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A body with a fracture process zone at the crack front is considered. The constitutive equations relating

the components of the stress vectors at points on the opposite boundaries of the fracture process zone and

the components of the vector of relative displacements of these points are derived. A local fracture

criterion is formulated. A boundary-value problem for a plate made of a nonlinear elastic orthotropic

material with a mode I crack is stated in terms of the components of the displacement vector. By solving

the problem numerically, it is revealed how the fracture process zone develops under loading. Features

of the deformation field at the end of the fracture process zone are established. The critical load on the

plate that causes the crack to grow is determined.
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Introduction. Experimental studies show that a fracture process zone in the form of a narrow region containing

microcracks, pores, and delaminations origins at the crack front [9]. The presence of this zone should be allowed for in

formulating boundary-value problems on the equilibrium (including ultimate one) of cracked bodies. However, this meets severe

difficulties. Usually they may be evaded by applying models of the fracture process zone. For example, in [6], the fracture

process zone is modeled by an open slit whose surfaces aligned with the boundaries of the fracture process zone are acted upon

by opposite stress vectors. In conformity with up-to-date tendency in fracture mechanics, it is necessary to employ the

constitutive equations that relate the components of stress and displacement vectors at points on the opposite boundaries of the

fracture process zone [7, 8].

Recently, much attention has been paid to the derivation of these equations [12]. The constitutive equations weremainly

derived based on different assumptions and hypotheses for the fracture process zone at the front of mode I and II cracks. Despite

a number of important results obtained, the issue has not been resolved completely.

We believe that the components of the stress vectors at points on the opposite boundaries of the fracture process zone

must depend on the distance between them. However, just a few constitutive equations satisfy this condition.

The constitutive equations derived in [14] are best known. In these equations, the normal and reduced tangential (with

respect to the crack) components of the vector of relative displacements of points on the opposite boundaries of the fracture

process zone appear as arguments. These arguments have a scalar multiplier that is a function of the square root of a certain

quadratic invariant composed of the components of the displacement vector. Thus, the Tvergaard–Hutchinson constitutive

equations [14] satisfy the above condition only for a mode I crack.

Unlike the Tvergaard–Hutchinson equations [14], the normal and tangential components of the displacement vector

appear in the equations derived in [5, 11] as arguments, while the scalar multiplier is a function of the square root of the second

invariant composed of these above components. Thus, according to the Needleman–Banks-Sills equations [5, 11], the
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components of the stress vectors at points on the opposite boundaries of the fracture process zone depend on the distance between

these points.

To allow for the crack mode (either mode I or mode II) in [5, 11], a special parameter was introduced into the

constitutive equations, without any substantiation of how this is done.

In the present paper, we will study the fracture process zone at the tip of a mode I crack in a nonlinear elastic orthotropic

material in a plane stress state. Using the model proposed in [6], we will proceed as follows:

(i) The internal stresses acting on the boundaries of the fracture process zone are considered external ones by

representing the boundaries of the fracture process zone as external surfaces.

(ii) In solving the boundary-value problem, it is required that the stresses at the end of the fracture process zone be

continuous and the strength criterion be satisfied.

Suppose that the components of the stress vectors at points on the boundaries of the fracture process zone depend on the

components of the vector of mutual displacements of these points. We will derive the constitutive equations analytically using

general principles and formulate a local fracture criterion.

Using the tensor linear constitutive equations relating the components of the stress and strain tensors and the

constitutive equations derived, we will formulate (in terms of the components of the displacement vector) a boundary-value

problem on the equilibrium of a plate made of a nonlinear elastic orthotropic material and having a mode I crack. Solving the

problem numerically, we obtain the dependence of the crack tip opening displacement on the load applied to the plate. The

deformation field near the end of the fracture process zone will also be analyzed. Special attention will be paid to the ultimate

equilibrium state of the plate in which the crack tip opening displacement is critical.

1. Derivation of the Constitutive Equations.Consider a cracked body in which a narrow fracture process zone origins

at the crack front under loading. Assume that the fracture process zone consists of straight elements attached to its boundaries [1].

Let us select a point C at the crack front that transforms into pointsC
�
andC

�
on the boundaries of the fracture process zone

during deformation (Fig. 1a). Consider a straight element attached to the boundaries of the fracture process zone at the pointsC
�

and C
�
. Next, we apply stress vectors P

�
and P

�
to the ends of the element (Fig. 1b) and stress vectors �

�
P and �

�
P to the

boundaries of the fracture process zone (Fig. 1c). These vectors are opposite and lie on the straight line passing through the points

C
�
andC

�
.

Assume that the vectorsCC
�

�

�
� u andCC

�

�

�
� u describing the displacements of the pointsC

�
andC

�
relative to the

point C are known. Let us form the vector v
� �

( )v u u
� � � �
� � describing the displacements of the pointC

�
relative to the

pointC
�
, and the vector v

��
( )v u u
�� � �
� � describing the displacements of the pointC

�
relative to the pointC

�
.

To describe the state of the element, we will select either P
�
and v

� �
or P

�
and v

��
. For simplicity, we will denote

these vectors by P and v. Thus, these vectors are collinear and, moreover, codirectional.
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Let the body be described by non-orthogonal curvilinear coordinates x x x
1 2 3
, , characterized by a covariant metric

tensor with components g
��

and a contravariant metric tensor with components g
��

.

Let there be reciprocal bases represented by local basis vectors e e e
1 2 3
, , and e e e

1 2 3
, , :

e e
� � ��
	 � g , e e

� � ��
	 � g (1.1)

with

e e
�

�

�

�

	 � , (1.2)

where 

�

�
is the Kronecker delta,




� ��

� ��
�

�
�

�



�

�

�

1

0

,

,

(1.3)

In what follows, we will replace dummy indices without any explanation.

The vector P can be expressed in terms of its contravariant components:

P P e�
�

�
. (1.4)

The modulus | |P � P of the vector P is

P � 	P P. (1.5)

According to formula (1.4) and the first expression in (1.1), the scalar product P P	 is

P P	 � g P P
��

� �
. (1.6)

The vector v is expressed in terms of its contravariant components:

v e� v
�

�
. (1.7)

The modulus | |v � v of the vector v is

v � 	v v. (1.8)

According to formula (1.7) and the second expression in (1.1), the scalar product v v	 is

v v	 � g
��

� �
� � . (1.9)

Let us derive equations relating the contravariant components of the vector P and the contravariant components of the

vector v.

Consider a unit vector i codirectional with the vector P,

P i� P . (1.10)

Multiplying both sides of formula (1.10) by e
�
, we get

P e i e	 � 	
� �

P . (1.11)

According to formulas (1.4), (1.2), and (1.3), the scalar products P e	
�
are

P e	 �
� �

P . (1.12)
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Since the vectors P and v are codirectional, then

i v /� v. (1.13)

According to formula (1.7) and the second expression in (1.1), the scalar products v e	
�
are

v e	 �
� ��

�
g v . (1.14)

According to (1.13) and (1.14), the scalar products i e	
�
are

i e	 �
�

��

�
g v

v
. (1.15)

Substituting (1.12) and (1.15) into (1.11), we obtain

P P

g v

v

�

��

�

� . (1.16)

Thus, we have derived the necessary equations.

Relationship (1.16) between the contravariant components of the vector P and the contravariant components of the

vector v is known if so is the functional dependence of the modulus P on the modulus v (Fig. 2). Following [16], we suppose that

this dependence is

P P f v
o

� ( ), (1.17)

where f v( ) is a function decreasing in the range ( , )o � .

Note that the value�of themodulus vof the vector vmust depend on the orientation of the element relative to the crack.

Let the function f v( ) be defined by

f v
d

dv
f v

v o
v o

( ) , ( )
�

�

�
�

�

� �1 0,

f v
d

dv
f v m

v
v

( ) , ( )
�

�

�
�

�

� �
�

�

0 . (1.18)

For many applications, it can be approximated by

f v b v b v
k

k

k

k
( ) � � �1

1

1

2

2 , (1.19)
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where k
1
and k

2
are integers ( )1

1 2
� �k k .

Differentiating (1.19), we obtain

d

dv
f v k b v k b v

k

k

k

k
( ) � � �

� �

1

1

2

1

1

1

2

2 . (1.20)

It is clear that the first and second conditions in (1.18) become identities due to (1.19) and (1.20).

Considering the third and fourth conditions in (1.18), we find the coefficients b
k
1

and b
k
2

using (1.19) and (1.20):

b
k m

k k

b
k m

k k
k k k k1

1
2

2

2

2 1

1

1 2

�

�

�

�

�

�

�

�

�

�( )

,

( )

. (1.21)

Let us represent the function f v( ) as follows:

f v f v( ) [

~

( )]� �1 , (1.22)

where the function

~

( )f v increases in the range ( , )o � .

Comparing formulas (1.19) and (1.22), we see that

~

( )f v b v b v
k

k

k

k
� �

1

1

2

2 . (1.23)

With (1.17) and (1.22), Eqs. (1.16) become:

P P f v

g v

v
o

�

��

�

� �[

~

( )]1 . (1.24)

Using formulas (1.21), (1.23), and (1.24), we calculate the contravariant components of the vectors P and �P.

At the instant of failure of the element, the modulus P of the vector P becomes equal to zero. According to formula

(1.17) and the third condition in (1.18), this occurs when themodulus vof the vector vbecomes equal to�. Thus, we have the local

fracture criterion

v �� . (1.25)

This criterion is a generalization of the critical opening displacement criterion [13, 15].

2. Statement of the Boundary-Value Problem. In what follows, we will restrict our consideration to small strains. Let

us employ tensor-linear constitutive equations relating the contravariant components of the stress tensor S and the covariant

components of the strain tensor D [3]:

S G D G D g
�� ���


�


���


�


��
�� � �

�

�

�

�

�

�

�

�
~
( ) , (2.1)

where

 !� �
�

�

2

(2.2)

is the argument of the function
~
( )�  . The invariants �, �, and ! are defined by

� � F g g
���


�� �

, � � g D

��

��
, ! �G D D

���


�� �

. (2.3)

The reciprocal fourth-rank tensors F andG characterize anisotropy and possess high symmetry. In other words, we can

exchange either the indices within any pair of indices or pairs of indices themselves in the components of these tensors.

Let the coordinate system x x x
1 2 3
, , be Cartesian. Then
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g
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" #�

" #�

�

�



�

�

�

1

0

,

,

(2.4)

Let us derive basic equations for the components of the displacement vector u.Wewill use the Cauchy relations [10]:

D
u

x
"#

"

#

" #�

$

$

( , ), (2.5)

where symmetrization over the indices " and # is assumed. With (2.5), Eqs. (2.1) become

S G

u

x

G

u

x

g
�� ���
 �




���
 �




��
��

$

$

�

$

$

�
�

�

�

�

�

�

�

�

�

�

~
( ) (2.6)

and the second and third invariants in (2.3) become

� �

$

$

g
u

x

�� �

�

, ! �

$

$

$

$

G
u

x

u

x

���
 �

�

�




. (2.7)

Assume that the plate material is orthotropic and its principal axes are aligned with the axes x x x
1 2 3
, , .

Let the consider the case of plane stress state assuming that

S S x x
�� ��

� �� � �( , ) ( , , , )
1 2

1 2 1 2 , (2.8)

S
��

� �� � �0 1 2 3( , , , � �� �3 1 2, , , � �� �3 3, ). (2.9)

According to (2.4), the first invariant in (2.7) becomes

� �

$

$

�

$

$

�

$

$

u

x

u

x

u

x

1

1

2

2

3

3

. (2.10)

Since
~
( )�   1, Eqs. (2.6) lead to the following in view of (2.9) and (2.4):

$

$

�

$

$

� � �

u

x

u

x

�







�

� 
0 1 2 3( , , , � 
� �3 1 2, , ). (2.11)

Let

G
AA

1111
�% , G

BB

1212
�% , G

AD

1122
�% , G

DD

2222
�% ,

G
AF

1133
�% , G

DF

2233
�% , G

FF

3333
�% . (2.12)

With (2.11) and (2.12), the second invariant in (2.7) becomes

! �

$

$

$

$

�

$

$

$

$

�

$

$

$

$

% % %
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DD DF FF
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u

x
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x

u

x

2

2

2

2
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2
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3
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3

3

3

2 . (2.13)

Taking into account (2.9), (2.4), and (2.6), we arrive at

$

$

�

$

$

�

$

$

�

$u

x G

G
u

x

G
u

x

G
u

3

3 3333

3311 1

1

3322 2

2

3333 3
1 ~

( )�  

$

�
�

�

�

�

�
�

�

�

�
�
�

$

$

�

$

$

&

'

(

)

*

+

x

G
u

x

G
u

x
3

3311 1

1

3322 2

2

. (2.14)
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With (2.4) and (2.14), Eqs. (2.6) take the form

S G
G

G

G
u

x

G
G

�� ��

��

��

��

� �

�

�

�
�
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$
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2
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G
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G
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+

( , , , )� � � �� �1 2 , (2.15)

S G
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x

G
u

x

G
u

x

G
�� �� �� �� ��

��

$

$

�

$

$

�

$

$
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12 1

2

21 2

1

12 1

2

21~
( ) 

$

$

�

�

�
�

�

�

�
�

u

x

2

1

( , , , )� � � �� 1 2 . (2.16)

Denote

G

G
AF

1133

3333

� , ,

G

G
DF

2233

3333

� , , (2.17)

G
G

G

G
AA

1111

1133

3333

3311
� �

�

% , G
G

G

G
AD

1122

1133

3333

3322
� �

�

% ,

G
G

G

G
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2233

3333

3311
� �

�

% , G
G

G

G
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2222

2233

3333

3322
� �

�

% . (2.18)

Let us use Navier’s equations [10]:

$

$

�
S

x

��

�

0. (2.19)

Suppose that the material of the plate is homogeneous. Using formulas (2.8), (2.9), (2.15), (2.16), the second notation in

(2.12), notation (2.17) and (2.18), and Eqs. (2.19), we obtain
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% % % %
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x x
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x x
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x x
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Let a stress vector P with components P
�

act on the plate boundaries, crack faces, and boundaries of the fracture

process zone. Let us use the following boundary conditions [10]:

S n P
��

�

�
� , (2.22)

where n
�
are the components of the outward normal unit vector n.

Using formulas (2.9), (2.15), and (2.16), the second notation in (2.12), notation (2.17) and (2.18), and condition (2.22),

we obtain
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Let us consider a rectangular small-thickness plate with a central crack. The symmetry axes of the plate are aligned with

the x
1
- and x

2
-axes. A load symmetric about the axes is applied to the plate. We can restrict ourselves to consideration of only

one quarter of the plate, say, that in the first quadrant (Fig. 3). In this case, Eqs. (2.23) for the upper boundary of the plate (n
1

1� ,

n
2

0� ) take the form

� �

% %
AA AD

u

x

u

x

P R
$

$

�

$

$

� �
1

1

2

2

1 1
, %

BB

u

x

u

x

P R
$

$

�

$

$

�

�

�
�

�

�

�
�
� �

2

1

1

2

2 2
, (2.25)

while formulas (2.24) become

R
u

x

u

x

E R
AA AD

AF1 1

1
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2

2
1

�

$

$

�

$
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�
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�
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� % %
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�

�
�

�

�

�
�

2

1

1

2

. (2.26)

Equations (2.23) for the lateral boundary of the plate ( , )n n
1 2

0 1� � take the form

% % %
BB DA DD

u

x

u

x

P R
u

x

u$

$

�

$

$

�

�

�
�

�

�

�
�
� �

$

$

�

$

$

1

2

2

1

1 1 1

1

2
,

� �

x

P R
2

2 2
� � , (2.27)

while formulas (2.24) become

R
u
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R
u
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�
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�

�
�

�

�

�
�

�

%

,

DD

DF
u

x

E . (2.28)

Equations (2.23) for the upper face of the crack and for the upper boundary of the fracture process zone (� �n
1

1, n
2

0� )

become
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while formulas (2.24) take the form
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. (2.30)

Since the fracture process zone at the tip of a mode I crack is being considered, only the component P
1
of the vector P is

nonzero (Fig. 3). The components of the stress vector at points on the lateral boundary of the plate and at points on the upper face

of the crack are supposed equal to zero.

Using the constitutive equations, we express the components of the stress vector at points on the upper boundary of the

fracture process zone in terms of the components of the vector v. It should be taken into account that the components of the stress

vector appearing in the boundary conditions are the components of opposite vectors. By the vector v is meant the vector

representing the displacements of points on the upper boundary of the fracture process zone relative to points on the lower

boundary of the fracture process zone.

It is obvious that

v
1

0- , (2.31)

and

v v
2 3

0� � . (2.32)

In view of (2.4) and (2.32), we have

v v	 � v v
1 1

. (2.33)

With (2.4), (2.31), (2.32), (1.8), and (2.33), the first equation in (1.24) becomes

P P f v
o

1
1� �[

~

( )] , (2.34)

while the second and third equations in (1.24) yield

P P
2 3

0� � . (2.35)
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Note that

v u
1 1

2� . (2.36)

Considering (2.31), (1.8), and (2.33), we obtain

v v�
1
. (2.37)

To solve the boundary-value problem, we need the equations for the components u
1
and u

2
. These equations follow

from the condition of symmetry about the x
1
- and x

2
-axes:

u x x u x x
1

1 2

1

1 2
0( , ) ( , )� � � � , u x x u x x

2

1 2

2

1 2
0( , ) ( , )� � � � ,

u x x u x x
1

1 2

1

1 2
0( , ) ( , )� � � � , u x x u x x

2

1 2

2

1 2
0( , ) ( , )� � � � . (2.38)

From the symmetry about the x
2
-axis it follows that

u
1

0� (2.39)

at the end of the fracture process zone.

Let us derive the equation for the component u
2
. We select a point with the coordinates a a

1 2
, at the end of the fracture

process zone and assume that u x x
2

1 2
( , )is a real functionwhose partial derivatives (up to the second order) are continuous in the

vicinity D of the point ( , )a a
1 2

.

Let us expand the function (x x
1 2
, ) into a Taylor series about the point (a a

1 2
, ):

u x x u a a
u

x

x a

a a

2

1 2

2

1 2 2

1

2
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x x
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( )( ) ((
1 2
, ) )x D/ . (2.40)

Using (2.40) and denoting the coordinates of the end of the fracture process zone by a
1 1
� " and a

2 2
� " , we obtain
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" " "
1 2

2

2

2 2

2 2

1 2

0" " "�

$

$ $

�

�

�

�

�

�

�
�

�

�

�

�
�

�

u

x x
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. (2.41)

Due to the symmetry about the x
2
-axis, only the component P

1
of the vector P at points on the upper boundary of the

fracture process zone is nonzero.

3. Addendum. For the components of the tensorsF andG appearing in (2.1) as components of reciprocal tensors of the

fourth rank, we have

F G
���


�
"#

�

"

�

#

 
 " #� ( , ), (3.1)

where the symmetrization over the indices " and # is assumed.

The function
~
( )�  appearing in (2.1) has the following form [3]:
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where the constants 3 and 4 and the coefficient a are determined experimentally.

To solve the boundary-value problem, we will define nonlinearity and failure criteria.

According to (3.2), the relation of the contravariant components of the stress tensor and the covariant components of the

strain tensor expressed by (2.1) become nonlinear when becomes greater than 3 and the function
~
( )�  begins to increase. The

nonlinearity criterion is

 � 3. (3.3)

The fracture of the plate occurs when becomes equal to4, and the function
~
( )�  peaks. Thus, the fracture criterion is

 �4. (3.4)

The quantity can be interpreted from a physical point of view.

Note that the invariant � is the relative variation in the volume of the body element. Then � �
2
/ is the double energy of

deformation needed to change the volume of a body element. If the contravariant components of the stress tensor and the

covariant components of the strain tensor are related linearly, the invariant ! is the double energy of deformation of the body

element.

Thus, according to (2.2), is the square root of the double energy needed to deform a body element without changing its

volume. This interpretation of coincides with Hencky’s interpretation of strain intensity [4].

Features of can be seen by assuming that the covariant components of the strain tensor are described by the equality

D F g
"# "#67

67
8� , (3.5)

where 8 is a variable.

In view of (3.5) and the first invariant in (2.3), the second invariant in (2.3) becomes

� � �8. (3.6)

With (3.5), (3.1), and the first invariant in (2.3), the third invariant in (2.3) takes the form

! � �8
2
. (3.7)

Taking (3.6) and (3.7) into account, we see that ! �� � �
2

0/ and  � 0, according to (2.2). Then the covariant

components of the strain tensor defined by (3.5) do not satisfy criteria (3.3) and (3.4). In this case, the body can neither change

over into the nonlinear state nor fracture.

As established in [3], during fracturing, when becomes equal to the constant 4, the density of the energy spent to

deform a body element without change in its volume is defined by the formula

9 � �
�

�

�

�

�

� �
�
�

�

�

�

�

�

�

�
�

�

�

�

�

�

� �
&

'
(

)

*
+

3 4
3 4 3 4 3

2

1 1 1
2

a
a a

ln �

�

�

�

:

;

<

1 . (3.8)

4. Numerical Example. To solve the boundary-value problem on the fracture process zone at the tip of a mode I crack

in a nonlinear elastic orthotropic material, we use the data for D16 alloy borrowed from [2].

The components of the tensor F are the following:

F
1111

10
0193 10� 	

�
. Pa

–1
, � � 	

�
F
1122

10
0045 10. Pa

–1
, � � 	

�
F
1133

10
0049 10. Pa

–1
,

F
1212

10
0107 10� 	

�
. Pa

–1
, F

1313

10
0121 10� 	

�
. Pa

–1
, F

2222

10
0142 10� 	

�
. Pa

–1
,
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� � 	
�

F
2233

10
0045 10. Pa

–1
, F

2323

10
0107 10� 	

�
. Pa

–1
, F

3333

10
0193 10� 	

�
. Pa

–1
.

Using the values of the components of the tensor F and Eqs. (1.3), we calculate, by formulas (3.1), the components of

the tensor G:

G
1111 10

6395 10� 	. Pa, G
1122 10

2744 10� 	. Pa, G
1133 10

2263 10� 	. Pa,

G
1212 10

2336 10� 	. Pa, G
1313 10

2066 10� 	. Pa, G
2222 10

8781 10� 	. Pa,

G
2233 10

2744 10� 	. Pa, G
2323 10

2336 10� 	. Pa, G
3333 10

6395 10� 	. Pa.

The constants 3 and 4 as well as the coefficient a appearing in (3.2) and (3.8) are:

3 � 	325 10
2

. Pa
1/2

, 4 � 	9350 10
2

. Pa
1/2

, a � 	11112866 10
2

. Pa
1/2

.

Using these values and formula (3.8), we find9 � 	64597 10
4

. Pa

Let k k
1 2

2 3� �, , m � � 	02 10
5

. m
–1
,� � 50 %m. Using these values and formula (1.21), we get:

b
k
1

008 10
10

� 	. m
–2
, b

k
2

0008 10
15

� � 	. m
–3
.

If v � 50 %m, then

~

( )f v �1by formula (1.23). According to (2.34), P
1

0� , i.e., the state of ultimate equilibrium is

achieved.

Figure 3 shows the coordinates of the origin of the fracture process zone (point A) and the end of the zone (point B) are

denoted by x
f

2
and x

g

2
, respectively.

Let

x
f

2
� 1.50 cm, x

g

2
� 1.58, 1.60, 1.62 cm, � � �" "

1 2
0.2 mm.

The lengths of the crack, l
R
, and fracture process zone, l

S
, are given by

l x
R f
�

2
, l x x

S g f
� �

2 2
. (4.1)

Thus, the crack length is constant and equal to 1.5 cm, while the length of the fracture process zone, according to the

second formula in (4.1), takes the values 0.8, 1.0, 1.2 mm.

The component P
1
of the vector P at points on the upper boundary of the plate segment being considered is expressed in

terms of the load parameter as P w
1
� .

Considering that criterion (3.4) is satisfied at the point B and9 = 645.97=10
4
Pa, we determine the parameter w. In

solving the boundary-value problem, we considered three cases differing by the length of the fracture process zone. In every

case, the parameter w was varied.

In solving the boundary-value problem (for each value ofw), we supposed that the component S
11

of the tensor S at the

point B satisfies the equality

S P
B o

11
� . (4.2)

The value of P
o
was determined in several iterations. Its initial value was 1.90=10

8
Pa.

Considering Eq. (2.34) and the first equation in (2.35), the componentP
1
of the vectorP at points on the upper boundary

of the fracture process zone was expressed in terms of P
o
and

~

( )f v . Next, using Eqs. (2.20), (2.25), (2.27), (2.29), (2.38), (2.39),

and (2.41), we determined the components u
1
and u

2
by representing the partial derivatives by finite differences using a

step-by-step method generalizing Il’yushin’s one. In the first approximation,
~
( )�  � 0. Note that according to (2.21), (2.26),

(2.28), and (2.30), Q Q
1 2

0, � and R R
1 2

0, � . Moreover, it was assumed that

~

( )f v � 0 in the first approximation. In each

34



successive approximation, out of 89 approximations, the values of
~
( )�  ,

~

( )f v ,Q Q
1 2
, , and R R

1 2
, were found from the values

of u
1
and u

2
obtained in the previous approximation using formulas (3.2) and (2.2), the first invariant in (2.3), invariants (2.10)

and (2.13), and formulas (2.14), (2.21), (2.26), (2.28), (2.30), (1.23), (2.37), and (2.36). Next, using the first equation in (2.15),

we calculated the component S
11

of the tensor S at the point B. If it did not satisfied Eq. (4.2), the value of P
o
was corrected, and

the whole procedure was repeated.

Using formula (2.2), the first invariant in (2.3), and invariants (2.10) and (2.13), we tested criterion (3.4) at the point B.

If it was not met, the parameter w was changed.

5. Analysis of the Results. By solving the boundary-value problem, we determined the load on the plate (parameter w)

for different lengths of the fracture process zone. The values ofw are presented in Table 1, fromwhich we can see that the length

of the fracture process zone and the crack opening displacement at the tip (point A) increase with the load. In other words, the

plate tends to the state of ultimate equilibrium in which themodulus vof the vector v takes the value �, while the modulusP of the

vector P becomes equal to zero (at the same point A). As the load increases, the length of the fracture process zone varies more

intensively. Figure 4 demonstrates it convincingly. The crack opening displacement at the tip varies in the same manner.

Considering formula (2.2), invariants (2.10) and (2.13), and expression (2.14), we identified the points at which

criterion (3.3) is satisfied for every value of the load. The lines drawn through these points represent the boundaries of the

nonlinear zone.

Figure 5 shows, as an example, the nonlinear zone (grayed) for a load of 5.9098	10
7
Pa. The nonlinear zone formed at

the crack tip with x
1

0� and x
2
� 1.5 cm reached the lateral boundary of the plate part that is as a distance of 3.0 cm from the

x
1
-axis. This was not so only on the small segment of the boundary opposite to the crack.
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l
S
, cm w 	

�
10

7
, Pa

8 5.846375

10 5.903761

12 5.909860

Fig. 4 Fig. 5

l
s
, cm

0

50

6

5.84 5.86 5.88 5.90 w 	
�

10
7
, Pa 100 150 200 250 x

2
, m

8

10

12

x
1
, m

100

150

200

250



As the load is increased, the nonlinear zone expands. Indeed, it extends along the lateral boundary of the plate segment

from x
1
�0.56 cm to x

1
�2.54 cm atw � 	58463 10

7
. Pa and from x

1
�0.5 cm to x

1
�2.64 cm atw � 	59098 10

7
. Pa. Themoderate

extension of the nonlinear zone is natural because the load is increased insignificantly.

Figure 6 demonstrates the evolution of the fracture process zone during the loading of the plate. Curves 1, 2, 3

correspond to the following lengths of the fracture process zone, respectively: 8, 10, 12 cm. Figure 6a shows how the

displacement (along the x
1
-axis) of the upper boundary of the fracture process zone increases with its length.

Interestingly, the component S
11

of the tensor S at the point B weakly depends on the length of the fracture process

zone. Indeed, curves 1, 2, 3 in Fig. 6b correspond to 2.0026	10
8
, 2.0046	10

8
, 2.0087	10

8
Pa, respectively. In accordance with the

results obtained, S
B

11
can be considered equal to 2.00	10

8
Pa, irrespectively of the length of the fracture process zone. In view of

(4.2), P
o
� 	200 10

8
. Pa.

Figures 7a and 7b demonstrate the dependence of the component u
1
of the vector u and of the component S

11
of the

tensor S, respectively, at the point A on the parameter w. As can be seen, u
A

1
increases sharply while S

A

11
sharply decreases with

increasing w.

For each length of the fracture process zone, we calculated the componentsD D D
11 22 33
, , of the tensorD at points near

the point B using formulas (2.5) and (2.14). Of especial interest are the values of the components at the point B (Table 2). Note

that the increase in the length of the fracture process zone from 8 to 12 cm causes D
B

11
to increase from 2.0235	10

–2
to
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Fig. 6

1
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1
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2
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2
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u
1

5
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2
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2
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1

S
11 8

10	
�
, Pa

1

2
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a b

Fig. 7

1.4

584 586 588 590 w 	
�

10
7
, Pa 584 586 588 590 w 	

�
10

7
, Pa

u
A

1

5
10	 , m

1.6

1.8

2.0

0.4

0.6

0.8

1.0

S
A

11 8
10	
�
, Pa



2.0311	10
–2

and D
B

22
to decrease from 1.8232	10

–2
to 1.8170	10

–2
. In addition, the value of D

B

33
changed less decreasing from

–3.5356	10
–2

to –3.5364	10
–3
. It is interesting that the D

B

33
did not change noticeably despite the substantial increase in the

length of the fracture process zone.

The component D
33

of the tensor D at the point B has the minimum value (Fig. 8). Curves 1, 2, 3 correspond to the

following lengths of the fracture process zone, respectively: 8, 10, 12 cm. Thus, having determined experimentally the

component D
33

of the tensor D at various points around the crack tip, we can find the point B and, as a result, determine the

length of the fracture process zone.

It is very important to establish how the crack opening displacement at the tip depends on the load (v v w
A A
� ( )). The

values of v
A
for different values of w are collected in Table 3.

Extrapolating the dependence v v w
A A
� ( ), we can find the critical value of w at which the plate changes over to the

state of ultimate equilibrium.

Let the dependence v
A
= v

A
(w) be exponential:

v b c w
A
� � exp ( )� (5.1)

and

v v v v
A

w w w w
o

A

p

A

q

A

o p q
�

�

, ,

, , . (5.2)

According to the first condition in (5.2), formula (5.1) becomes

v b c w
o

A

o
� � exp ( )�

whence the coefficient c follows:
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TABLE 2

l
S
, cm D

B

11

2
10	 D

B

22

2
10	 D

B

33

2
10	

8 2.0235 1.8232 –3.5356

10 2.0281 1.8190 –3.5359

12 2.0311 1.8170 –3.5364



c
v b

w

o

A

o

�

�

exp ( )�

. (5.3)

Substituting (5.3) into (5.1), we obtain

v b v b w w
A

o

A

o
� � � �( ) [ ( )]exp � . (5.4)

Let us represent (5.4) as follows:

�( )w w
v b

v b
o

A

o

A
� �

�

�

ln . (5.5)

With (5.5), we have

� �

�

�

�

1

w w

v b

v bo

A

o

A
ln . (5.6)

Considering the second and third conditions from (5.2) and using (5.6), we derive the equation for the constant b:

1 1

w w

v b

v b w w

v b

v bp o

p

A

o

A
q o

q

A

o

A�

�

�

�

�

�

�

ln ln . (5.7)

Solving it, we get b � 	
�

3042052 10
5

. m.

Setting w w
p

� and v v
A

p

A
� , we calculate the coefficient � by formula (5.6): � � 	

�
1018201 10

7
. Pa

–1
. Then, from (5.6)

we have

w w
v b

v b
o

A

o

A
� �

�

�

1

�

ln . (5.8)

Since v
A
�50 %m for the state of ultimate equilibrium according to criterion (1.25), we calculate the critical value of w

by formula (5.8). It is equal to 5.916262	10
7
Pa, which slightly exceeds the last value of w in Table 3.

It can be seen from Fig. 9 plotted from the results obtained, the crack tip opening displacement sharply increases with

the load.

Let us analyze the derivative dv dw
A
/ of the function v v w

A A
� ( ). Differentiating (5.4), we get

dv

dw
v b w w

A

o

A

o
� � �( ) [ ( )]� �exp . (5.9)
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TABLE 3

w 	
�

10
7
, Pa v

A
	10

5
, m

5.846375 3.043642

5.903761 3.590334

5.909860 4.062284



Formula (5.9) shows that the derivative dv dw
A
/ sharply increases with w. Indeed, it is equal to 0.16	10

–12
m/Pa at

w � 	5846375 10
7

. Pa, to 5582 10
12

. 	
�

m/Pa at w � 	5903761 10
7

. Pa, and to 10387 10
12

. 	
�

m/Pa at w � 	5909860 10
7

. Pa. At the

critical value 5916262 10
7

. 	 Pa, however, the derivative dv dw
A
/ is equal to 19935 10

12
. 	

�
m/Pa.

Conclusions. A body with a crack with a fracture process zone at its front has been studied. The constitutive equations

relating the components of the stress vectors at points on the opposite boundaries of the fracture process zone and the

components of the displacement vector of these points relative to each other have been derived. The local fracture criterion has

been formulated. The boundary-value equilibrium problem for a plate made of a nonlinear elastic orthotropic material and

having a mode I crack has been stated for the components of the displacement vector. The numerical solution of the problem

shows how the fracture process zone develops in the plate under loading. Features of the deformation field near the end of the

fracture process zone have been established and the critical load initiating crack growth has been determined.
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