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Static problems for toroidal shells with elliptical cross-sectionmade of elastic orthotropic composites are

considered. Variational difference and Lagrange multiplayer methods with mixed functionals are used.

The ellipticity of the cross-section is significant. Emphasis is placed on the accuracy of the results. The

agreement between the internal and external forces in the transverse and longitudinal sections is used as

an integral criterion.

Keywords: shell theory, Lagrangemultipliers, toroidal composite shell, significant ellipticity, locking effect

Introduction. The classical application of toroidal shells due to more compact arrangement compared with cylinders is

high-pressure vessels [5]. The efforts to optimize structures resulted in toroidal shells of noncircular cross-sections [6, 20],

including elliptical cross-sections [4, 16, 17, 19], and shells of variable thickness and reinforced shells [17].

Of certain interest are closed toroidal shells as elements of space structures, including superlight inflatable satellite

components such as antenna elements that support space telescopes [11, 12, 13, 18]. Inflatable toroidal membranes are also used

in biomechanics, medicine, and other fields [12]. Of special interest are open thin-walled toroidal shells [12].

Toroidal shells are of theoretical interest in testing shell design methods because at certain ratios among the parameters

of such shells, they take the shape of structures whose stress–strain state (SSS) in certain parts is obvious [4]. Moreover, such

shells can also be used for testing so-called membrane locking [10]. It should be noted that such tests are mainly

two-dimensional. The axisymmetrical deformation of shells of revolution with double curvature occurs without membrane

locking owing to self-reinforcement. However, membrane locking can be observed in a closed toroidal shell with elliptical

cross-section under internal pressure [4]. In this case, the cross-section, as in a long cylindrical shell, tends to take a circular

shape, which under moderate tension results in significant bends near the major and minor half-axes [2, 14, 15]. Therefore, using

numerical methods without measures taken to prevent locking may worsen the convergence [4].

To improve the convergence, mixed functionals with additional variation of small strain components can be used [4].

This approach is universal. To avoid the membrane locking, it is possible to construct a mixed functional with additional

variation of membrane strains.

In what follows, we will discuss the results of numerical analysis of the axisymmetric SSS of thin-walled toroidal shells

of elliptical cross-section made of orthotropic composite materials. We will employ the variational-difference method (VDM)

with mixed functionals. The basic relations and governing equations of the theory of deep orthotropic shells and a technique for

solving boundary-value problems are outlined in [1, 10]. The convergence of the method was been analyzed in [4] depending on

the number of varied functions.

1. Problem Statement. Let us consider a closed toroidal shell of revolution with elliptical cross-section (Fig. 1).

Assume that the shell mid-surface is generated by revolving an ellipse around the Oz-axis in a Cartesian coordinate system

( , ,x y z). The ellipse is described by

International Applied Mechanics, Vol. 54, No. 6, November, 2018

660 1063-7095/18/5406-0660 ©2018 Springer Science+Business Media, LLC

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3 Nesterov St., Kyiv 03057,

Ukraine; e-mail: *desñ@inmech.kiev.ua, **prikl@inmech.kiev.ua. Translated from Prikladnaya Mekhanika, Vol. 54, No. 6,

pp. 57–62, November–December, 2018. Original article submitted September 26, 2017.

DOI 10.1007/s10778-018-0920-0



F x z
x c

a

z

b
( , ) �

��

�

�

�

�

	



�

�

�

�

�

	
� �

2 2

1 0, (1)

where a and b are its half-axes, c is the distance of the cross-sectional center from the axis of revolution [4].

Let the mid-surface be referred to a curvilinear coordinate system ( , , )s � � , where � is the normal coordinate, s is the

length of the elliptical arc reckoned counterclockwise from the point A x c a z( , )� 
 � 0 to the point C x c a z( , )� � � 0 . The

orthotropy axes of the material are aligned with the coordinate lines.

Assume that the SSS of the shells is described by the kinematical equations of the general theory of thin shells and the

constitutive equations of elasticity of anisotropic media [1], while the governing equations are derived using the VDM. To

simplify the implementation of the Kirchhoff–Love hypotheses, we will use mixed functional with undetermined Lagrange

multipliers [10] representing shearing forces. Moreover, some strain components can additionally be varied.

The SSS of the shell under uniformly distributed internal pressure is axisymmetrical.

2. Methodical Features of Problem Solving. The original algorithm of numerical discretization of a plane curve [4]

can be used to reduce Eq. (1) to parametrical form:

x x s� ( ), z z s� ( ).

The coefficients of the first quadratic form are determined as

A
s

�1, A r



� , (2)

while the curvatures are calculated as follows [1]:

k r z r z
s

� � �� � �� �, k z r
�

� � / , (3)

where r is the parallel radius, the “stroke” denotes differentiationwith respect to sperformed numerically by difference formulas.

When the SSS of thin toroidal shells was analyzed in [4, 8] without measures against locking, the following mixed

functional was used:
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where u andware the components of the displacement vector along the axes ( , )s � , respectively, A is the strain energy density, A
n

and A
k
the works done by the surface and boundary forces, respectively. The geometrical part of the Kirchhoff–Love hypotheses

in (4)

�

�s
� 0 (5)
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is implemented using the method of undetermined Lagrange multipliers T
s

f

�

representing shearing forces. The angle �

s
of the

normal is determined from (5) by varying (4).

To increase the convergence rate, we use mixed functional in which the membrane strain �

s

f
is varied additionally.

After eliminating the appropriate Lagrange multiplier, we arrive at the following functional [10]:
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where �

s
is a formula for the membrane strain �

s

f
,G E

s s s
� �/ ( )1 � �

�

, E
s
, �

s
, �

�

are elastic constants.

In the section z � 0, the following symmetry conditions are prescribed:

u � 0, �

s
� 0, T

s

f

�

� 0. (7)

Note that the third condition in (7), which is imposed on the shearing force, follows from the method of constructing

functionals (4) and (6) because this force appears as an equivalent independent function together with the displacements and

angle [8, 10]. However, the function �

s

f
in (6) is not such due to the elimination of the Lagrange multiplier.

Varying (4) and (6), we arrive at a system of linear algebraic equations with symmetric band matrix [10].

3. Analysis of the Numerical Results. Let us analyze the SSS of a toroidal shell with the following geometrical

parameters [4]:
~

/a a h� �100,

~

/b b h� �1000,
~

/c c h� �200,
~

/s s s
k

� �2032 is half the ellipse arc, h is the shell thickness. As

is seen, the shell cross-section is highly extended along the symmetry axis. The shell consists of two coaxial cylindrical shells

joined at the ends and having different stresses and is made of glass-reinforced composite fabric with the following

characteristics [1]: E
s

� 15 GPa, E
�

� 12 GPa, �

s
� 0.12. It is subject to uniformly distributed internal pressure of intensity

q � 1 MPa.

The half the elliptical arc was partitioned into a number of equally spaced nodal points ( )K �161 20481� using the

above algorithm [4] of numerical discretization of plane curve (1). The number of the nodal points was doubled until the

maximum SSS components coincide in three significant digits. Moreover, we used two integral accuracy criteria: equality of the

internal (F) and external (P) forces in the sections of the torus by the planesOxz and z � 0. In the first (vertical) section, they are

calculated by
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TABLE 1

~
s

~
� �

s
, MPa �

�

, MPa

0

0.5 86.1 297.4

–0.5 86.1 297.4

0.5

0.5 –184.5 107.6

0 18.3 117.6

–0.5 221.1 127.5

1.0

0.5 141.7 –98.6

–0.5 141.7 –98.6
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k
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while in the second (horizontal) section by

F h c a c a s
s s s k

� 
 
 �2 0
0 0

� � �[( ) ( ) ( ) ( )], P acq
s

� 4� , (9)

where �

�

0
and �

s

0
are the hoop and meridional stresses in the shell mid-surface, respectively.

In [4], half the elliptic arc has to be divided by 20481 nodal points to achieve the same accuracy with the VDMusing the

functional �

1
( , , , )u w T

s s

f
�

�

, i.e., without taking special measures to prevent locking. Convergence was slow yet stable. The

convergence was more rapid (Fig. 1) at the points A s( )� 0 andC s s
k

( )� , where the stress state is nearly membrane (Table 1).

The values of meridional ( )�

s
and hoop ( )�

�

stresses are given at typical points of the elliptical cross-section (values of

~
/s s s

k
� � 0, 0.5, 1.0 correspond to the points A, B, C) and two or three points across the shell thickness (

~
/ , . )� �� � �h 0 05 .

The convergence is especially slow (Table 2) near the major half-axis of the ellipse (pointÂ,
~
s �0.5), where themoment

stresses are significant due to the large cross-sectional bending (unbending). Table 2 summarizes, depending on the numberK of

points, the deflection w w h
A

� ( ) /0 at the point A, the deflection w w s h
B k

� ( ) / , the stresses �




and �

�

on the outside and

inside surfaces of the shell at the pointB, and the dimensionless forces

~

/F F qh
� �

�

2
and

~

/F F qh
s s

�

2
in vertical and horizontal

sections.

As can be seen, the internal forces converge with increasing number of partition points to their exact values

~

/ ( ) /P P qh
� �

�� � � �

2 5
10 2 157079 and

~

/P P qh
s s

� � � �

2 4
8 10� 251,327. The convergence in three significant digits of the

internal and external forces is achieved, as well as the convergence of the deflections w
A
, at K = 1281 in the vertical section and

at K = 5121 in the horizontal section. The convergence of the SSS components at the point Â (w
B
, �




, �

�

) is even slower and

achieved at K > 20481.

Application of the mixed functional �

2
( , , , , )u w T

s s

f

s

f
� �

�

(6), in which the meridional strain �

s

f
is additionally varied,

made it possible to somewhat increase the convergence (Table 3) and to decrease the number of nodal points to 5121.

Satisfactory accuracy of integral quantities and some SSS components is achieved atK = 641, and the signs of the deflection and

moments at the point B are valid (unlike Table 2) even at K = 161.
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TABLE 2

K w
A

w
B �




, MPa �

�

, MPa

~

F
�

�10
–5

~

F
s
�10

–4

161 0.737 –0.121 70 158 1.5039 10.8630

321 0.740 –0.242 391 –66 1.5880 3.0812

641 0.715 0.325 –789 680 1.5806 33.8035

1281 0.722 0.199 –364 407 1.5769 25.9413

2561 0.722 0.209 –249 296 1.5736 25.2024

5121 0.724 0.222 –203 243 1.5719 25.1321

10241 0.723 0.227 –189 226 1.5712 25.1346

20481 0.723 0.228 –185 221 1.5710 25.1327



Conclusions. The improvement of convergence due to the additional variation of the membrane strain is insignificant

compared with other more demonstrative examples [10] can be attributed to the complex behavior of the SSS of a strongly

extended toroidal shell that undergoes large bending in some parts and tension in other parts. Additional variation in the strain

�

s

f
, i.e., change in the cross-sectional curvature of the shell, slightly improves the convergence compared with the variation of

�

s

f
. The variation of the hoop strain components has appeared ineffective. Obviously, to decrease the moments, it is necessary to

use shells of variable thickness [7, 17]. Thus, it may be concluded that the above problem can supplement the collection of

so-called pathological tests for membrane locking.
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