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NONSTATIONARY VIBRATIONS OF ELECTROELASTIC CYLINDRICAL SHELL
IN ACOUSTIC LAYER

1. V. Yanchevskii

The propagation of a pressure wave in a fluid bounded by two parallel plane boundaries generated by an
infinitely long cylindrical electroelastic shell submerged into the fluid is considered. To describe the
motion of the shell and the processes in the fluid, the equations of the linear theory of shells generalized to
the case of electromechanics and the acoustic approximation are used. The problem-solving method is
based on application of the image source method, the method of separation of variables, and Laplace
integral transform. The method is used to reduce the problem to an infinite system of Volterra equations
with delay arguments, which is numerically solved using the reduction method and regularizing
procedures. The hydrodynamic pressure is calculated for the case where either step-wise or sinusoidal
electric pulse load is applied to the continuous electrodes of the shell.
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Introduction. The wide use of piezoelectric transducers in numerous hydroacoustic applications maintains interest in
theoretical investigations in the field of hydroelectroelasticity. Till now, the processes in systems containing spherical and
cylindrical piezotransducers located in an infinite acoustic medium or in the vicinity of a plane boundary have been studied in
detail. The vast bibliography devoted to the field mentioned can be found in the review [9] and books [4, 6]. The necessity of
elaborating effective solution methods for applied problems of nonstationary hydroelectroelasticity is dictated by the
improvements in piezotransducer performance due to usage of pulse radiation or reception mode. For the class of problems
mentioned, it is possible to investigate the evolution of dynamic process and transducer behavior under short-time electric or
mechanical loads of complex shape with possible jumps in characteristics at the front.

Different aspects of radiation and diffraction of acoustic fields generated by electroelastic cylindrical/spherical shells in
multiply connected domains with account of multiple reflections of waves from the boundaries demand further study.

The research area was addressed actively for the partial case of a point source of harmonic acoustic waves. A number of
effective numerical methods have recently been proposed to study the acoustic field in a domain of complex geometry (boundary
element methods, fundamental solutions method, and finite-difference method). Detailed information on the approaches can be
found, for example, in the books [5, 12] and papers [11, 13]. The publications [7, 8] deserve to be mentioned among few papers
on the radiation and diffraction problems for nonpoint sources. In [§], an approximate algorithm is proposed for the calculation
ofa plane acoustic field formed by the primary field of a circular acoustic radiator and the secondary field induced by a diffracted
incident wave on the parallel boundaries of a waveguide as a result of a single reflection. The analytical solution for the plane
stationary problem of acoustical wave diffraction by an elastic cylinder in a plane waveguide with rigid boundaries was found in
[7] using the image source method [3, 14], which is experimentally proved to be highly effective.

In the present work, we propose a semi-analytical technique based on Laplace transform and image source method to
solve the problem of nonstationary vibration of an electroelastic shell, the problem of pressure wave radiation and diffraction in
an acoustic region bounded by two parallel boundaries.
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1. Problem Statement. The nonstationary processes in a liquid medium bounded by two parallel planes y =/, and
y =1, (lx >0) of the Cartesian coordinate system are under investigation. The medium is considered to be ideal compressible,
and the acoustical model [2] is used to simulate its motion
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where @ is the velocity potential of the disturbed motion of the liquid; p is the hydrodynamic pressure; v is the velocity of the
medium particles; ¢, and p | are the sound speed and the medium density, respectively; 7 is the time; V 2V are Laplace and

Hamilton operators, respectively.

Assuming that upper boundary (y =1,) is free while the medium interacts with the rigid wall at the lower boundary
(y=-1,), the boundary conditions for the potential function ® have to yield zero pressure on the surface y=/; and zero
displacements normal to the wall y =1/, :
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which should be supplemented by the pressure wave damping condition at infinity:
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In a more general case, the “impedance” conditions [9] can be set on the plane boundaries:
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where the constants Cl’ ; and CZ, j characterize the properties of the layer boundaries ((';l’_ ;= O corresponds to a rigid wall, while
QZ, ;= 0to a free surface); e(x)is a function returning the fractional part of x.

An infinitely long cylindrical electroelastic shell submerged into an acoustic medium is the source of nonstationary
waves. The vibrations of the shell are caused by a specified mechanical loading g, (¢) uniformly distributed over the inner
surface of the shell and/or voltage V) applied to the continuous conducting coatings (electrodes). It is assumed that the shell
consists of two layers rigidly connected with each other. The outer layer is of constant thickness 4, and is made of an elastic
material, while the inner layer is of thickness /_ and made of thickness polarized piezoceramics with 6mm crystal symmetry
class. Assuming that the shell axis coincides with the applicate axis Oz and deformation patterns are the same in the each plane
perpendicular to Oz, the equations of motion of the shell with respect to the polar coordinate system (r, 0) are of the following
form [17]:
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Here w(z,0)is the shell deflection; u, (¢,0)is the tangential displacement of the datum surface [17]; g(¢,0)is the external load
normal to the datum surface; V' (z,0) =V (7).

It is worth mentioning here that the system of equations (5) is derived using the Kirchhoff-Love hypotheses generalized
to electromecanics. The notation used and the expressions for the coefficients are taken from [17] and are omitted here.

It is also assumed for system (5) that zero electric potential is applied to the internal electrode and the function g contains
both the specified mechanical loading g, (¢) and unknown hydrodynamic loading imposed by the ambient medium:
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The normal components of the velocity of both the medium particles and shell points should be equal to each other on
the shell surface (= R,) (continuous contact condition):
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The hydroelectroelastic system under consideration is assumed to be at rest before the electromechanical excitation
starts (¢ = 0).

The system of equations (1) can be rewritten using dimensionless parameters and variables. All the linear dimensions
and components of the displacement vector /s, /., Ry, w, and u, are normalized by the radius R, of the shell datum surface; the
velocity vis normalized by ¢, while time ¢, loads p and g, potential @, and electric signal V" are divided by factors R, / ¢,
p Wc%,v, and Dy R, / e, respectively. Thus, the initial system of equations for the medium takes the form

2
PG . ) -
ot ot or
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(here o =mhc3V /DN,B:pWoc2 /my,8=D,, /D, areconstant coefficients).

The boundary conditions (2)—(4), (6) obviously remain unchanged.

2. Problem-Solving Technique. The problem is solved using the image source method [3, 14]. The method suggest
introducing additional sources that generate the acoustic waves multiply reflected from the layer boundaries y =/, and y =—1,.
Choice of the image source positions is dictated by the simplicity of the boundary conditions on the plane surfaces y =1/, and
y=—1,. We assume that the first (j = 1) and second (j = 2) additional sources are located symmetrically to the electroelastic shell
( =0) about the planes y =/, and y = -/, , respectively. The next image sources are symmetrical reflections of the image sources
with the preceding number. For example, the source j=3 is assumed to be symmetrical to j =2 about y =/, while j=41is
symmetrical to j =1about y =—/,. The numbering procedure is organized according to the algorithm described. The transient
duration 7" and the wave travel time from the Jth source to the location of interest (r;, —R)/ ¢, > T’ r; is the distance from the Jth
source center to the location of interest) specify the total number of the image sources needed. The arrangement of the real (j = 0)
and image (j > 1) sources is shown in Fig 1.

Due to the nonlinearity of the problem, the acoustic field in the medium can be represented as a superposition of the
fields induced by the shell and image sources:

J
®=3 0, ©)
Jj=0

where ¢ ; are the primary (j = 0) and reflected (j > 1) wave potentials.

Both the total velocity potential @ and each of its components ¢ i have to meet the wave equation (1). The general
solution can be represented in terms of modified Bessel functions /, and Macdonald functions K, . Taking into account the
damping condition at infinity (3), zero initial conditions and symmetry of the acoustic field in the medium about the Cartesian
coordinate plane x = 0, the Laplace transformed solution of Eq. (1) [10] can be expanded into series:
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where Laplace-transformed functions are marked by superscript “L” (/™ (s, z)=L{f (¢, z)}); s is the transform parameter; A4 in

are arbitrary functions that should be determined from the boundary conditions; R = lis the dimensionless radius of the shell; (r
0 ) stands for the polar coordinate system whose origin coincides with the center of the jth source (9 is the angle between the
- ax1s and the line connecting the jth source with the point of interest). Figure 1 allows us to derive the relations between the

coordinates. Some of them are listed below:
7sin@) =7ysin 6, ncosO =rjcos 0 -2Y,, 2¥, =2/,
sin @, =77sin 0y, 5 cosO, =75cos O +2V,, 2V, =21,
7ysin@y =r5sin0,, rjcosOy =r5cos0, —2V;, 2V; =2V, +4l,,
rysin0, =x'sin®,, rjcos0, =n'cosO, +2Y,, 2V, =2V, +4[,
rysin@, =r5sinBg, r5cosOg =r5cos0, ~2Y5, 2V5 =2Y; +4/ etc.

1 0 1 0

Then using the expression 9 = —_——

. and the relations 8; =n—0{, and { =7{; 6, =n—-0{ and
oy cosej arj rjsmej 69J

=1y, 05 =n-0, and 7} =r); 0, =n—0, and r, =1, 65 =n—0, and 7§ =7} etc., which are valid for y=/; and y=-1,,

. . . . L Lo
expressions (9), (10), and (4) yields relations between coefficients 4 in (s)for j>1

L L
AT =D RGAG 45 (2)-31m0 (11)

where é(x)=x-H(x);, H(x)is the Heaviside function; K= (&, j -G j )/ (C, ;T G j )(Kj =(~1)/ in the case of the classical

boundary conditions (2)).
The theorems of summation of cylindrical functions [3] are used to transform between the polar coordinates (r]., 0 1.)

(/2 and the coordinates (7, 0)):
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where (2R It ® j) are the coordinates of the pole of the polar system (7, 0,) in the jth coordinate system.
IfR <y, <2Rj, then

0

K, (srj )cos(n Gj )= Z -D"K,_, (SZRj ), (sry )eos((n —m)G)j )cos(mO)

m=—o

=Y, (—1)"1*("—'")2?(1'/2)[1{“," (2R} )+K,_, (s2R, )]Im (1, )cos(m®, )
m=0

_ J=2 _ J
2R ; =[21; +21, ]-E(4j+ 280 s i-tyay + 280 s j-2yay @) = n~2§(2), (12)

’ is the Kronecker delta.

- o 1, x=0,
where £(x)=x~2(x), &, =1-058, . 8 , ={ . );i .

Using expressions (9), (10), and (12), the potential ® can be transformed to the coordinates (7, 0, ) (the subscript “0” is
omitted further on). The formula takes the form

ol = Z Aé,n (s)éeSRKn (sr)cos(n0)

n=0
J o 1 e o
D IPI (s);eSR >, (—1)m+("*'">28(//2>[1<n+m (2R )+K,_, (s2R )]Im (s7)cos(m0). (13)
j=ln=0 m=0
Changing the order of summation and using the notation
1 _ 1
I (5.2)=——e 1, (s2) g (5,2)=—e"K,, (s2) (14)
s s
we get the expression
o0
L (5,7,0)= Y. L (s,r)c0s(n0), (15)
n=0

where
DL (r,0) =R AL ()], (5.7)
J ©
—5(2R .—R-r) o N
+ye DAL, ()@, ()G gl (2R )+ gl (2R D1/, (5.0}
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Recall that the recursive relations (11) hold for the functions 4 JL m ()

Using relations (7), we obtain the following formulas for the hydrodynamic pressure p and radial velocity v, of
particles in the acoustic medium:
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pE(s,r,0)=—s®L =" pL(s,r)cos(n ), (16)

n=0
L 0
vE(s,r,0)= o™ _ > vE(s,r)cos(n ), (17)
n=0
where
J 0
—s(r— —s(2R ;—R-r) _ IRV
P,L,(S,V)Z—e s(r R)Ag,n (S)gé,n (s,r)—ze j Z A]L',m (S){mn (—1)r+ (m=m2e(j/2)
Jj=1 m=0
L L L
x [gO,m+11 (S’ZRj )+g0,m7n (S»sz )]fO,n (S,V)},
vE(5,r)=e SR AL (5)5GE (s,r)
—s(2R —R-r) - sy
Z Z AI",m (5){®, (_1)n+(m n)2e(j/2) [g(lf,rn+n (S,2Rj )+géjm% (s,2Rj )]anL (s,7)},
Jj=1 m=0
where

n
Gf(s,2)=-g[,(5,2), G,f(s,z)=—gin,1(s,z>—;g§,n(s,z) for n>1,

n
Fé(s,z):ff1 (s,2), F, (s,z):ffn_l(s,z)—; sz’n (s,z) for n>1

The general solution of the Laplace-transformed system (8) is expanded into a series of normal modes of the the shell:
=Y ak(s)cos(n®) ul = bL(s)sin(n0), (18)
n=0 n=1

where aﬁ (s) b,f (s)are coefficients to be found.
Expressions similar to (18) can be derived for the functions VX and ¢* =qé -pk ,—p that describe the electric

potential on the outer electrode and mechanical load, respectively,

o0
z( (s)-pk,_ R)cos(n@), vl =3 dk(s)cos(n0) (19')
n=0
with the coefficients
ck=qb, al=vf, ck=dl=0 for n>1 (19")

if the assumptions V' (¢,0) =V, (¢)and g, (¢,0) =g, (¢) hold.
Substituting (18) and (19’) into Egs. (8) yields an algebraic system of equations for the coefficients aﬁ (s)and b,f (s)

ay (&) +a?s? )+ bre® =Bley —py)+dy,
akbe® 4 pLEB) o252y =0, (20)

where &1 =1+ 8n%, &2 =n+8n3, &3 = (1+8)n>.
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With (19"), the solution of system (20) takes the form
L L L LY\ 7L
a Z(B(QO — Py |,,:R)+V0 )f )
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Let
fE=0+a?s?)™, ghs)=EP +a?s?)/D,,
D, (s)=(D) +a?s? )W +a?s?)-£2)2,

It is obvious that the coefficients a* (s)and b (s)(21) are related to AL. , (s)in (10) by the formula for p from (16).
Therewith, the coefficients A jL , for j >1can be expressed in terms of A , (see (11)). To find AO ,» it is necessary to substitute
the results obtained into condition (6"):

L _
sw =yl g

As a result, we obtain an infinite algebraic system of equations. The system relates the nth mode of the displacement
component aﬁ (s)to the modes A([)‘ , (s) of the potential function ok (aﬁ =571 ~v}1; l—g):

Al o [ G6 . R)-Beh o (. R)FE(5)]

J 0
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Note that the infinite system (22) is formulated in terms of the unknown functions Ag , of the transform parameter s.

Reduction and direct solving of the system demands the expansion of functional determinants whose order corresponds to the
number of normal modes retained. Application of the technique leads to complex and cumbersome formulas causing
fundamental mathematical difficulties associated with the recovery of the original functions. To avoid this, the direct inversion
of the system is performed by the technique proposed in [2] for nonstationary hydroelasticity problems. The boundary condition
(6") holds in the original domain in this case. It allows us to reduce the nonstationary hydroelectroelastic problem under
consideration to an infinite system of Volterra equations of the first kind with delay arguments [1, 9]:

0 0
Ao,() (t)*I:G() (Z:R)_ﬁgo,()(taR)* f(t)‘|

2(R,~R)

J o o 0
DIDIIMOR {(—1)'"280/2) m (12R ;)* [F (1,R)- BfoO(rR)*f(r)ﬂ=(ﬁqo+V0)*f(rx
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0 0
Ao,n(t)*{Gn(t,R)—Bgo,,, (nR)*g(r)]

J o 2(R,-R) .
+z ZAj,m (1) % {((On (_1)n+(mfn)Ze(J/z)[gl’ern(I’ZRJ, )+ &1 (t,ZRj )])
Jj=1lm=0
0 0
*|:Fn (I,R)—Bfo’n (t,R)*g(t):|} =0 @=>). (23)

A B
Here operator “*” denotes the convolution of original functions (A(¢)* B(¢)=H (1) J ; ‘o A('c)B((t -1, )—’C)d’t).

It is worth mentioning here that convolution, delay, and similarity theorems [10] are applied for analytical inversion.
The inversions of the functions g, . (¢,2), f ,, (¢,2) from (23) are listed in a table of Laplace transform [16]:

+cosh(m-arcosh(1+1/ z))
J(1+1/2) -1
cos(m-arccos(1-1/ z))

nzA1=(1-1/ z)?

Theinversions g, , (¢,z)and f, , (¢,z)forn > Oare obtained by integrating g, , (¢,z)and f, , (¢,z)n times (see[1]).
The kernels G, (t,z)and F, (¢,z)are linear combinations of the functions Enm (t,z)and fn?m (t,z2).

The system of integral equations (23) can be solved numerically using the reduction and quadrature methods. Reduction
order is determined by the trial-and-error method. The process stops when the boundary condition is satisfied to the accuracy set.

gO,m (I,Z)Z

Som (t:2)=H(H(t-22)

The delay arguments allow step-by-step solution of the system at time intervals between the moments 7' ;= 2(R j -R)
arranged in ascending order. Here 7' ) is the time it takes the acoustic wave to travel the distance from the jth image source to the
shell (see Fig. 1). Thus, at the first step of the transient process, the functions 4, , (¢) for 0 <z <min(T [ )are determined using
(23):

0 0 0
A0 (¥ Gy (6, R)=Bg o (1. R)* (1) |=Bag +Vo)* f(1), Ay, (1)=0 (n2).

Then the values obtained are transposed to the right-hand side and used in determining the functions 4, , (¢)at the next
time interval. The functions A im (t)(j 2 1) from the left-hand side are expressed in terms of Ao, , () by applying the recursive
relations (11).

With 4 in (t)(j,n 2 0), the hydrodynamic pressure p and the velocity v, at an arbitrary point of the acoustic medium
can be calculated. Thus, the summation of the integrals

r—R
Pty ==Ag, (1) * g0, (t.)=3 P, (6.1
J

where

o0 r—R . 2Rj
Py tr)= A, * @, () mRUD e (2R )rgg (2R D] K Sy, (67

m=0

yields the coefficients p, (¢,7)=L"" {p% (s,r)} of the Fourier series (16).
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The expression for p i (t,r) is written for the case »>2R j —R. According to the addition theorem, the formula
somewhat changes if » > 2R Ih R:

0 r—R o ZRj
Piatr)= 2 A, * 4@, ()R 2RUDIL R Y+ fy (2R D] ¥ g, (6
m=0

To study the nonstationary vibrations of the electroelastic shell interacting with the acoustic layer plane boundaries, the

expressiona, =s  -v,'| _, that determines the coetficients a (¢)of the shell radial vibration w(z,0)according to shou
pression at =s'-vE| . that determines the coefficients a, (¢)of the shell radial vibrati 0)according to (18) should
be inverted:
0
an(t)zAO’n(t)*Gn(t,R)
J » 2(R;-R) o 0
+Z ZAj,m (1) * an (_1)n+(m_n)ZE(j/Z)[gO,m+n(I’ZRJ )+g0,m—n (t’ZRj )]*Fn (Z,R).
Jj=lm=0

In doing so, the expressions for all the other variables of interest can be derived.

3. Numerical Results. Water (¢, = 1500 m/sec, p ,, = 1000 kg/m3) is chosen as an acoustical medium for a layer of
dimensionless thickness /; +/, = H = 20 for numerical experiments.

The upper boundary of the liquid layer is the pressure free surface (k ;= -1 j=13,5, ...) while the lower boundary is of
“impedance” class with k ;= 0.9 (j=2,4,6, ...). The distance between the axis of the cylindrical electroelastic shell and the
lower boundary is /, = 0.3H. The shell is considered to be composed of PZT-5 piezoceramic layer of thickness hp =0.04 and
titanium alloy VT-6 (h, = 0.02). The properties of the materials are listed in [17].

In the particular case under consideration, the shell can be modeled as a linear source to a first approximation if the
datum surface radius R = 1is significantly smaller than the distance between the plane surfaces. Therefore, the influence of the
deflected waves on the shell vibrations can be neglected. This assumption simplifies system (23) substantially because the sum
over the subscript j is equal to zero in this case. Moreover, Ao’n (t)=0for n >1, while 4 0.0 (2) is the solution of the Volterra
equation of the first kind,

0 0 0
Ao (¥ gy (LR)+Bg o (1. R)* (1) |=~Bgy (1)+V, (1)* f(1) 24

The assumption is validated by the numerical experiments performed in [1]. It was shown that the pressure waves
induced by the first reflection influence the shell vibrations to some extent even for a small distance between the plane boundary
and the shell. The secondary wave effect is much weaker and can be neglected to the accuracy demanded.

Having values of Ao,o (¢)and using relations (7), (9) and (10) (i.e., avoiding the use of the addition theorem), we can
calculate the hydrodynamic pressure at an arbitrary point of the medium:

J rj—R

J
—s(r,—R)
pl==24% (s " ggo(sr) = p==2 4,0 * g o(tr;), (25)
j=0 j=0

where v is the distance between the pole of the jth coordinate system associated with the jth image source and the point of
interest.

The pressure at points lying on the lower boundary of the layer with coordinates (H, —/,) and (3H, —1,) of the
rectangular coordinate system with the origin on the shell axis is shown in Fig. 2. These results are marked with » ~ H and r = 3H,

respectively, in Fig. 2. The coordinates of the points in the polar coordinate system (7, 0,) = (1, 0) are (\/x2 + y2,

(m/ 2)—arctan(y/ x)). The pressure profile on the shell radiating surface is illustrated by the curve »=R. It is assumed that the
shell vibrations are induced by a step-wise electric signal ¥, () = H () applied to the electrodes while the shell is free of internal
mechanical loading (¢, (¢) = 0). If the electromechanical loading of the shell is g, (¢ )+, (¢ ) = H(t ), the result will be similar.
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Special regularization algorithms were used to solve the integral equation (24). But for the particular case of the loading
Bgq (2)+V,(t)=H(t), the problem can be reduced to a system of algebraic equations and solved by conventional methods.
Using the equality L{H(¢)} =1/ s, it is easy to derive the following equation in the s-domain:

ak, <s>{gé, (R ek r7t (s)} ——FL(s).

The inverse of the functions fL (s):ast (s) and fL (s) from the previous equation can be derived using the

operational calculus tables [16]:

t

F( =Lt (s)}=1sin[j,
o o

F)y=L"{FL (s)} =lcos(t).
o o

Provided the results for the case Bq, (1) +V,, (t) = H(t)are calculated, the physical values for the nonstationary load of
arbitrary profileV (¢)(g,, (¢)) can be easily obtained by using Duhamel’s integral. Figure 3 shows the pressure curves at the same
points of the layer for excitation by the electric single-frequency signal V' =sin(oz )- H (T}, —1)(Fig. 3a). Here T}, =575x (2n/ )
is the signal duration; @ =1/ o is the frequency of pulse vibration of the shell in vacuum.

As follows from Fig. 2, the pressure on the shell surface increases sharply under step-wise loading followed by low
amplitude oscillations that decay rapidly. The acoustic pulse profile formed propagates with velocity ¢, in the medium but the
wave amplitude decreases proportionally to square root of distance (v/1/ r) according to the well-known laws of acoustics. The
superposition of the acoustic pulses from the actual source and image sources causes much more complex patterns of pressure
profile at the points of interest. Similar effects are discussed in [1, 15] where different aspects of elastic and electroelastic shell
vibrations in an infinite acoustic medium and acoustic half-space are studied. The steady-state vibration occurs quite rapidly
under harmonic excitation of the shell by a signal of resonance frequency (Fig. 3a). In this regime, the amplitudes of the pressure
waves radiated into the medium remain constant (Fig. 3b). Negligible vibrations of the shell due to inertia effects occur after the
termination of loading. The maximum pressure decreases as the distance between the excitation source and the point of interest
increases under a short pulse while an increase in the pulse duration causes a deviation from this pattern (Fig. 3b). For instance,
the superposition of the primary and two reflected waves (j = @) at the point (3H, —1,) causes 6% higher pressure then at the

point (H, —/,) that lies approximately 3 times closer to the source (curves r~ H and r ~ 3H).

Conclusions. A numerical-analytic solution technique for the problem of nonstationary vibration of an infinitely long
cylindrical electroelastic shell submerged into an acoustic layer of constant thickness has been developed. The problem has been
formulated within the framework of acoustic approximation along with classical thin shell theory based on the Kirchhoff-Love
hypotheses generalized to electromecanics. The impedance boundary conditions have been formulated on the plane surfaces of
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the layer enabling one to simulate different combinations of the surface properties. Base on the technique developed, the problem
has been reduced to an infinite system of Volterra integral equations of the first kind solved numerically over known time
intervals.

Numerical results have been obtained for the case where the distance between the shell center and the nearest boundary
of the acoustic medium substantially exceeds the shell radius. For this geometrical pattern, the influence of reflected waves on
the shell vibrations is negligible as was mentioned in different previous publications. The calculation algorithm can be simplified
significantly, the fundamental results of the hydroelectroelasticity theory [1, 2] and superposition principle as well as image
sources method [3] can be applied. It has been shown that for long acoustical signals, the hydrodynamic pressure at remote points
can exceed the pressure at the points located closer to the medium excitation source.

The technique proposed can be extended to the case of nonparallel boundaries of the acoustic layer. The results obtained
can be used for the class of applied problems referred to as inverse problems of hydroelectrolasticity. In particular, the
identification of the disturbance source location in the layer or the pattern of the stationary or nonstationary acoustic signal
generated by a source can be studied by the technique.
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