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An effective approach to the simulation of crack-type fracture is developed based on the semi-analytical

finite element method. Algorithms for determining the parameters of fracture strength for elastic bodies

of revolution and prismatic bodies under non-stationary force loading of different intensity and duration

are proposed. The energy approach based on the application of a special prismatic and ring finite

elements with crack under dynamic loading are used to calculate the fracture parameters. The efficiency

of the algorithms is estimated.
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Introduction. To extend the service life of critical elements of modern structures, it is important to assess the fracture

strength of structural members and components containing cracks or crack-like defects. Structural members are often subjected

to non-stationary dynamic loading of different duration and level that can be arbitrarily distributed over the spatial coordinates.

The determination of the fracture toughness parameters is very important for adequate assessment of structural strength and

accident prevention.

Due to technical difficulties and high cost of experiments in situ, experimental study is extremely complex, if at all

possible. Therefore, both deeper theoretical analysis of structural behavior and elaboration of numerical techniques and

algorithms for the determination of fracture strength parameters are necessary.

Many equipment components and parts used in mechanical engineering, power engineering, and other fields of

technology are actually three-dimensional bodies of revolution or prismatic bodies of complex shape. Different holders,

fasteners, damping systems, pressure vessels, and specimens for fracture strength tests, etc. are among them.

The most universal and wide spread numerical method designed for studying such objects is the semi-analytic

finite-element method (SAFEM) [3, 6–8]. The principles, modern approaches, and relevant details of numerical techniques

elaborated to solve fracture mechanics problems are addressed in [1, 9–11, 13–16]. Numerical algorithms and results of

calculation of the stress intensity factor (SIF) for 2D and 3D problems of cracks under static loading have been widely

developed.

The aim of the present paper is to further elaborate SAFEM application to problems of fracture mechanics for bodies of

revolution and prismatic bodies to analyze transient dynamic processes.

1. Problem Statement. Basic Equations. Let us consider homogeneous isotropic bodies of revolution and prismatic

bodies under arbitrary pulse force or kinematic loading over some interval of time.

An orthogonal circular cylindrical system or a Cartesian coordinate system is used to describe the geometrical and

mechanical characteristics, initial and boundary conditions, and external loads. This coordinate system is referred to as a basis

system further on. The local curvilinear coordinate system associated with the body geometry is introduced to describe the
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stress–strain state (SSS) of the complex-shaped body. It is assumed that the components of the transformation tensor between the

local and basis coordinate systems are known at each point of the body [5]:
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The components of the strain tensor in the local coordinate system are expressed in terms of the displacements u
k �
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The components of the stress tensor in the local coordinate system are determined in terms of the strain components

based on the generalized Hooke’s law [5]:
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For the cases of rectilinear prismatic bodies and bodies of revolution, let us consider a crack with front having the same

direction as the body generatrix. The portions of the bodies containing the crack are shown in Fig. 1.

There are three types of cracks: normal tear, in-plane shear, and antiplane shear. The formulas relating the components

of the stress tensor and the displacement vector and the dynamic stress intensity factor (SIF) depend on the crack opening mode

as follows:

normal tear crack opening (mode I):
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in-plane shear crack opening (mode II):
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antiplane shear crack opening (mode III):
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where H are known functions of the asymptotic formulas for the components of the stress tensor and displacement vector in the

vicinity of the crack tip [13].

To define the J-integral for a dynamic problem, the following formula is used:
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whereW and T are the potential and kinetic energies, respectively; S
�

is the surface of a small volume around the crack front

segment (Fig. 2) of length �; n
j
are the components of the outer normal to the surface F; u

i
and 


ij
are the displacements and
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stresses, respectively; y
i �� is the local coordinate system attached to the crack. The segment of the crack front for the body of

revolution and rectilinear prismatic body is shown in Figs. 2a and 2b.

For convenience, the time index is omitted further on. According to [13], there is the following relation between the SIF

and J-integral:
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To simulate the crack, a thin contact layer is introduced. Within the layer, the stress–strain state (SSS) is described

referring to the additional coordinate system y
i �� associated with the crack front configuration (Fig. 3). The thickness of the FE

layer has to satisfy the following two conditions: (i) the layer thickness should be small enough compared to the body (because

this layer is actually a dummy layer introduced in order to ease the numerical simulation of the crack) and (ii) the computation

stability depends significantly on the FE dimension ratio.

Let us consider special prismatic (Fig. 3a) and circular closed (Fig. 3b) FEs with arbitrary curvilinear rectangular cross

section containing the crack (Fig. 3). It is assumed that the element region is transformed to a unit square with internal properties

defined by the mechanical and geometrical characteristics of the FE.

Special finite elements with crack (SpFEC) are developed on the basis of SAFEM using circular closed and prismatic

FEs [12].

The additional conditions 
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0, 
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1 3
0 have to be met to take into account the crack segment

intersecting the element cross section.

To solve the dynamic problems for the bodywith crack, it is necessary to introduce some restrictions on the equations of

motion to prevent the mutual penetration of the crack edges 
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�

1 1
0 because positive and negative forces are involved in the

solution of nonstationary problems. The same situation occurs in static problems (for instance, in the problem of bending of a

plate containing a through crackwith edges tending to open on the stretched surface and to close on the compressed surface of the

plate). This can be easily treated in the frame of SpFEC by the variation of the stress 
 �� ��1 1
which is normal to the contact surface

of the crack edges.
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The components of the correcting terms for the tensor of elastic constants
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In fact, the approach being elaborated is based on a special modification of the physical andmechanical properties of the

material. An important advantage of the approach is the approximation of the system of deformable solids by a single body using

special FEs. Moreover, the effective stiffness matrix for the special FE is calculated by the same formulas as for the standard FE

with the only correction needed for the elements of the elastic constant matrix.

Note that the circular FE is closed and its geometrical parameters are constant along the circumference. Accounting for

these two facts and satisfying the boundary conditions for hinged prismatic bodies, we approximate the unknown distributions

(displacements, velocities, and accelerations) along the x
3
-direction (see Fig. 3) and their node values are approximated by

2!-periodic functions of x
3
and by truncated trigonometric Fourier series, respectively:
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The components of the strain and stress tensors at the center of the FE are defined as follows:
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The coefficients of the matrices [ ]B are calculated using formulas (1) and expansions (10).

To derive the generalized amplitude stiffness matrix for the FE of two types, the following expression for the potential

energy variation is used:
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considering the fact that the stress expansion coefficients are related to the strain increment expansion coefficients by Hooke’s

law.

Using the relation between the expansions coefficients of strain increment and displacement, the expression for the FE

energy variation can be rewritten in terms of amplitudes (using the Fourier series) as follows:
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Numerical integration with over x
3
yields the generalized amplitude stiffness matrix for both FEs in the form
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The matrix [ ]D
�

should be modified according to expression (9).

Kinetic energy variation in the local coordinate system is expressed as
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Averaging the mass near a node on the assumption that each nodal mass represents a part of the masses of the FEs

adjoining this given node, we rearrange the kinetic energy variation as
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Then the expression for the generalized amplitude mass matrix becomes
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The Newmark method or the normal mode expansion method modifications written for SAFEM amplitude subsystems

are used for time integration of the equations of motion.

A distinctive feature of the SAFEM is that the amplitudes of the displacement vector, velocity, and acceleration

components are chosen as unknowns. Moreover, determination of the amplitudes for homogeneous bodies along the directrix

reduces to solving the following system of independent differential equations of the second order at each moment *:
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where { }Q is the force vector which is determined by varying the work done by the internal and external forces.

Following the Newmark method [4], the unknown displacement and velocity amplitudes at the moment t t	 � are

expressed using the same parameter values at the previous time step according to the finite difference formulas
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Solving the system of equations yields the displacement amplitudes at t t	 � which are used to calculate the velocity and

acceleration amplitudes at the same moment t t	 � :
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governing the stability of the integration scheme.

Let us consider the normal mode expansion method. Transformation to the normal coordinates is governed by the linear

transformation
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weight coefficients obtained for the rth eigenmode;- is the number of the eigenmodes retained in the linear transformation.
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Substitution (13) into (12) followed by the right multiplication by [ ],
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The rectangular integration formula is used for numerical integration.

Using formulas (2)–(7) and expansions (10) and (11), we derive the expression for the SIF amplitudes for each SAFEM
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The SIF is determined by averaging over a region of 606 elements (Fig. 4):
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where K




is the stress-based SIF while K

u

is the displacement-based SIF. The points of determining the stress-based and

displacement-based SIF are marked with circles and crosses, respectively.

Figure 5 shows the scheme of numerical analysis of the variation in the parameter k over the region adjacent to the crack

surface. It corresponds to the above-mentioned SIF calculation technique. The solutions obtained are used to plot the accuracy#

of the direct calculation of the SIF for the dynamic problem. The curve refines the optimal index of the FE dimension

k �1 15 1 20/ /� as compared with the case of static loading [3].

Formulation (15) is traditionally used to calculate the energy integral within mesh methods. It is assumed that the

coordinate system x
 

is attached to the crack (Fig. 6), where the superscript  defines the direction along the crack; N
j
are the

sides of the integration contour chosen
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The force method [2] is applied in the present paper. According to it, all terms in (15) are defined by nodal forces and

mesh domain displacements at moment * � 	t t� . The components in (15) can be expressed in terms of the amplitudes
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Finally, the expression can be written as
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Formulas for calculation of the nodal force amplitudes depend on the algorithm of solving the equations of motion.

According to the Newmark scheme [4], the system of equations (12) can be rewritten as follows:
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Therefore, the nodal forces for the dynamic problem for a body with a crack in the case of direct integration of the

equations of motion can be calculated as
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, (16)

which contains both static and dynamic components.

It worth mentioning here that the dynamic component of force (16) is not unique for different methods (Wilson,

Houbolt, etc.) of the direct integration of the equations of motion. It can be determined according to the method chosen.

If the dynamic solution of the problem is formed using the eigenmodes of structure, the nodal forces are calculated as

follows:
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R K U
w l ll
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� , { } [ ] { }
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R M U
r

l r ll
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* *

�� .

Application of the method proposed to the problem of dynamic tension of a rectangular plate with a central crack

provides good convergence of the calculation results (Fig. 7). Cracks of different length were studied. Results for two of them are

presented in Fig. 7 as convergence curves with respect to the accuracy # of the SIF calculation.

It should be mentioned that the solution based on the force method converges much faster and allows for coarser

meshing around the crack tip.

Conclusions. Based on the semi-analytical finite element method, the approach for studying linear fracture mechanics

problems for dynamically loaded spatial bodies of revolution and prismatic bodies containing a crack has been developed.

A combination of a special finite element with crack as a model with direct correction of the stress tensor for ordinary

FE and an algorithm of averaging the solutions over an effective near-the-tip subdomain has been proposed. It allows retaining

the regularity of the discrete model structure and reducing the computational costs.

An approach to the evaluation of the energy integral for discrete SAFEM models has been elaborated based on the

method of forces for dynamic problems.
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