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Two cases of existence of attractors in the basic models of a three-dimensional system are analyzed.
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Introduction. The methods of the qualitative theory of the nonlinear mechanics of two-dimensional systems came to

fruition in the second half of the last century. At the end of the last century, three-dimensional systems attracted interest due to the

study of chaotic motion. Problems were related to the variety of mathematical models that generate chaotic attractors, the

principles of studying the occurrence of regular attractors, and the mechanisms of occurrence of chaos in three-dimensional

systems. Despite some experience of studying nonlinear systems [3–8, 10, 12], the problem of existence of attractors remains

open and is associated with several mechanisms of orbital instability.

Let us consider some cases where the principle of symmetry and qualitative analysis are used to prove the theorem of

existence of an attractor and to establish the type of orbit instability and change over from a regular attractor to a strange attractor.

1. Attractors whose occurrence can be proved using the symmetry principle have certain symmetry of the closed

trajectory on the coordinate planes [3].

2. The following three-dimensional system inwhich the first two equations are linear and the third equation is nonlinear
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can be represented as two two-dimensional subsystems:
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The system is decomposed into two subsystems so that the linear subsystem (2) describes the process on the plane x x
1 2

and subsystem (3) includes the nonlinear equation of three-dimensional system (1) and describes the process on the plane x x
1 3

.

The plane x x
2 3

is omitted from consideration because system (1) does not have the corresponding right-hand side. On the planes

x x
1 2

and x x
1 3

, the subsystems are related by the variable x
1
. Subsystem (2) is a dissipative oscillator �� �x ax x

2 2 2
0� � � whose

trajectory emerges from the zero of the plane x x
1 2

.

If subsystem (3) is stable, then a three-dimensional attractor can occur in system (1). These physical assumptions

underlie the proof of the theorem of the existence of an attractor in system (1).

3. Three-Dimensional Systemwith a Plane Attractor. The existence of a plane attractor in a three-dimensional system is

associated with the type of the singular point and with certain conditions that show that there is a closed trajectory on a plane in
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this three-dimensional system. The qualitative analysis of a plane attractor is related to a certain mechanism of orbital instability.

Under certain initial conditions, the orbit of a closed trajectory loses stability and forms a strange attractor.

We will consider the last two cases. Basic mathematical models of processes will be considered in the appendix.

1. Three-Dimensional Systems of the Form (1)–(3). The system of three equations interacts on the two planes (x x
1 2

,

x x
1 3

)of systems (2) and (3). Let us consider the principle of antisymmetry for two-dimensional systems. Let us use the principle

of antisymmetry introduced in [2] for nonlinear two-dimensional systems. It is assumed that the nonlinear oscillator has linear

and nonlinear dissipation components. The linear one generates an unstable singular point (unstable focus) at zero and the linear

component of antisymmetry of the trajectory. The nonlinear component also bounds the domain of the trajectory’s leaving the

zero of the antisymmetric curve. This curve forms a limit cycle. An example of a nonlinear two-dimensional system is Van der

Pol’s oscillator:

dx
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where � is a parameter. Antisymmetry is associated with two axes of coordinates.

In a nonlinear system of the form (4) (with linear and nonlinear dissipation components)
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there exists a closed trajectory if the functions on the right-hand side of system (5) are related as follows:
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These are antisymmetry conditions. The nonlinear dissipation component bounds the domain and, thus, prevents the

leaving of the representative point. The above facts related to the qualitative analysis of two-dimensional systems will be applied

to subsystems (2), (3) in proving the existence of an attractor in system (1).

Assumption 1. Let the three-dimensional nonlinear system (1) be reduced to the form (2), (3). The singular point (0, 0,

0) of the three-dimensional system is a saddle-focus. Subsystem (2) forms a linear dissipative oscillator on the coordinate plane

x x
1 2

; the singular point on the plane is an unstable focus. The linear system on the plane x x
1 2

satisfies conditions (6) and (7). The

trajectory on the plane x x
1 2

has focal points. Subsystem (3) on the plane x x
1 3

is nonlinear. The singular point (0, 0) has

characteristic exponents (CE) � �

1 2
0 0� �, . The trajectory of the subsystem on the plane x x

1 3
tends to zero.

Theorem 1. If the three-dimensional system (1) satisfies Assumption 1, then an attractor is born in the neighborhood of

the singular point (0, 0, 0).

Proof. Since the singular point of the three-dimensional system at zero is a saddle-focus, the trajectory goes away from

zero. In the three-dimensional system, the first subsystem (2) (plane x x
1 2

) has an unstable singular point at zero and satisfies

conditions (6), (7). However, the subsystem is linear, and no closed curve forms. Subsystems (2) and (3) are related by the

variable x
1
. The second subsystem is in the mode of attraction to zero on the plane x x

1 3
. In this case, the trajectory does not go

away on the plane x x
1 2

. The attraction process dominates on the plane x x
1 3

. The field generated by the variational equations of

subsystem (3) is that of a stable system. The trajectory of the three-dimensional system either closes near (0, 0, 0) or undergoes

infinite search (due to the saddle-focus solutions), tending to close near zero.

Remark on the Symmetry of the Projections of the Closed Trajectory on the Coordinate Planes. Let the trajectory close

at some values of the parameters. It is nearly antisymmetric on the plane x x
1 2

. The three-dimensional system (1) has

saddle-focus solutions that make the antisymmetry approximate. An increase in the saddle component of the partial solution

leads to period multiplying of oscillations or to chaotic oscillations.

Example 1: Attractors in the Rössler Model. The Rössler model arose in the dynamics of chemical reactions in some

stirred medium [9]. It is described by the dimensionless system of equations

d
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where a b c, , are positive. System (8) was studied bymany researchers (see [7, 11] and the references therein). The coordinates of

the singular points of system (8) can be found from the equation a c b
 


2
0� � � .
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.
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We will use a coordinate system Axyz fixed to the point A, where x aza
a

� �� , y z
a

� �	 , z z
a

� �
 . Then system (8)

becomes
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where � � � �b z c az
a a

/ . Let us set up the characteristic equation corresponding to system (9):

� � �
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1 0� � � � � � � �( / ) ( / ) /b z a z ab z b z az

a a a a a
. (10)

For certain parameter values, Eq. (10) shows that the singular point of system (9) is a saddle-focus. Let us transform

Eqs. (9) to the form (2), (3):
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Introducing small deviations � � �x y z, , from the partial solutions x y z, , in (11), (12) we set up variational equations:
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The singular point of subsystem (11) at zero has CEs a a/ ( / )2 2 1
2

� � . According to variational subsystem (13), the

singular points in subsystem (12) on the plane xz have CEs that depend on the partial solutions:

�
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The CEs show that, according to (14), a stable node is at zero. When | | /x b z
a

� and x � 0, the representative point of

system (12) describes a trajectory with stable points (according to (14)). The overall pattern that generates an attractor is as

follows: an unstable focus ( )
,

Re�

1 2
0 is at zero on the plane xy (Eqs. (11)). Stable points on the trajectory of the plane xz can be

an indication of closing of the three-dimensional system (on the plane xy, the coordinate portrait of system (11), Fig. 1a).

Subsystem (11) corresponds to linear equations of motion. On the plane xz (subsystem (12)), the trajectory tends to zero. The

attractors mentioned above can be either regular or chaotic. Themechanism of occurrence of a chaotic attractor is associated with

the excess of saddle solutions on the trajectory. The excess of saddle solutions leads to period doubling (multiple period). Saddle

solutions (compared with focal) slow down the motion of the representative point. Therefore, the representative point does the

second turn of oscillations. The further development of the periodic process (after change in the parameters) involves a multiple

increase in the period, which leads to nonrecurring bifurcations (disappearance of a certain sequence of bifurcations on the

periodic trajectory). The oscillatory process becomes chaotic. This type of chaos is frequent.

Introducing small deviations � � �x y z, , from the partial solutions x y z, , in (9), we set up variational equations:

d x

dt
y z

�

� �� � � ,
dy
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x a y� �� � ,

d z

dt
b z x z z z x

a a

�
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The characteristic equation of the system of variational equations is

� � �
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�

�
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�

�

�

�

�

�

�

�

�

� � 0. (15)

Equation (15) shows that the bifurcation process is associated with the solutions x and z. Equation (15) can be used to

analyze how the parameter values affect saddle solutions on the trajectory. Figures 1a,b,c show the coordinate portraits of system

(9) for the parameters ( , , ) (a b c � 0.2, 0.4, 2). A variation in b and c leads to a variation in z
a
, which affect the excess of saddle

solutions (Eq. (15)). At small values of z
a
, period doubling (Fig. 1d,e, ( , , ) (a b c � 0.2, 0.4, 4)) and chaos (Fig. 1g, ( , , ) (a b c � 0.2,

0.2, 4.7)) occur.

Thus, Theorem 1 states the existence of a certain attractor in the three-dimensional system (1).
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2. Example 2. Three-Dimensional System with a Plane Attractor. Earth dynamo theory is based on a model that is a

three-dimensional system with a plane attractor. The changeover of a plane attractor into a three-dimensional one is the

changeover of a regular attractor into a strange one. Let us analyze the mechanism of orbital instability.

Paleomagnetic studies show that the magnetic field of the Earth undergoes reversion of direction (polarity). Over the

last hundreds of millions of years, the direction changed irregularly. Besides the detailedmagnetohydrodynamicmodel, there are

simple models. Earth dynamo theory is based on the Rikitake model proposed in 1955 [1]. This model describes two dynamo

disks coupled as shown in Fig. 2a. The disks model the two major vortices in the Earth’s core. Let us consider how the fields are

excited in the two disks. The current I
1
generates a magnetic field in which the second disk induces the current I

2
. This current,

in turn, generates a field in which the first disk induces the current I
1
. Nonlinearity is associated with the reverse reaction of the

moment of electromagnetic force to motion, i.e., to the angular velocities�

1
and�

2
.

The system of equations of mechanics and electrodynamics is

L

dI

d

RI MI
1

1 2 1
�

� � � , L

dI

d

RI MI
2

2 1 2
�

� � � , (16)

where L is the inductance of the disks; R is the resistance of the circuits;M is the mutual inductance between the circuit and the

disk. System (16) is called the dynamo equations. The system

J

d

d

G MI I

�

1

1 2
�

� � , J

d

d

G MI I

�

2

1 2
�

� � , (17)

where J is the moment of inertia of the disks; G is the moment of the external forces, describes the reverse reaction of the

electromagnetic forces to motion. Let us introduce dimensionless variables x x x x t
1 2 3 4
, , , , as in [1]:

I x

G

M
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� , I x

G

M
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System (16), (17) has the following dimensionless form:

dx

dt
x x x

1

1 2 3
� � �� ,

dx

dt
x x x

2

2 1 4
� � �� ,

dx

dt
x x
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1 2
1� � ,

dx

dt
x x

4

1 2
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where � � R J GLM/ ( ) is the coefficient of ohmic dissipation. From system (18) it follows that the difference of angular

velocities is constant (x x a
3 4

� � , where a �const). Let a � 0.

The coordinates of the singular points of system (18) can be found from the system of equations

� � ��x x x
1 2 3

0, � � ��x x x
2 1 3

0, 1 0
1 2

� �x x . (19)

The square of the coordinate x
1
is denoted by � and is found from Eqs. (19):

� � � 1, �

2
1 0� � .

System (18) has two singular points hold: A( �, 1/ , / )� � � , B(� �, � �1/ , / )� � � .

Let us introduce a coordinate system fixed to the point A (x x� �

1
�, y x� �

2
1/ �, z x� �

3
� �/ ) and write the

equations of motion:

dx

dt
x y

z
yz� � � � �� �

�

,

dy

dt
x y z xz� � � �

�

�

� � ,

dz

dt

x
y xy� � � �

�

� . (20)

Let � = 1. The characteristic equation corresponding to (20) is

� � �

3 2
2 2 4 0� � � � . (21)

The singular points of system (20) do not have, according to (21), saddle solutions: Im Im� � �

1 2 3
0 0 0�  �, , . These

points are node-foci. Let us turn the axes of Axyz by an angle � ��arctan( / )1 .

u x y� �cos sin� �, w x y� � �sin cos� �.

In the new coordinate system Auwz, the three-dimensional system becomes

du

dt
z uz� �2 ,

dw

dt
w wz� � �2� ,

dz

dt
u u� � �2 2

2
/ . (22)

Consider system (22) in the general form:

du

dt
F u z�

1
( , ),

dw

dt
F w z�

2
( , ),

dz

dt
F u�

3
( ).

Theorem 2. Three-dimensional system (22) forms a plane regular attractor with one axis of symmetry.

Proof. One sign of existence of a plane attractor is the singular three-dimensional point’s having only node-focus

solution rather than saddle solutions. The parameters of a system that form node-focus solutions at the singular point also assume

existence of a regular plane attractor. In this attractor, there are saddle solutions at points that do not affect the regular behavior of

the attractor. The right-hand sides of the first and third equations in (22) satisfy the following conditions:

F u z F u z
1 1
( , ) ( , )� � � , F u z F x u z

3 3
( , ) ( , , )� � . (23)
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Based on the principle of symmetry for two-dimensional systems, it may be concluded that there is a closed trajectory in

system (22) if conditions (23) (parity of the function F u z
1
( , )� in z and oddness of F u

3
( )in z) are satisfied. Here Au is the axis of

symmetry, according to (23). Thus, a closed trajectory in system (22) exists on the plane uz. Whether an attractor exists in a

three-dimensional system can be determined using the principle of symmetry for two-dimensional systems [8]. A regular

attractor appears if | | | | ,
*

z z u
0 0

0� � � . Figure 2b shows a trajectory closed about the singular point A. Let us specify initial

conditions for z in system (22). Let us construct a regular plane limit cycle of system (22) (Fig. 2b). On the left boundary

( )u � � 2 , the CEs are � � �

1 2 3
0 0 0 � �, , . The symmetric cycle of system (24) occurs on the left.

Let us introduce a coordinate system fixed to the point B (x x� �

1
�, y x� �

2
1/ �, z x� �

3
� �/ ) and write the

equations of motion:

dx

dt
x y

z
yz� � � � �� �

�

,

dy

dt
x y z xz� � � �

�

�

� � ,

dz

dt

x
y xy� � �

�

� .

In the coordinate system Buwz, the three-dimensional system satisfies conditions (23). The trajectory is in the plane uz.

Here the axes are fixed to the singular point B:

du

dt
z uz� � �2 ,

dw

dt
w wz� � �2� ,

dz

dt
u u� �2 2

2
/ . (24)

For system (24), as well as for (22), Theorem 2 holds.

3. Mechanism of Orbital Instability in a System with a Plane Attractor. Consider the mechanism of orbital

instability associated with the passage of the representative point from right to left and back in the half-planes Auz and Buz.

Introducing small deviations � � �u w z, , from the partial solutions u t w t z t( ), ( ), ( ) in (22), we set up variational equations:

d u

dt
z u z z u

�

� � �� � �2 ,

d w

dt
w w z z w

�

�� � �� � � �2 ,

d z

dt
z u u

�

� �� � �2 . (25)

The CEs of the points of the field generated by the variational system (25) can be found from the characteristic equation

of system (25). The numerical solution corresponds to the partial solutions u t z t( ), ( ).

Consider Fig. 2c. The points forming the vertical section of the trajectory on which the CEs are � � �

1 2 3
0 0 0� � �, , ,

according to the characteristic equation of system (25). According to these CEs, the trajectory rises upward to the point at which

z � 0. Next, the CEs are � � �

1 2 3
0 0 0 � �, , , and

| | | |� �

2 1
 . (26)

Condition (26) represents the upward movement of the trajectory where points with three nonzero CEs (�
1

0 , �

2
0� ,

�

3
0 ) appear in the neighborhood of the point ( . , . )u z� �088 762 . Then saddle-nodes transform into saddle-foci. In this case, in

Fig. 2c, the trajectory turns and the saddle solutions on this section cause the trajectories not to coincide at each turn. This

generates a chaotic attractor.

Increasing the initial perturbations in z changes the topology of the CE field so that the trajectory passes from one

domain to the other. The passage of the representative point through the vertical boundary between the limit cycles occurs
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instantaneously; therefore, this does not affect the solution. Figure 2c shows a plane stochastic attractor. The CEs of the points

are determined from the three-dimensional system (25). The strange attractor remains plane; however, the CEs have the form of

saddle-nodes or saddle-foci at the instant of passage. Saddle-focus solutions introduce stochasticity. The attractor becomes

strange.

Conclusions.Two cases of existence of attractors in a three-dimensional system have been considered and the causes of

chaotization of attractors have been analyzed. The first case is related to Theorem 1. An example of this case is the Rössler

attractor that is not symmetric on the coordinate planes (it is approximately antisymmetric on one plane). The mechanism of

chaos is associated with saddle solutions that (unlike focal solutions) cause a multiple increase in the period of oscillations. The

multiple increase in the period results in chaos.

The other case is related to the existence of plane attractors in a three-dimensional system (a special case of the Rikitake

problem). Two node-foci on a plane generate two attractors. For some initial conditions, the attractors have a common boundary

and the trajectory does not cross this boundary. For other initial conditions, the trajectory stochastically passes from one domain

to the other. The boundary (vertical line) between the attractors is filled by points with the CEs � � �

1 2 3
0 0 0 � �, , . The

orientation of the saddle CEs of the points at different values of the coordinates z changes so that for | | | |
*

z z
0

� � , the attractor is

regular (plane) and the trajectory does not pass from domain to domain (Fig. 2b); for | | | |
*

z z
0

 � , the attractor strange and plane

(Fig. 2d). The strange attractor remains plane due to the instantaneous passage from one domain to the other.
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