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New nonlinear wave equations are derived using the Murnaghan five-constant elastic potential. A

feature of these equations is the following two assumptions: the elastic deformation process is physically

nonlinear (geometric nonlinearity is neglected) and the deformation is geometrically axisymmetric and

described by cylindrical coordinates. Therefore, the system of wave equations contains only two coupled

equations. Such a statement allows us to use these new equations to analyze surface waves propagating

along a circular cylindrical cavity in an elastic medium. Another feature of the nonlinear equations is

that every equation includes the classical linear part. The nonlinear terms of the equations are

quadratically nonlinear and contain twenty-three types of nonlinearities in the first equation and

twenty-two types in the second equation.
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Introduction. Cylindrical harmonic waves are the subject of fairly long research in the theory of waves [2, 4], which

can hardly be considered complete. Such waves have been studied theoretically, experimentally, and appliedly [7–9, 20–22].

The transition from the linear model describing cylindrical waves to different nonlinear models has revealed a number of

problems in the analytical description and experimental observations of the waves.

Numerous types of nonlinear wave equations corresponding to the Murnaghan five-constant model were described in

[16, 17]. When analyzing a surface wave propagating along a circular cylindrical cavity, we need nonlinear wave equations for

cylindrical axisymmetric waves. Four configurations are distinguished in the problem statement on waves described by

cylindrical coordinates [13–15, 17]. However, in the case of configuration II describing such surface wave, the system of wave

equations can only obtained for one particular case. This is the case where only the geometric nonlinearity is taken into account,

and the Murnaghan model is reduced to the simplest nonlinear model (Jon model or neo-Hookean model). Therefore, it is

necessary to considering the other cases, including the case where only physical nonlinearity is considered, and which is more

typical of materials studied using the Murnaghan model. This model is known to describe weak physical nonlinearity for small

strains. The consistent analysis of this case requires some general information and formulas.

1. Problem Statement. Select the initial state (configuration) of a continuum characterized by cylindrical coordinates
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the covariant and contravariant components of the displacement vector [1, 3, 5]
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Let the geometric nonlinearity in the description of the strain tensor is not taken into account by means of the Cauchy

linear relations:
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and the physical nonlinearity is taken into account by means of the Murnaghan potential [10]:
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It is necessary to derive the constitutive equations corresponding to (2), (3), (4).

2. Constitutive Equations. The first step is to represent potential (4) in terms of strains. To this end, we need the

general expression of the invariants in terms of strains using formulas (3):
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Substituting invariants (6) into potential (4), we obtain
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The constitutive equations � �~ (8) can be represented as the dependence of the components of the stress tensor on the

components of the displacement vector � ~ u (the number of types of nonlinearities is indicated in brackets):
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3. Equations of Motion and Nonlinear Wave Equations. The general equations of motion without external forces

have the following form [1–3]:
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It should be noted that the expression in parentheses is equal to 1 in the linear theory. If the approach is nonlinear, then

the equations of motion (10) contain nonlinear components, namely, products of components of the stress tensor, which are

nonlinearly dependent on the displacements in nonlinear theory, and the components of the displacement gradient.

Due to the axial symmetry of the configuration, the indices i k, in (10) do not take the value 2, since we use the

cylindrical coordinate system �
1
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� z. Therefore, it is possible to represent (10) as only two equations (k �1, 3):
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Let us further use the following general formula [1–3]:

� � 
 
 	 	
k

ik ik k pk

pk

i ip

kp

k
� � � � �( / ) � � ,

or

� � 
 
 	
k

ik ik k pk

pk

i
g g� � � �( / )( ( ) / )1 � . (12)

The following relations are valid for the metric tensor in circular cylindrical coordinates
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Finally, Eqs. (11) take a more specific form for the configuration As:
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A feature of Eqs. (13) and (14) is that upon substituting the expressions of stresses in terms of displacements into them,

the nonlinearity of the resulting equations will be determined by both the nonlinearity of the left-hand sides (4 terms) and the

nonlinearity of the right-hand sides (10 terms in Eqs. (13), (14)). Here the nonlinearity of the left-hand sides is only determined

by the nonlinear components of the stress tensor, is of the second order (quadratic nonlinearity), and the coefficients of each type

of nonlinearity are linearly dependent only on the Murnaghan constants.

The nonlinearity of the right-hand sides includes the second and third orders due to the quadratic nonlinearity of both

right-hand sides and the components of the stress tensor, and the coefficients at every type of quadratic nonlinearity depend

linearly only on the Lame elastic constants, and for cubic nonlinearity, they depend only on the Murnaghan elastic constants.

Substituting (9) into Eqs. (13) and (14), we obtain nonlinear wave equations in which the classical linear terms form the

left-hand sides, and the quadratic and cubic nonlinear terms form the right-hand sides. We will now show nonlinear wave

equations that contain only quadratic nonlinear terms.
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In a quadratic nonlinear description of deformation, there may appear many products of 12 functions, i.e., the

displacement u
r
, its two first derivatives u u
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The total number of products is determined by the number of combinations of six elements taken 2 at a time:
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However, products of displacements and their second derivatives are absent in (15) and (16). Therefore, 23 and 22 types of

quadratic nonlinear terms are present in Eqs. (15) and (16), respectively.

This situation looks discouraging. However, it is possible to substantially reduce the number of nonlinearities or

simplify the computation of all types of nonlinearities in some cases. First, the wave equations (15), (16) were derived neglecting

the products of displacement gradients in the Cauchy relations (4). Therefore, it looks logical to neglect these products on the

right-hand side of the wave equations (whose number is 5 in (15) and 4 in (16)). These products are shown by rectangular frames

in the equations.

The analysis of harmonic waves within the first two approximations of the method of successive approximations

requires computation of all types of nonlinearities in terms of the linear approximation in the form of the first harmonics. Finally,

the right-hand (inhomogeneous) side of the equation will have the form of a product of the first two harmonics (second

harmonics) and the sum of the coefficients of nonlinearities [6, 17, 18]. This can considerably simplify the description of all

nonlinearities in the second approximation.

Conclusions. New nonlinear wave equations based on the Murnaghan five-constant model are obtained. Their feature

is two assumptions: the elastic deformation process is physically nonlinear (geometric nonlinearities are neglected) and the

deformation is geometrically axisymmetric and is described by circular cylindrical coordinates. Therefore, the system of wave

equations contains only two coupled equations. This statement enables the obtaining new equations for the analysis of surface

waves propagating along a circular cylindrical cavity in an elastic medium. Another feature of the nonlinear equations is that
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every equation includes the classical linear part. The nonlinear components are quadratically nonlinear and contain 23 types of

nonlinearities in the first equation and 22 types of nonlinearities in the second equation.
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