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The nonclassical problem of fracture mechanics for a near-surface crack is solved in the case of small

distances between the free surface and the crack plane. The problem is axisymmetric for a penny-shaped

crack. A numerical study for a composite material is carried out as an example.
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Introduction. When the forces acting on a body with a plane crack are parallel to the crack plane, the stress intensity

factors predicted by linear fracture mechanics are equal to zero and the Irwin–Griffith failure criteria are inapplicable. In the case

of tension and compression of the material along the crack plane, the approach first proposed in [1] is applied. The failure

criterion, in this case, is the local loss of stability near the crack described by the three-dimensional linearized theory of elastic

stability. According to this approach, the fracture is initiated by local loss of stability near cracks, and the critical compressive

loads are determined by solving the appropriate eigenvalue problems using the three-dimensional linearized theory of stability of

deformable bodies. The reviews [9–14] and monographs [2–4] provide detailed information on the fracture of materials under

compression along the plane of cracks for various locations of interacting cracks. Note that a detailed analysis of approaches to

the problems of fracture of materials along cracks was for the first time performed in [9] with a detailed bibliography.

The relationship between the critical compressive stress and the distance from the free surface to the plane of a

near-surface penny-shaped crack (Fig. 1) was presented in [5, 7, 13, 14] for composite and highly elastic materials.

The case where the distance between the free surface and the crack plane tends to zero is of particular interest. This case

has been investigated in detail for highly elastic materials [5, 7], but not for composite materials. This issue is of theoretical and

applied interest for design of thin interlayers formed after spraying, thermal shock, etc.

Here we will use the combined numerical-analytical method proposed in [7] to solve the problem of fracture of a

composite half-space compressed along a penny-shaped near-surface crack for small distances between the free surface and the

crack.

1. Problem Formulation and Generalized Solution. We consider a penny-shaped crack of radius a in half-space

x h
3
� � located in the plane x

3
0� centered on axisOx

3
. The initial stresses acting along the crack cause biaxial tension and

compression [14]:
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where �
j
are the elongations along the axes; x

j
are the Lagrange coordinates that coincide with the Cartesian coordinates in the

undeformed state; S
ij

0
are the components of the symmetric stress tensor; u

j

0
are the displacements corresponding to the

prestresses S
ij

0
.

For the axisymmetric linearized problem, we will use the following boundary conditions on the crack faces x
3

0� � and

on the free surface x h
3
� � [14]:

t x r a t x r a
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t x h r t x h r
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where t
ij
is the asymmetrical Kirchhoff stress tensor; ( , , )r x�

3
are the cylindrical coordinates corresponding to the Cartesian

coordinates x
j
.

In the case of a body with a macrocrack (its size is much larger than the size of microstructures), the composite is

considered as an anisotropic medium with induced macrocharacteristics [14].

Using the technique used in [14], we reduce the problem to the system of Fredholm equations with the additional

condition
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All the quantities in Eqs. (1) are dimensionless;

~

C
1
is an unknown constant related to the additional condition.

The kernels of the integral equations (1) are given by
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2. Procedure of Analysis. To establish the relationship between the critical shortening-elongations (stresses) and the

dimensionless distance between the free surface and the crack plane� from integral equations (1), we used a procedure based on

the Bubnov–Galerkin method. Let the coordinate functions be power functions. For N coordinate functions, we have
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Unlike the previous studies [13, 14] where system (1) was numerically integrated after substitution of the coordinate

functions (3), we use the method proposed in [7], which allows us to obtain new results for highly elastic materials [5–8]. It

allows us, using a computer algebra software, to analytically evaluate the integrals of functions (2) included in the kernels of

system (1) for the system of coordinate functions. This increased the accuracy of computation by excluding the error of

numerical integration.

To accelerate the evaluation of integrals, we use an algorithm based on recurrence formulas:
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The use of recurrence formulas (4) makes it possible to speed up the analytical evaluation of integrals from kernels (2)

of the integral equation (1).

As a result, the system of integral equations (1) is reduced to the system of 2 1 1( )N � � equations:
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where F
kji

and G
kji

are the exact expressions calculated using computer algebra software and depending on the material

constants and dimensionless distance between the crack and the free surface.

3. Numerical Results. As an example, we studied a composite with given characteristics of a transversely isotropic

medium:

, � 0.3, - �, 0.2, - �G E/ 0.1, - �E E/ 0.5. (6)

Substituting (6) into (5) we get a system of equations whose coefficients F
kji

andG
kji

depend on the parameters� and

.
11

0
. Analyzing this system numerically, we can determine the minimum critical stresses at which the system loses stability for

different values of the dimensionless distance � between the crack and the free surface.

Using 10 coordinate functions, we obtain the dependences of the critical stresses on the dimensionless distance . �
11

0
( )

shown in Fig. 2 for large distances and in Fig. 3 for small distances. The results obtained for large dimensionless distances (Fig.

2) are in good agreement with the data obtained in [14], which means that the proposed procedure provides good accuracy.

Figure 2 contains new data that could not be obtained using the methods proposed previously.

The table collects the critical stresses for very small dimensionless distances. Assuming that . �
11

0 2
/ E A� , the table

gives the value of coefficient A.

Conclusions. We have analyzed, for the first time, the critical parameters defining the fracture of a half-space with a

near-surface penny-shaped crack in a composite material under compression for a wide range of distances between the crack and

the free surface. For the first time, results were obtained for the values of the relative distance between the crack and the free

surface up to � �
�

10
9
, which are several orders of magnitude lower than those obtained earlier.

From the analysis of the results, it can be determined that for small dimensionless distances, the critical stresses .
11

0
/ E

are quadratically dependent on the dimensionless distance with coefficient A � –1.28.
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