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The nonaxisymmetric elastoplastic stress–strain state of bodies of revolution under nonisothermal

combined loading is analyzed with allowance for secondary plastic strains. The study is based on the use

of the constitutive equations of the theory of small-curvature processes and finite-element method. The

model of elastic unloading of a material with perfect Bauschinger effect and isotropic hardening is

employed. Numerical examples illustrate how the choice of an unloading model affects the results

obtained.
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Introduction. The intensive development of modern mechanical engineering and the release of competitive products

are impossible without fundamentally new ideas, mathematical modeling of the processes taking place in the structural elements,

and the subsequent computational experiment. In this case, the original object is replaced by its mathematical model which is

then analyzed and tested with the help of computational-logical algorithms. One of the factors contributing to solving such

problems is the development of techniques capable of analyzing in detail the temperature fields and elastoplastic stress–strain

state (SSS) of structures of wide class making the most complete allowance for features of their deformation under the operation

and extreme conditions. Such an approach makes it possible to ensure necessary performances and high service reliability of the

product at scarce funds for complex and expensive tests.

A feature of the deformation of structural members subject to intensive external heating is that the compressive stresses

in the surface layers decrease with increasing temperature and turn into tensile when the plastic strains reverse sign. This is

because, despite the temperature increase, the heating of the bulk of the element decreases the temperature gradient in the surface

layers.

There are many developments [2–8, 15, etc.] that allow quasistatic elastic or elastoplastic analysis of nonuniformly

heated structural members. However, the classes of the problem being solved are limited by various simplifying assumptions

allowing describing only partial cases of the deformation process of the structural member under consideration. Some of these

studies assume only elastic behavior of the member material over the whole range of stress variation, while others adopt the

physically nonlinear stress–strain relationship with the unloading being neglected. It is often assumed that simple processes of

deformation occur, accompanied by elastic unloading only. In reality, however, under intensive heating andmechanical loading,

the deformation occurs along small-curvature paths [3, 10, 11, 20, 21] accompanied by secondary plastic strains under

unloading. All these studies use modified relations of the theory of small-curvature processes [6, 18] and conventional relations

of the theory of simple processes based on the Prandtl–Reuss theory [16, 17] and the Hencky theory [14], respectively.

The studies on small-curvature processes are mainly concerned with the SSS of shells of revolution under repeated

thermomechanical loading with allowance for secondary plastic strains [9–12, etc.]. In what follows, we will consider a

technique of numerical analysis of structural members in the form of bodies of revolution. The technique takes into account the
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occurrence and variation in the plastic strains under unloading and nonisothermal loading. The results obtained with this

technique in the case of variable nonisothermal loading assuming different material behavior under unloading (elastic unloading,

isotropic hardening or perfect Bauschinger effect) will be analyzed. We will also study the plastic zones that occur during

deformation.

1. Problem Statement. Governing Equations.Let us consider a compound (layered) body of revolution with isotropic

and orthotropic elements under nonisothermal loading by volume,

�

K K K K
z r

( , , )
�

, and surface,

�

t t t t
n nz nr
( , , )

�
, forces in

given heating conditions. The body is described in the cylindrical coordinate system z r, ,� . It is assumed that the body

temperature is T
0
at the initial instant t

0
. The body is discretely homogeneous and composed of bodies of revolution with the

common axis of revolution. The components of the body were joined at temperatureT
0
without tension so that they are in perfect

mechanical and thermal contact. The body is loaded so that the problem can be considered quasistatic.

In solving a thermoviscoplasticity problem, the process of loading and heating is divided into stages in such a way that a

broken curve accurately matches the deformation path, while the time instants separating these stages are as close as possible to

the instants at which the components change over from active loading to unloading and vice versa. To determine the

thermoviscoplastic SSS of the body of revolution, it is necessary to sequentially solve the nonstationary thermal conduction

problem to determine the temperature T under given conditions of heat exchange with environment and the

thermoviscoplasticity problem to determine the displacements u
i
, strains �

ij
, and stresses � �

ij
i j z r( , , , )� at fixed time instants

under given loading and boundary conditions.

In studying the temperature and stress–strain state of the body, we will use the following variational equations:

heat conduction equation
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and Lagrange equation
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whereV is the volume of the body of revolution bounded by the surface �; �
t
is the part of the surface �on which the components

of the surface load

�

t
n
act; c and � are the mass specific heat and the density of the body, respectively; � is the convective

heat-transfer factor between the body and the environment of temperature �; t is the current time of heating and loading;

q q q
z r
, ,

�
are the reduced heat fluxes in the respective directions:
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where �
ij
are the components of the heat conductivity tensor.

The constitutive equations relate the stresses �
ij
and the strains �

ij
relations; their coefficients depend on the type of

material, equations of state, linearization method, etc. The strain tensor is represented as the tensor sum of elastic, plastic, and

creep strains. At each loading stage, the thermoviscoplasticity problem is solved by the method of successive approximations. In

this case, the constitutive equations become [19]:

� � �
ij ijmn mn ij

À� 	
*

(m, n = z r, ,�), (4)
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where

A A A A
ijmn jimn ijnm mnij

� � � . (5)

The coefficients A
ijmn

appearing in (4) and (5) are different for each type of material and depend on the plasticity and

creep theories used. The terms �
ij

*
allow for the thermal strains, deviation of the material from elastic behavior, temperature

dependence of stress–strain diagrams, type of anisotropy, the method used to linearized the constitutive equations, etc. To

linearize the constitutive equations, we will use the methods of successive linear approximations, where the problem at each

approximation is reduced to a linear elasticity problem with additional term �
ij

*
. These terms are determined from the previous

approximation. The expressions for A
ijmn

and �
ij

*
(4), (5) for isotropic material, cylindrically orthotropic, and linearly

orthotropic materials are presented in [3, 19]. In describing the inelastic deformation of isotropic materials at each loading step,

wewill use the relations between �
ij
and �

ij
of the theory of small-curvature processes linearized by the additional stress method

[4]. In this case, the stresses �
ij
and strains �

ij
in any element of the isotropic body are related by Hooke’s law with additional

terms allowing for the thermal strain, deviation of the material from elastic behavior, and the temperature dependence of elastic

characteristics:
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whereG G
0
, andK K

0
, are the shear and bulk moduli at the initial and current temperatures, respectively; v is Poisson’s ratio; �

ij

n

are the inelastic strain components accumulated to the end of themth loading step, which are equal to the inelastic components of

the strain deviator e
ij

n
due to plastic incompressibility,
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The increments � �
k n

over the kth loading step are determined by the method of successive approximations in solving

the boundary-value problem. Here � �
k n

� � � � �
k p k c

� , and it is assumed that at the beginning of the mth loading step, the

values of the instantaneous inelastic stain � � �
n

m

k nk

m	

�

	
��

1

1

1
obtained at the end of the previous (m	1)th step are known.

In the general case, the intensity of tangential stresses S s s
ij ij

� ( / )
/

2
1 2

is a functional of the intensity of shear strains

� � ( / )
/

e e
ij ij

2
1 2

, intensity of inelastic shear strains� � �
n

m

k nk

m
�

�� 1
accumulated overm steps, temperature T, and time t [5]:

S F� (�, �
n
, T t, ). (10)

The functional is specified using the tensile and compressive stress–strain diagrams after achievement of a fixed value

of the plastic strain of cylindrical specimens obtained at different temperatures and loading rates. These tests use used to plot a set

of instantaneous thermomechanical surfaces S F T
p

�
* * *
( , , )� � for different temperatures under loading and unloading

allowing for the achieved plastic strains. The loading rate is allowed for by plotting the associated creep diagrams
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T t� ( , , ). The transformation from the uniaxial SSS to the intensity of tangential stresses S and to the intensity of shear

strains � can be performed using the formulas
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In what follows, we will consider deformation processes without creep strains. In this case, the functional dependence

(10) transforms into a function representing the set of instantaneous thermomechanical surfaces S F T
p

�
*
( , , )� � . Some

experimental results on material behavior under repeated deformation for cylindrical Kh18N10T steel specimens are outlined in

the paper [9], which presents the dependences of the elastic moduli and Poisson’s ratio under unloading on the preliminary

plastic strain, evaluates the direct Bauschinger effect depending on the plastic strain, and presents some diagrams of repeated

deformation after preliminary deforming. Test show that the dependences S T
p

	 	 	� � can be specified using only the

stress–strain diagrams (� vs �) of active loading of the specimens and the compressive yield stress �
T

	
after preliminary tension

depending on the accumulated plastic strain �
p
at different temperatures (or after preliminary compression followed by tension).

For manymaterials, the compressive yield stress appears lower by 10–15% than the tensile yield stress. This difference is mainly

attributed to the preliminary plastic deformation.

The deformation process can be divided into two stages: active loading with increasing plastic strains and unloading

with either constant (elastic unloading) or decreasing plastic strains.

In active deformation from the natural stress state, � �
k p

is determined from the initial diagrams S Ò� ! �( , ). A

technique for determining increments of the intensity of inelastic shear strains from these diagrams is detailed in [3, 19]. When a

body element is unloaded and loaded by a load of opposite sign in the range of plastic strains, the function S Ò� ! �( , ) can be

represented as
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where S S
T T T
� �

� �
� / 3 is the intensity of tangential stresses corresponding to the yield stress in uniaxial tension;

S
T T

	 	
� � / 3 is the intensity of tangential stresses corresponding to the yield stress in compression after preliminary tension to

the plastic strain �
p

( )1
at the instant of unloading �

ð ð
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/

1 1
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p1 1 1 2
2 is the intensity of shear

strains; �
ij

p1( )
are the components of plastic strains at the beginning of unloading.

In many cases, the stress state of structural members made of specific materials is studied in the absence of test data on

the dependence of the yield stresses on the plastic strain. To describe the unloading and the loading of a body element by a load of

reverse sign in such cases, it is necessary to assume either elastic unloading, or isotropic hardening, or perfect Bauschinger

effect, etc.

In the case of elastic unloading, we have
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In the case of isotropic hardening under unloading and reverse-sign loading, we have
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where S
( )1

is the intensity of tangential stresses corresponding to the plastic strain (9) at the instant of unloading.

If the material under unloading and reverse-sign loading obeys the perfect Bauschinger effect, then
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As follows from [9], these models of material behavior cover the range that includes the unloading and repeated loading

curves of many materials. This makes it possible to perform a number of calculations to estimate SSS that complies with real

curves allowing for unloading and reverse-sign loading.

In solving spatial problems for bodies of revolution, we will use the semi-analytical finite-element method [3, 6, 13,

etc.], which expands the candidate solution into series:
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where the coefficients are determined using the appropriate variational equations (1)–(3) and the finite elements in the

meridional section of the body.

With such an approach, the problem for bodies of revolution can be reduced to a number of two-dimensional variational

problems for the unknown coefficients in series (16), (17). To this end, in solving the heat conduction problem, it is necessary to

represent the coefficients �
ij
in (1) in the form � � �

ij ij ij

T
� 	

0
1( )and to assume that at some fixed instant of time, the heat-transfer

factor �, the environment temperature �, reduced heat fluxes q q q
z r
, ,

�
, and the product c� are known constant coordinate

functions. We will use triangular finite elements with linearly varying coefficients T
m

and T
m

in the meridional section.

Considering the coefficientsT
m
at the vertices ( , , )i j k of the elements with the side ij coinciding with the body surface in the case

where the thermal conduction problem is solved with an explicit difference scheme, we arrive at the recurrent formulas
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which allow finding the values of the coefficientsT
m
at the instant t t� � from their values at the instant t. If the problem is solved

using an implicit difference scheme, we obtain the system of equations
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Here m is the harmonic number; N is the number of nodal points; M is the number of triangular elements in the meridional

section; q is the triangular element number; � �
mi mi

, , q
i

m*( )
, and q

ij

m*( )
are the coefficients of expansion of the environment

temperature and reduced heat fluxes (3) into trigonometric series, similar to (16), at the appropriate points of the triangular being

considered. Similarly, using the approach described in detail in [3, 4, 6], we obtain the following system of 3N linear algebraic

equations for each harmonic for the determination of the coefficients u
m

�

( )
and u z r

m

�
� �

( )
( , , )� at the vertices ( , , )i j k of the

triangular elements q of the meridional section in the trigonometric series (17) in each approximation:
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The number of these systems is equal to the number of terms kept in the solution. The matrix elements of these systems

are calculated from the coefficients of the constitutive equations and the coordinates of the element vertices in the meridional

plane, while the right-hand side of the system is calculated from the amplitudes of the additional stresses �
ij

*
, and the volume and

surface loads at the appropriate points of the meridional section.

The expressions for the coefficients appearing in (18)–(20) are presented in [3, 6, 19, etc.].

The coefficientsT
m
and u

i

m( )
are defined by similar expressions, where mshould be replaced by 	mand all quantities

with overbar by quantities with double overbar and vice versa.

If the values ofT
m
,

�

�

T
m
and u

i

m( )
, u

i

m( )
are known at all points of the finite-element partition of the meridional section,

the temperature and displacement components in the body can be found by calculating the trigonometric series (16), (17). Next,

the strain and stress components are calculated in each approximation at the current instant. The number of necessary

approximations is determined from the condition that the relative change in the SSS in two successive solutions is less than a

given value.

2. Numerical Results. To evaluate the influence of various approaches to the plotting of the diagram of material

behavior under unloading, we will study the SSS of a thick-walled cylinder [15] with half the meridional section shown in Fig. 1.

Its end z = 0 is hinged (t w
nr

� �0 0, ) and heat-insulated (� � �T z/ 0). At the initial instant, the cylinder is at T � 293 K and in

stress-free state. The process loading and heating includes two stages. At the first stage, the part of the surface ABC is subject to

convective heat exchange with the environment of temperature �
1
. The heat transfer factor � varies linearly from � � 1.0

W/(cm
2
K) at the point B to � � 0at the points A and C. The other part of the cylinder is heat-insulated. At the second stage, the

cylinder is cooled (the environment temperature is much lower than the initial temperature at the same values of the heat-transfer

factor on the surfaces), while the load t
nz

� –5 MPa is applied to a part of the end surface.
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Figure 2 illustrates how the relative temperatureÒ / �
1
varies along the cylinder radius at z = 9.25 cm (Fig. 2a) and along

the cylinder length at r = 3.25 cm (Fig. 2b). It can be seen that heating of the cylinder induces high temperature gradients in the

radial and axial directions (curves 1). The analysis of the cylinder SSS calculated with allowance for the perfect Bauschinger

effect under unloading shows that the nonuniform heating at the first stage leads to the development of plastic strains in themajor

part of the cylinder volume (dashed in Fig. 1). At the second stage, cooling and application of a tensile axial load to a part of the

end give rise to a zonewhere unloading and secondary plastic strains occur (hatched in Fig. 1; second stage in Fig. 2, curves 2).

Let us analyze the stress state of the cylinder in the section z = 9.25 cm under different assumptions on the material

behavior under unloading. The calculated results corresponding to completion of the second stage of loading are shown in Fig. 3

which illustrates how the axial �
zz

(Fig. 3a) and circumferential �
��

(Fig. 3b) stresses vary in the radial direction. Curves 1

represent the perfect Bauschinger effect (15); curves 2, isotropic hardening (14); and curves 3, elastic unloading (13) without

secondary plastic strains. Comparing these curves shows that allowing for the secondary plastic strains results in substantial

redistribution of the stress components, which leads to a considerable decrease in the maximum tensile axial, �
zz
, and

circumferential, �
��

, stresses near the outside surface of the cylinder.
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From the above results it also follows that the maximum stresses decrease in going over from unloading without

secondary plastic strains to isotropic hardening. The minimum level is observed for the perfect Bauschiner effect. The secondary

plastic strains increase in the same order. Since [9] the true unloading diagram under repeated loading lies between the curves

corresponding to isotropic hardening and perfect Bauschiner effect, the calculations of the SSS of the structural member

determine the range covering the stress values corresponding to real diagrams.

Let us consider, as an example, the thermostress state of a body of revolution with half the meridional section and

loading scheme shown in Fig. 4. The body consists of two cylinders made of EI-437 alloy connected by a sleeve made of EI-395

alloy. The necessary input data are borrowed from [1, 5].

This structural member is subject to the following thermal and mechanical loading. During the first 60 sec, the inside

surface is heated by the environment of temperature � �973 K, the heat transfer factor being � �0.5 W/(cm
2
K). This surface is

acted upon by pressure P = 10 MPa, the left and right ends are subjected to distributed load t
nz

� –10.42 and 17.78 MPa,

respectively. From the 60th second to the 300th second, the body is cooled (� �293 K, � �0.3 W/(cm
2
K)) without mechanical

load. The body is fixed over a part of the outside surface, where the displacement components are set zero. The other parts of the

surface are not loaded and heated/cooled.

To plot the diagram of variable deformation, we assumed that the materials of the structural member demonstrate the

perfect Bauschinger effect. The whole process was divided into stages by instants 5, 30, 45, 60, 65, 90, 120, 300 sec, and the

heat-conduction problem was solved using both explicit and implicit difference schemes. The explicit difference scheme was

used until the instant t = 65 sec. After that, the implicit scheme was used.

The results obtained are presented in Figs. 5–7.

Figure 5 shows tje distribution of the temperature along the radius in the section shown in Fig. 4 at z = 0.0788 m during

heating (curve 1 at t = 30 sec, curve 2 at t = 60sec) and cooling (curve 3 at t = 120 sec, curve 4 at t = 300 sec). These figures allow

estimating the change in the temperature gradient during heating and cooling.

The development of the zones of inelastic deformation during heating and cooling for t = 30, 60, 120, and 300 sec is

schematized in Fig. 6. The zone of active loading is shown by hataching. The zone where the process direction changes after

initial plastic deformation but the inelastic strains remain unchanged, i.e., elastic unloading occurs, is cross-hatched. The part of

the meridional section where the secondary plastic strains develop under unloading is shown in black. It can be seen that the

major portion of the material undergoes plastic deformation. The plastic zone increases to the end of heating and loading (60th

second), and its part changes over into the state of “elastic unloading.” During cooling with no mechanical load (to 300th

second), a zone occurs where secondary plastic strains develop and the elastic unloading zones enlarge. During cooling, a part of

the elastic unloading zone undergoes repeated plastic deformation.

Figure 7 illustrates the variation in the axial, �
zz
(Fig. 7a), and circumferential �

��
(Fig. 7b), stresses along the radius

at r = 0.0788m and different time instants: t = 30 sec (curve 1), t = 60 sec (curve 2), t = 120 sec (curve 3), t = 300 sec (curve 4). As

is seen, the stresses remain high to the completion of cooling despite the fact that the mechanical load is absent and the gradients

and temperature are low. This is because a considerable plastic strain causing high residual stresses was accumulated to the
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instant of change in the direction of the process. This fact clearly indicates the necessity of allowing for the loading history in

studying the stress state in structural members under variable loading that causes plastic strains.

Conclusions. We have proposed a technique for studying the nonaxisymmetric thermostress state of axisymmetric

bodies under combined nonisothermal loading, allowing for the occurrence of plastic strains with opposite sign to the original

strains. If the experimental diagrams of loading, unloading, and repeated loading by the load of opposite sign are absent, the

stress state of the structural member is determined making some assumptions on material behavior under unloading such as

elastic unloading, isotropic hardening, or perfect Bauschiger effect. Using a specific example, we have illustrated how the results

obtained depend on the model chosen to describe the material behavior under unloading. Calculations based on the the two last

models define the range into which the true values of the stresses fall.
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