
ANALYSIS OF THE STRESS–STRAIN STATE OF COMPLEX-SHAPED PLATES
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The problem of the stress–strain state of quadrangular complex-shaped plates is solved. The solutions of

the boundary-value problem obtained with two numerical approaches are compared. One approach is

based on discrete-continuous methods. In this approach, the system of governing equations is

represented in new coordinates based on variations taking into account the plate geometry. Using

spline-collocation, the two-dimensional boundary-value problem for the system of partial differential

equations is reduced to one-dimensional one, which is solved by the numerical

discrete-orthogonalizationmethod. The other (discrete) approach is based on the finite-element method.

The results for trapezoidal plates designed with both approaches are compared. The values of the

displacements determined agree with high accuracy.
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Introduction.Methods and approaches for determining the stress–strain state (SSS) of plates have been developed for

many decades. Currently, many problems for plates of relatively simple shape have been solved analytically or semianalytically,

using, in particular, series expansion and spline-approximation [6, 16]. Many studies are devoted to numerical methods of

analysis of parallelogram-shaped plates under various boundary and loading conditions [5, 8, 14, 15, 20].

Special numerical approaches usually either allow for symmetry or use parametrization to describe the original domain

[12, 19]. The upplication of coordinate transformation was discussed in [13, 18].

An approach to determining the SSS of quadrangular plates in refined statement using the spline-collocation and

discrete-orthogonalization methods is presented in [10]. This approach uses the transformation from an arbitrary quadrangular

domain to a rectilinear one [4, 17]. In [9], a similar transformation is used to determine the natural frequencies of plates and

membranes. The stress state of trapezoidal plates and parallelogram plates is analyzed in [12], parametrizing the domain by other

methods.

It is obvious that this problem can easily be solved using commercial FEM software. In this case, however, the problem

of reliability of the results arises. The application of the FEM in designing plates is outlined in [7].

The goal of the present paper is comparative analysis of the SSS of complex-shaped plates (including quadrangular

plates with convex geometry) using an approach based on the sequential application of the spline-collocation method, discrete

orthogonalization method, and FEM.

1. Starting Equations. Let us consider isotropic plates of constant thickness in refined statement in a Cartesian

coordinate system x y, using Timoshenko’s hypotheses [2].

The bending and torsion strains �
x
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and the angles of the rectilinear element �
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of the total angles �
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The elasticity relations for the moments M
x
, M

y
, M

xy
and shearing forcesQ

x
andQ

y
for an isotropic plate take the

following form [2]:
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, � is Poisson’s ratio: E is the elastic modulus; h is the plate thickness.

The equilibrium equations of the plate acted upon by a load q distributed uniformly over the whole surface are

�

�

�

�

�

� �

Q

x

Q

y

q
x y

0,

�

�

�

�

�

� �

M

x

M

y

Q
x xy

x
0,

�

�

�

�

�

� �

M

y

M

x

Q
y xy

y
0. (3)

Substituting (1) into (2) and (2) into (3), we obtain governing equations for the angles and deflection:
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Let the potential strain energy of the plate for solving the FEM problem be described by

� � � � � � 	
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where S is the plate area.

Considering (1) and (2), we get
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To determine the deflection and angles, formulas (4) and (6) should be supplemented by the boundary conditions on the

plate edge.

2. Problem Solving Methods.

2.1. Coordinate Transformation. The spline-collocation method in combination with the discrete orthogonalization

method can only be applied to rectangular domains. Therefore, to transform a quadrangular domain into a rectangular one, we

will use new coordinates �  , , which are related to x y, as follows [4]:

x a a a a� � � �
1 2 3 4

�  � ,
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y b b b b� � � �
1 2 3 4

�  � . (7)

The coefficients a
i
and b

i
are determined from a system of eight linear equations by substituting into (6) four points

( ,x y
i i

) in the previous system and four points (�  
i i
, ) in the new one. If, for example, (�  

i i
, ) = (! !1 1, ), transformation (6)

becomes
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where N
i
are the shape functions of the quadrangular finite element of the first order [1]:

N
i i i
� � �( )( ) /1 1 4��   .

In what follows, wewill express all the derivatives with respect to x y, in terms of the derivatives with respect to �  , . The

transformation formulas for the first derivatives of an arbitrary function f are
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where J is the Jacobian of transformation (7). With (9), we can get explicit expressions for the second derivatives.

2.2. Spline-Collocation Method. Let us map the original quadrangle onto the square [0, 1 0] [# , 1], as in [10], and

substitute into (4) the expressions for the derivatives with respect to x y, in terms of the derivatives with respect to �  , . As a result,

we get the equation

Lu � 0, (10)

where L is a linear differential operator of the second order within the domain �  , ; u w
x

�{ ,� , �
y
}is an unknown vector. The

clamped boundary condition is u � 0. If the boundary is free and parallel to the axisOy, then the boundary conditions areM
x
� 0,

Q
x
� 0, M

xy
� 0.

According to the spline-collocation method, the solution of the boundary-value problem (10) can be represented as
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where w
i
,�

�
, and �

yi
are unknown functions of the coordinate � ; $

i
are linear combinations of cubic B-splines satisfying the

boundary conditions  �const at the edges. Substituting (11) into (10) and the boundary conditions and requiring them to be

satisfied at N �1 collocation points, we arrive at an one-dimensional boundary-value problem to be solved with the

discrete-orthogonalization method [1.11].

2.3. Finite-Element Method. To approximate the solution, we choose the same functions as for the approximation of

coordinates (7). For simplicity, we will use the quadrangular finite elements
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where w
i
,�

�
, and �

yi
are the deflection and total angles at nodal points.

Substituting (12) into (5) and employing the Ritz method, i.e., differentiating with respect tow
j xj
,� , and�

yj
, we get a

system of linear algebraic equations for the deflection and angles at the nodes for an element with area S
k
:
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where the summation is over double indices (the sign of summation over i is omitted);N

N

x

i

�
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N

y
yi
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by (9). To evaluate the integrals in (13) with the Gaussian method, it is necessary to apply transformation (8) because

f x y dxdy f Jd d
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�  �  . Note that expressions (13) can also be derived by applying the Galerkin method to (5).

According to (5) and (13), the governing equations of the Ritz and Galerkin methods coincide. The governing system for the

whole domain can be obtained by calculating and aggregate the coefficients of the systems for all the k elements.

3. Numerical Results. Using the above approaches, we have analyzed the SSS of plates whose outline and deflection

distributions wE q/ are shown in Figs. 1–4. One plate is square with side length equal to 2. The other two plates are isosceles

trapeziums with such apexes that the quadrangle area remains constant. The bases of the trapezium are equal to 1 and 3 in Fig. 2

and to 0.2 and 3.8 in Fig. 3. The coordinates of the apexes are collected in Table 1.

The following parameter values were used: h �0.1,� �0.3. The trapezium bases are free, and the sides are clamped. The

figures show the results obtained with the spline-collocation and discrete-orthogonalization methods using 60 collocation points

and 1500 integration points.

In using the FEM, the square [0, 1 0] [# , 1]was divided into elements with sizes [0, 1 200 0/ ] [# , 1 200/ ]. Formula (7) was

then used to determine the coordinates of the nodes of the finite elements in the coordinates x y, . The resulting matrix is

3 201 201# # , while the band width is 3 203# . Such an approach made it possible to obtain results (Table 2) in agreement with

those obtained with the above two methods. To solve the systems of linear algebraic equations, the Gaussian method was used.

Table 2 compares the maximum deflections wE q/ achieved at the point x = 1, y = 0 in the first four plates. We failed to calculate

the deflection of the trapezium close to a triangle (with bases 0.02 and 3.98). This problem was solved with the FEM, the

maximum deflection (wE q/ � 1617.7) differing from that for the trapezium (plate No. 3) insignificantly.

698

Fig. 1 Fig. 2

y

53.0

–1

–0.5

0

–1 –0.5 0 0.5 x –1 –0.5 0 0.5 x

0.5

y

–1.5

–0.5

0

0.5

159

477

265

371

477

371

265

159

53.0

–1.0

1.0

124

992

248

496

744

Fig. 3 Fig. 4

y

158.0

–2

–1

0

–1 –0.5 0 0.5 x –1 –0.5 0 0.5 x

1

y

–2

0
316.0

948.0

1422

632.0

–1

1

163.0
1467

326.0

652.0

978.0



699

TABLE 1

Plate No.

Coordinates of the points defining the plate shape

x
1

y
1

x
2

y
2

x
3

y
3

x
4

y
4

1 –1 1 –1 –1 1 –1 1 1

2 –1 0.5 –1 –0.5 1 –1.5 1 1.5

3 –1 0.1 –1 –0.1 1 –1.9 1 1.9

4 0 1 –1 0 1 –2 1 2

5 0 1 4 0 4 4 0 4

6 0 1 4 0 4 4 0 5

7 0 1 4 0 4 4 0 3.5

8 0 1 4 0 4 4 0 4.25

TABLE 2

Plate No. 1 2 3 4

wmaxE/q, spl. coll./ DO 529.34 1235.6 1576.7 1628.5

wmaxE/q, FEM 527.75 1231.6 1570.8 1622.2

TABLE 3

Plate No. Method w
max

E/q x y

5

spl./DO 3161.5 1.5226 2.3299

FEM 3144.1 1.52 2.3269

6

spl./DO 7790.9 0 2.8746

FEM 7736.4 0 2.88

7

spl./DO 2315.6 1.9413 2.1480

FEM 2303.3 1.94 2.1449

8

spl./DO 4016.4 0 2.5578

FEM 3990.9 0 2.56



The SSS of the triangle (plate No. 4) was determined with both approaches. To this end, three points of the four were

placed on the same line for the quadrangle to degenerate into a triangle. If the first apex had coordinates (–1; 0), the other apexes

of the “quadrangle” (anticlockwise) were (1; –2), (1; 2) and, for example, (0; 1). The reliability and accuracy of this calculation

can be judged by comparing the maximums obtained for plate No. 3 and the trapezium with bases 0.02 and 3.98.

Also, we have determined the deflections of plates Nos. 5–8 (presented in Figs. 5–8), whose apex coordinates are in

Table 1. The first three points are common to all the plates, while the fourth one shifts along the line x = 0. The side x = 0 is free,

while the others are clamped. The deflection maximums and the corresponding points determined with the different methods are

summarized in Table 3.

From Figs. 5–8 it follows that the shape of the deflection surface is strongly dependent on the shape and area of the plate.

The maximum deflection for plate No. 6 with the largest area (Fig. 6) exceeds the deflection of plate No. 7 with the smallest area

(Fig. 7) by more than three times. Tables 2 and 3 indicate that the relative difference between the results obtained with the two

methods does not exceed 1%.

Conclusions. We have analyzed the stress–strain state of quadrangular plates of complex shape. The boundary-value

problem has been solved using two numerical approaches, one of which is based on discrete-continuous methods and represents

the governing system of equations in new coordinates based on changes that allow for the plate geometry. Using the

spline-collocation, the two-dimensional boundary-value problem for the system of partial differential equations has been

reduced to a one-dimensional problem, solved with the numerical discrete-orthgonalization method. The second (discrete)

approach is based on the finite-element method. The results obtained for trapezoidal plates with both approaches have been

compared. The displacements determined agree with high accuracy.
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