Mathieu equation well studied in the literature [1]. It provides information on the areas of

dynamic instability (ADI) of oscillations.

According to [1], the boundaries of the ADI are concentrated around the frequencies
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the third one:
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We will use the simplest damping model, assuming that this model is proportional to the rate of change in the normal

deflection �w. Then Eq. (14) is replaced by the equation

d w
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dt
t w

2
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2
2 1 2 0� � � �� � �� ( cos ) . (20)

Here � characterizes the damping.

In this case, the main ADI is found by the formula

� �
� � �� � � �2 1 2

2 2 1 2
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/
. (21)

Hence we have the minimum critical force (MCU) for the first (main) ADI:

�

*
� �. (22)

The second ADI is determined by the ratio
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in this case, the MCU is determined by the formula

�
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the MCU for the third ADI is determined by the ratio

�
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/
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1 3
. (25)

Calculations [1] show that when the damping of theMCU is taken into account, it sharply increases with increase in the

ADI number. Therefore, in the study of parametric oscillations, only the first (main) ADI is of practical importance.

2. Effect of the Temperature of Dissipative Heating on Parametric Vibrations. For the boundary conditions

considered above, due to the equality of strains to zero in the subcritical state, dissipative heatingwill be caused only by dielectric

losses in the material. In this case, the stationary temperature of dissipative heating in the piezoelectric layer is determined from

the solution of the energy equation of the form

d
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Here the origin is selected at the center of the inner passive layer; " � �T T
0
, T

0
is the initial temperature of the layer; � is the

dielectric constant; $ is the coefficient of thermal conductivity. Let a constant temperature equal toT
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Then the solution to the energy equation has the form
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. Equating the maximum temperature to the point of material degradation (for example, the Curie point)
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When the potential difference exceeds the critical value, parametric vibratilns cannot be excited due to the loss of

functional capacity by the piezoactive material.

Thus, whenV V
C

% there is a specific type of thermal destruction of a viscoelastic plate during its parametric vibrations

when it retains its integrity but loses its functional purpose.

In conclusion, we note that, as a rule, piezoelectric elements operate at temperatures much lower than the Curie point.

Therefore, under "
C
it is necessary to assume the maximum temperature allowed by the conditions of their performance.
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