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A generalized design model is proposed to study the stability and initial post-buckling equilibrium

trajectory of sandwich cylindrical shells with elastic core that resists only transverse

tension–compression. The model includes nonlinear equilibrium mixed-form equations, asymptotic

equations obtained by the Koiter–Budiansky method, and the analytical solution of a homogeneous

eigenvalue problem and inhomogeneous problem to find the values of the unknown functions at the

critical point. The numerical results obtained indicate that the internal pressure strongly influences the

critical load and initial post-buckling behavior of the shells.
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Introduction. Sandwich shells with core have inhomogeneous structure whose typical feature is that the core greatly

differs from the face layers not only in thickness but also in mechanical properties. As a rule, the core layer has much greater

thickness and much lower elastic modulus and specific density. Methods for analysis of the strength and stability of sandwich

shells are outlined in [1, 4, 9, 11, 12, 15]. Many practical solutions indicate that sandwich shells are mainly used in aircraft

[15, 19].

The history of sandwich shells, their advantages over monocoque shells, current use, and prospects for future use are

detailed in [15].

There is a need to study sandwich shells with core that is elastic only in the transversal direction. If the face layers

interact through linear springs perpendicular to their surface, then the equivalent continuous body will have such properties. In

[16], a model with springs between layers of a two-wall nanotube is used to describe the interaction caused by the Van derWaals

attraction-repulsion forces. Sandwich-shell systems can also be considered as optimal for such structures as underwater

submersibles and pipelines. It is necessary to change the design model [4] because the inner layer is subject to not only the

surface pressure exerted by the outer layer through the core, but also the pressure of opposite sign exerted by the substance in the

inner cylinder [18] or the fluid or gas in underwater pipelines.

In what follows, we will develop some aspects of the theory of sandwich shells of this type. We will use the modified

variational Lagrange principle to derive the governing equations for sandwich shells, and will use a continuous model of a body

that is elastic only in the traverse direction to describe the core [1, 3, 4]. The equations will be derived without any additional

hypotheses except for those typical for shell theory. The continuous equations of multi-wall nanotubes [7, 13, 14, 16, 17] have

the same structure as those of the theory of multilayer shells derived without a single hypothesis for the whole shell [1–3]. This
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also applies to sandwich shells with transverse compliance of the core. These sandwich shells differ by the methods of

determining the mechanical characteristics of the core [7, 15].

Using the asymptotic Koiter–Budiansky method [5, 6, 8], we will formulate an eigenvalue problem and an

inhomogeneous problem to find the increments of the functions in the initial post-buckling state. We will also derive a formula

for a coefficient b used to determine the possible direction of the equilibrium trajectory in the initial post-buckling state and the

sensitivity of sandwich shells to the initial geometric imperfections.

The stability and initial post-buckling behavior of composite cylindrical shells were examined in [10].

1. Nonlinear Equilibrium Equations of Sandwich Shells. To derive the nonlinear equilibrium equations of sandwich

shells, we will employ the variational Lagrange principle

� �V A� � 0, (1)

where V is the strain energy of the shell, A is the work done by the external load. The energy V consists of the energies of the two

face layers, V
1
and V

2
, and the energy of the core layer, V

3
. In accordance with Timoshenko’s hypotheses for the strain energy V

i

(i = 1, 2), we have
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where L is the shell length; R
i
is the radius of the mid-surface of the ith layer; T

mn i,
and M

mn i,
are the forces and moments

equivalent to the stresses acting in the layers; �
mn i,

are strains; m and n are indices; k
mn i,

are the increments of curvatures and

torsion.

The force and strain functions are related by Hooke’s law as follows:
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whereC
mn

and D
mn

are the shell stiffnesses in tension and bending, respectively [2].

The nonlinear expressions of strains in terms of displacements are adopted in the form following from the

Mushtari–Donnell–Vlasov (MDV) theory
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where u and v are the tangential displacements;w is the normal displacement which is positive when directed toward the center of

the circle; � and � are the angles of rotation; y R
i

� � for the ith layer.

It is assumed that the core (third layer) is perfectly compliant in all the directions, except for the transverse one (along

the z-axis). The origin of this axis lies on themid-surface of the layer. In this case, the strain energy of the third layer is defined as
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The elasticity theory yields:
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where � is a function describing the variation of the displacement w with thickness.
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The ratioE t
3 3
/ is known to be equal to themodulus of subgrade reaction of a two-dimensional foundation of thickness

t
3
, disregarding the transverse stresses. Let

C E t
3 3 3
� / .

Using Eqs. (2)–(8) of the variational principle (1), where the displacements u v w
i i i
, , and angles � �

i i
, are assumed to

be independent functions, we obtain 10 partial differential equations for the displacements. Application of the tangential strains

expressed in terms of displacements (4) in the above variant of the shell theory makes it possible to reduce the governing system

of differential equations to eight equations. This system has a mixed form because it contains derivatives of not only

displacements but also the force function. Assume that the tangential forces T T T
11 12 22
, , appearing in functional (2) are

independent in addition to the displacements u, v, w. For the strains �
ij
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Since expression (9) is valid for both load-bearing layers, the index “2” is omitted. Let us introduce the force function F

as
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Since the displacements, strains �
33
, and forcesT
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of the core are expressed using formulas (5)–(7), the functions F
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It is assumed that the shell is acted upon by external pressure q
1
applied to the surface of the first layer and by the

pressure q
2
caused by the liquid or gas in the second cylinder. In (11), the notation of the differential operators L

i
( ) of the

unknown functions is used:
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The expression for L
1
includes the following coefficients:
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Equating the expressions multiplying the variations � � �� ��F w
i i i i
, , , in (11) to zero, we get eight nonlinear

differential equations
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These equations can be used to study the stress–strain state of a shell throughout the entire deformation trajectory

including limiting points, bifurcation points, and post-buckling behavior.

2. Subcritical State of the Shell. In the above model of a sandwich shell, each load-bearing layer has as many free

degrees of freedom as an individual layer without constraints typical for a sandwich. This allowing specifying the load applied to

the shell as distributed over the layers. In the problem being considered, the outer layer (i = 1) is acted upon by compressive

pressure q
1
, while the inner layer (i = 2) undergoes pressure q

2
of opposite sign. It is assumed that the ends are hinged and free of

load. If the subcritical state is momentless, then it follows from (1) with (2)–(8) that
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Solving this system, we find the subcritical forces
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Solving the homogeneous problem (17), (18) for the given coefficients a
q

( )1
and a

q

( )2
, we find either the critical value of

the parameter (
ñ
or the critical intensity of the external pressure q

c

1
. The critical values of deflectionsw
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andw

2
are defined by
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These deflections can be used to estimate how the distance between the load-bearing layers varies before bifurcation.

This determines the value of the constant of interfacial interaction [7].

3. Asymptotic Analysis of Nonlinear Equations. Having determined the stress state of the shell, we calculate the

critical load and determine the initial post-critical behavior of the shell in the vicinity of the critical point. To this end, we will use

the asymptotic Koiter method [8] in Budiansky’s alternative form [5, 6]. Suppose that the load applied to the shell varies

proportionally to the parameter (, while the bifurcation load is determined by the parameter (
q
. After passing the bifurcation

point, the equilibrium state of the shell is determined by the changed value of the parameter ( that can be described by

( ( * *� � � �
c

a b( )1
2

� . (15)

Thus, if the values of the parameter (
c
and the coefficients a and b of the series (14) are known, the post-buckling

behavior of the shell can be determined using the theory [8]. Following [6], we will expand the unknown functions in (13) into

asymptotic series in powers of a small parameter:
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where *is the small amplitude of the buckling mode, the first index i denotes the layer number (i = 1, 2), the second one, the term

number in the series.

Substituting (16) into (11) and equating the expressions multiplying the parameter * to different powers to zero, we

obtain a sequence of problem statements for the functions that are the coefficients of series (16). In the case of the first power, we

have a variational equilibrium equation at the point where the main trajectory intersects with the trajectory of another solution of

the nonlinear equations. The homogeneous problem for the functions with index “1” is derived from the equation
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The variations of the function in (17) can take values of the coefficients in (16). As a result, we obtain the following

orthogonality relations:
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This condition yields another form of this relation:
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We use conditions (20) to determine the coefficients a and b in (14). Let us consider a relation from which it is possible

to determine the value of a. At *
2
, we have
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Considering condition (20) at n = 2 and the equality
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With these equations, we can determine the coefficient b describing the initial post-buckling behavior of the shell.

Using the solutions of the homogeneous problem (17) and inhomogeneous one (21), we get
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4. Solving the Problem of Stability and Initial Post-Buckling Behavior. To calculate the critical load parameter (
c
,

we will employ the variational equation (17). Given boundary conditions, the solution can be represented by one term of a

trigonometric series due to the constancy of the coefficients of the unknown functions:

F B l x n
i

i

m,

( )
sin cos

1
� � , w C l x n

i

i

m,

( )
sin cos

1
� � ,

� �
i

i

m
D l x n

,

( )
cos cos

1
� , � �

i

i

m
E l x n

,

( )
sin sin

1
� (24)

for the first (i = 1) and second (i = 2) layers,

l
m

L
m n

m
� � �

�
, , ,... , ,1 2 2 3, … .

Substituting (24) into (17) and carrying out the necessary procedures, we arrive at a system of homogeneous algebraic

equations:

[ ] , , ,... , , ( , , , , ,
( ) ( ) ( ) ( ) ( )

X Y i j Y B C D E B C
ij

� � �0 1 8
1 1 1 1 2 ( ) ( ) ( )

, , )
2 2 2

D E , (25)

where
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The coefficients X
ij
at i = 5,…, 8 are calculated by the same formulas where R

1
is replaced by R

2
, and i, j by (i + 4), (j +

4), except for X
26

because X R R C
62 3 2 3

� �( / ) . Let us reduce the eight equations of system (25) to two equations:
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where - � �� X X X
33 44 34

2
, - � � ��

1 32 34 42 43
X X X X , - � � ��

2 33 42 32 43
X X X X . The expressions for -- -- --� � �, ,

1 2
remain

the same if i, j are replaced by (i + 4), (j + 4).

Equations (26) are used to determine the critical parameter value (
c
and wave numbers m and n that define the

bifurcation bucklingmode. In writing the system of equations for the functions with index “2”, we keep only the 1th, 2th, 5th, and

6th equations because the 3th, 4th, 7th, and 8th equations remain homogeneous and of the same form as in the previous problem.

At a = 0, we have

L F w w
i i i1 2 1 1

1

2

( ) ( , )
, , ,
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L w F w F w
i c i i i i2 2 0 1 1 1

( , ) ( , ) ( , )
, , , , ,

� � � �( . (27)

At i = 1, we arrive at the 1th and 2th equations of the original system, while at i = 2we arrive at the 5th and 6th equations.

Substituting (24) for the bifurcation functions w
i ,1

and F
i ,1

into (27), we get the right-hand sides
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The solution of Eqs. (27) is represented as
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This solution includes axisymmetric and nonaxisymmetric components, the latter having double number of waves

occurring in bifurcation. The system of algebraic equations for the coefficients of series (29) splits into independent systems for

each value of k. The matrix of the subsystems takes the form (26). The system of two inhomogeneous equations can be derived in

the same way. The coefficients of the axisymmetric component in (29) are found by solving the system
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A similar system for solving the non-axisymmetrical problem is
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i j,
are calculated by the same replacement as above.

Solving the homogeneous system of equations (17) and inhomogeneous system (27), we determine, using (23), the

coefficient b which allows us to ascertain the initial post-buckling behavior of shells (9).

The numerator in Eq. (22) is represented as
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When the hoop force (a
q
acts, the denominator is given by
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The functions w w F F
i i i i, , , ,
, , ,

1 2 1 2
represented by the trigonometric functions (32) and trigonometric series (29)

become known after solving the homogeneous system of algebraic equations (26) and inhomogeneous system (33). Substituting

these functions into Eqs. (34) and (35) and integrating them, we arrive at the following expressions for the numerator and

denominator in (22):
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If the value of b is known, we can calculate the critical load (
s
applied to a shell with geometrical imperfections in the

form of a buckling mode [8]:
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,

where * is the amplitude of the initial deflection.
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5. Calculated Results. Let us analyze, as the first example, the stability of double-wall carbon nanotubes (DWCNT)

with radius of the outer wall R
1
= 0.95 mm and radius of the inner wall R

2
= 0.61 mm. These nanotubes are of armchair type (m =

n). In accordance with the well-known rules, such nanotubes are denoted as [(14, 14), (9, 9)].

The ratio L R/
1
for each case remains the same due to the appropriately chosen length L. The thickness of each wall is

equal to 0.066 nm. The mechanical characteristics of the wall are the same as in [13]: E
1
� 5791.1 GPa, E

2
� 7973.5 GPa,

G G G
12 13 23

� � � 1984 GPa, / � 0.169.

How the critical intensity of external pressure q
c
in double-layer nanotubes depends on the ratio L R/

1
is shown in

Fig. 1. If q q q
21 2 1

� / , then curve 1 corresponds to empty nanotubes (q
21

0� ), while curve 2 corresponds to nanotubes filled

with some material that exerts internal pressure q
2
, q

21
= 1 [18]. If

q21
< 1, then the corresponding curve is located between those

in Fig. 1. Let q
c

e
and q

c

f
be the critical pressure in empty and filled nanotubes, respectively. In the range 0.5 0 0L R/

1
6, we have

1 0 0q q
ñ

e

c

f
/ 2.5. The buckling modes of empty and filled DWCNTs become different with increasing length (the number of

transverse waves is higher for filled nanotubes).

Figure 2 demonstrates how the coefficient of initial post-buckling behavior b varies with the ratio L R/
1
. The parameter

Ñ
3
�89.55 GPa/nm. Curves 1 and 2 correspond to the same nanotubes as in Fig. 1. The lines are broken and have different slope

angles—the coefficient varies stepwise with the length. This behavior of the curves is due to the change of buckling modes. The

initial segment of each curve demonstrates frequent change of modes, the frequency decreasing with increasing L R/
1
. The

greatest difference between curves 1 and 2 is in that the former has negative ordinates at all points, except for the first ones, while

the latter has positive ordinates. Since the coordinates in these figures are values of the coefficient b, the critical state of the empty

DWCNT is instable, while the critical stated of the filled one is stable. Moreover, as follows from Fig. 1, the critical external

pressure for the filled shell is much higher than for the empty shell.

The initial longitudinal post-buckling modes of a DWCNTwith L R/
1
= 2 are shown in Fig. 3, where all the ordinates of

the functions w
i
are the ratios of the deflections w

i
to the maximum deflection w

1
of the upper layer for the empty (q

21
= 0) and

filled (q
21
= 1) nanotubes. The deflections of the upper layerw

1
coincide in both cases, while deflections of the inner layerw

2
are

different. At q
21

= 0, the deflections w
2
are concentrated in the shell middle and change the sign near the ends. For q

21
= 1, the

amplitudes of the deflections w
2
decrease and the curve becomes more shallow along the entire length.

Let us consider, as the second example, the stability of sandwich shells whose load-bearing layers are made of

carbon-filled plastic with the following mechanical characteristics: E
1
� 253.4 GPa, E

2
� 12.4 GPa, G G

12 13
� � 5.04 GPa,

G
23

� 4.36 GPa.

The elastic modulus of the core E
3
= 1MPa, stiffnessÑ E t

3 3 3
� / , the thickness t

3
is equal to R R t

1 2
� � , where R

1
and

R
2
are the radii of the upper and inner layers, respectively, t is the thickness of the load-bearing layers.

Let R
1
= 100 mm = const and R

2
= 90, 80, and 70 mm. The shell length L and thickness t in each case are equal to 2.5R

1

and 2mm, respectively. The results obtained are shown graphically in Figs. 4–8. The abscise axis indicates the numbers multiple

of which the value of C
3
is.

Figure 4 demonstrates how the critical external pressure q
1
depends on the stiffnessC

3
(value of k) for the three cases of

the sandwich shell with zero internal pressure (q
2
= 0). If the stiffnessC

3
is low, the critical loads are maximum for the shell with
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R
2
= 90 mm. However, with increasing stiffness C

3
of the core, the order of arrangement of the curves with R

2
= 90, 80, and 70

mm reverses. As is seen from Fig. 4, when k > 9, the curve for R
2
= 70mm lies above the other curves, while the curve for R

2
= 90

mm lies under the other curves.

The initial post-buckling behavior of the same shells is characterized by Fig. 5, where b < 0 for all values of stiffnessC
3
.

Figures 6 and 7 show the calculated values of the critical load and coefficient b for the same sandwich shells acted upon by

internal pressure q
2
= 1. As can be seen, the critical loads are maximum in the shell with R

2
= 90 mm for the above value of the

coefficient k of the stiffness C
3
. The instability domain of the initial post-buckling behavior of this shell is narrower than for the

other two shells. The shell at k > 4 with R
2
= 70mm has b > 0, which characterizes its insensitivity to imperfections in the form of

a buckling mode.

Figure 8 shows how the load-bearing layers of the sandwich shell interact during buckling. The figure illustrates

variation in the amplitudes of the bucklingmodesÑ
( )2

(24) of the inner shells with radiiR
2
= 70, 80, and 90mm at unit amplitude

of the outer shell depending on the parameter k. As is seen, the amplitudeÑ
( )2

tends to unity with increasing stiffness C
3
. When

R
2
= 70mm, the load-bearing layers bend so thatÑ

( )2
= 1 in the range ofC

3
. If R

2
= 80mm or 90mm at k > 5, the curves are very

close to the asymptoteÑ
( )2

= 1. The buckling of the sandwich shell as a whole is possible only at a certain value of the transverse

stiffness of the core. This value can be determined using the technique described above. It is interesting that if the design model

has two reference surfaces, then the buckling modes with different amplitudes of layers can be determined.

Conclusions.We have developed a design model of buckling of sandwich shells with a transversely elastic light core.

Its distinctive feature is that the outer and inner cylindrical shells in the sandwich shell demonstrate as many degrees of freedom

as those unconnected by the core. This allows describing the loading of individual layers. We have solved the problem of the

stability of a sandwich shell acted upon by external pressure applied to the upper layer and oppositely directed to the pressure in

the inner cylinder. If the transverse reduction is neglected, the problem becomes trivial. The proposed sandwich shell model can

also be considered as a continuous approximation of a double-wall nanotube where the interfacial Van der Waals forces are

modeled by a continuum [7]. In contrast to the well-known approaches, our technique is based on the Lagrange variational
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principle. Consistent nonlinear differential equilibrium equations have been derived. These equations underlie an algorithm for

analyzing the stability and post-buckling behavior of a sandwich shell using the asymptotic Koiter–Bydiansky method.

Analyzing the results obtained, we can draw the following conclusions.

The critical intensity of external pressure in the filled double-wall nanotube is higher than that in the empty one. This

difference increases with the length of the nanotube. The substantial increase in the critical pressure due to the presence of the

filler was established in [18].

An important parameter in analyzing the stability of a double-wall nanotube is the coefficient of post-buckling behavior

b, which is negative for the empty nanotube and positive for the filled one. Hence, the critical state is unstable in the former case

and is stable in the latter case.

The buckling modes of the outer layer of the empty and filled double-wall nanotubes are close, while those of the core

differ substantially because of the pressure that flattens the surface.

We have studied the stability of sandwich shells with carbon-filled plastic load-bearing layers with constant radius of

the outer layer and different radii of the inner layer under external pressure. It has been established that when the internal pressure

is absent, the critical load increases with transverse stiffness of the core to a certain constant level. The critical load peaks at the

minimum radius of the inner layer (70 mm).

If the internal pressure is absent, the coefficient of initial post-buckling behavior of shells with such radii is negative at

all values of the stiffness of the core despite the fact that its behavior is different in each case.

If the cylinder with minimum radius in the sandwich is subject to internal pressure, the critical load applied to the shell

increases considerably. The internal pressure provides the best support for the shell with radius equal to 90 mm. Shells subject to

internal pressure demonstrate stable post-buckling behavior over a wide range of dimensions.

It has been shown that a sandwich shell with a low transverse stiffness losses stability in a mode with equal number of

longitudinal and transverse waves for both layers but with different amplitudes. The shapes of the layers in the initial

post-buckling state are different.

REFERENCES

1. V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow

(1981).

2. G. A. Vanin, N. P. Semenyuk, and R. F. Emel’yanov, Stability of Reinforced Shells [in Russian], Naukova Dumka, Kyiv

(1978).

3. G. A. Vanin and N. P. Semenyuk, Stability of Shells Made of Composite Materials with Imperfections [in Russian],

Naukova Dumka, Kyiv (1987).

4. E. I. Grigolyuk, “Equations of sandwich shells with a light core,” Izv. AN SSSR, Ser. Techn. Nauki, No. 1, 77–84 (1957).

5. N. Yamaki, “Postbuckling and imperfection sensitivity of circular cylindrical shells under compression,” in: W. T.

Koiter (ed.), Theoretical and Applied Mechanics, North-Holland, Delft (1976), 461–476.

52

Fig. 8

0.6

0.4

0.2

0

1.0

0 10 20 30 40 k

C
( )2

0.8

70

80

90



6. B. Bydiansky, “Theory of buckling and post-buckling behavior of elastic structures,”Adv. Appl. Mech., 14, 2–65 (1974).

7. X. Q. He, S. Kitipornchai, and K. M. Liew, “Buckling analysis of multi-walled carbon nanotubes: A continuum model

accounting for Van Der Waals interaction,” J. Mech. Phys. Solids, 53, 303–326 (2005).

8. W. T. Koiter, “Elastic stability and post-buckling behavior,” in: Proc. Symp. Nonlinear Problems, Univ. of Wisconsin

Press, Madison (1963), pp. 257–275.

9. V. F. Meish, Yu. A. Meish, and V. F. Pavlyuk, “Dynamics of three-layer elliptical cylindrical shells reinforced with

discrete rings,” Int. Appl. Mech., 54, No. 2, 172–179 (2018).

10. N. P. Semenyuk, “Initial supercritical behavior of fiberglass cylindrical shells with filler under axial compression,” Int.

Appl. Mech., 24, No. 5, 478–484 (1988).

11. N. P. Semenyuk, V. M. Trach, and A. V. Podvornyi, “Spatial stability of layered anisotropic cylindrical shells under

compressive loads,” Int. Appl. Mech., 55, No. 2, 211–221 (2019).

12. N. P. Semenyuk, V.M. Trach, and N. B. Zhukova, “Stability and initial post-buckling behavior of orthotropic cylindrical

sandwich shells with unidirectional elastic filler,” Int. Appl. Mech., 55, No. 6, 636–647 (2019).

13. H. S. Shen, “Postbuckling prediction of double-walled carbon nanotubes under hydrostatic pressure,” Int. J. Solid

Struct., 41, No. 9–10, 2643–2657 (2004).

14. J. X. Shi, T. Natsuki, and Q. Q. Ni, “Radial buckling of multi-walled carbon nanotubes under hydrostatic pressure,”

Appl. Phys., Ser. A, 117, No. 3, 1103–1108 (2014).

15. J. R. Vinson, “Sandwich structures: past, present, future, Sandwich structures 7: Advancing in sandwich structures and

materials,” in: Proc. 7th Int. Conf. on Sandwich Structures, Aalborg Univ., Denmark (2005), pp. 29–31.

16. C. M. Wang, Y. Q. Ma, Y. Zhang, and K. Ang., “Buckling of a double-walled carbon nanotubes modeled by solid shell

elements,” J. Appl. Physics, 99 (11), 114–117 (2006).

17. C. M. Wang, Y. Y. Zhang, Y. Xiang, and J. N. Reddy, “Recent studies on buckling of carbon nanotubes,” Appl. Mech.

Reviews, 63, 1–18 (2010).

18. C. Y. Wang, A. Mioduchowski, and C. Q. Ru, “Critical external pressure for empty or filled multiwall carbon

nanotubes,” J. Comput. Theor. Nanoscie., 1, 1–5 (2005).

19. C. Yuan, O. Bergsma, S. Koussios, et al., “Optimization of sandwich composites fuselages under flight loads,” Appl.

Compos. Mater., 19, No. 1, 47–64 (2012).

53


	Abstract
	Keywords
	Introduction
	1. Nonlinear Equilibrium Equations of Sandwich Shells
	2. Subcritical State of the Shell
	3. Asymptotic Analysis of Nonlinear Equations
	4. Solving the Problem of Stability and Initial Post-Buckling Behavior
	5. Calculated Results
	Conclusions
	References

