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Two versions of the semi-analytical finite-element method are developed within the framework of the

three-dimensional theory of elasticity. In the first version, the unknown functions are subject to a

polynomial finite-element approximation in the planar coordinateX, expanded into Fourier series in the

coordinate Y, and are approximated by known polynomials in coordinate Z (thickness). In the second

version, linear polynomials are used for the approximation in the coordinateX and the Fourier series are

applied in the coordinate Y. The distributions of the unknown functions over the thickness are obtained

by analytically solving the appropriate system of differential equations. The reason of developing the two

versions of the method is their approximation and arithmetic errors. The stress–strain state of a layered

composite slab under local normal and tangential loading is calculated. The site of load application is

square with side length equal to the slab thickness. Three types of boundary conditions on a slab bottom

surface (free, clamped and resting on an elastic foundation) are considered.

Keywords: semi-analytic finite-element method, normal and tangential local loading, sandwich composite

slab

Introduction. At present, composite structural systems, layered composites in the first place, with high difference in

mechanical properties or the orthotropy levels of the constituents are very popular in industrial practice. They can normally

experience complex deformation under variety of boundary and loading conditions, which can cause loss of structural integrity.

Under these conditions, an essentially three-dimensional stress–strain state (SSS) with high gradients occurs.

Application of the direct analytical methods of the three-dimensional theory of elasticity for the SSS study meets

significant difficulties while classical approaches based on the simplifying Kirchhoff–Love or Timoshenko assumptions do not

guarantee sufficient accuracy even for the estimating analysis due to the complexities mentioned above. Thus, being

approximate to the exact analytical methods by their nature, the so-called semi-analytic approaches of the three-dimensional

theory of elasticity have obtained their further development. The semi-analytic finite-element method (SAFEM) belongs to this

category.

The most detailed review of the publications devoted to the SAFEM structural analysis is presented in [1]. Bodies of

revolution are the most frequent subject for such studies where series expansion (Fourier series expansion mainly) of the

unknown functions in the circumferential coordinate and a FE approximation in the longitudinal coordinate are used.

Just a few works [3–7, 9] were devoted to slab design. Slabs and shallow shells were studied within the framework of

classical theory. Different versions of semi-analytic techniques that are similar to SAFEM were proposed in [2]. There are no

publications on the application of SAFEM to a plane layered composite slabs under local normal or tangential loading within the

framework of three-dimensional theory.

1. Problem Statement. Elaboration of the Version of SAFEM Based on Polynomial Approximation over Slab

Thickness (V1). The aim of the present work is to develop two versions of the SAFEM that are applicable to SSS analysis of a

layered composite laminate experiencing both normal and tangential local loading over a region comparable to the slab

thickness. It is necessary to elaborate two different versions of SAFEM to overcome both approximation and calculation errors.
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Application of the two techniques to the problems of locally loaded solids where the regions with high gradients of the SSS

should be adequately treated serves the purpose of additional validation of the results obtained. In this sense, they do not compete

but rather complement each other. In the frame of the first version of the SAFEM, the FE approximation in the planar coordinate

X is used while the Fourier series approximation is applied to the unknown functions in the coordinate Y. Known polynomial

approximation [8] of the unknown functions over the thickness of the structure (coordinate Z) is applied. A different scheme is

adopted in the second version. Thus, polynomial approximation of the unknown functions in the plane coordinate X is applied,

while Fourier series are used over the coordinate Y. In the frame of the second version, unknown function distributions over the

thickness are obtained as an analytical solution of the appropriate system of differential equations.

The well-known limitations of the boundary conditions at the edges occur due to application of the trigonometric

Fourier series expansion in the Y coordinate for the proposed techniques. It is worth mentioning here that FE approximation in

the X coordinate expands significantly the set of boundary conditions that can be investigated (free, hinged, or clamped). As to

the interface conditions, ideal contact or sliding contact with and without friction on a part of the interface can be simulated.

Combination of the interlayer and edge boundary conditions enables analysis of composite elements with complex

through-the-thickness structure (normally to the X direction), for example, in the case of stiffeners directed along the Y axis. To

save space, we will test the proposed SAFEM versions in the particular case of hinged layered orthotropic structures subjected to

localized loading (both normal and tangential). The interlayer contacts are assumed to be ideal. The next structural schemes are

under consideration: free bottom surface, zero displacements of the bottom surface, and contact with the infinite layer.

Let us consider a laminated structure (Fig. 1) consisting of orthotropic (three planes of elastic symmetry) composite

layers.

The strains and stresses are related by
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The superscript ( )k stands for the number of a layer. Directions 1–3 correspond to the axes X Y Z, , .

Let us use the well-known approximation of displacements over the thickness of the laminated structure [8] to develop

the version of SAFEM based on the polynomial approximation over the thickness:
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Using the approximation introduced by (1.1), we obtain the strain tensor components for a lamina from the relations
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Taking account the strain relations (1.2), we find the components of the stress tensor from Hooke’s law:
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Accounting for the expressions for strain (1.2) and stress (1.3) yields the variation of the strain energy:
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Variation of the external work on the layer faces yields
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Linear and cubic polynomials are used to approximate the unknown functions along the X axis while trigonometric

functions are chosen for the Y direction:
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and l is the length of the finite-element along x-axis.

The finite-element equilibrium equations are derived using the following variational equation:

�� �� �A 0. (1.7)

Using the expressions for strain energy (1.4) and external work (1.5) and the approximation introduced by (1.6) and

transforming Eq. (1.7), we obtain the algebraic equilibrium equations for a finite element:

B
f x

x

f x

x
TU f x f x B

ll

k us us

ll

k

us us
11 1 6

( ) ( )
( ) ( )

( ) ( )

�

�

�

�

� � 11

2

1

0

l l

k

us us ls

k
f x f x

ny

b
U

( ) ( )
( ) ( )

!


�

�




�

�




�

�

�




�

�

�

�

�

�

�

l

�

�

�

�

�

�

�




B
f x

x
f x B f x

f x

xll

k us

us
ll

k

us

us
612 12

( ) ( )
( )

( ) ( )

( )

�

�

�




�

�

�




�

�




�

�

!ny

b
U

ls

k

2

( )

�

�

�

�




�

�




�

� �




�

�

�




BD

x

BD
ny

b
SD

lp

k

lp

k

lp

k
11 12 1

2

2

2

( ) ( ) ( )!

�

�

�

�

�




�

�

�

f x
f x

x
wc

us
( )

( )

� � � �

�

( )

(
( ) ( ) ( ) ( )

TUW CUW BD BD
f x

lp

k

lp

k

lp

k

lp

k wc
1 1 611 622

)

( ) ( )
( ) ( )

�




�

�

�

�

�

�

�
�

x
f x W q f x dx
us ps

k

l

k

us
1

0,

B
f x

x
f x B f x

f x

xll

k us

us
ll

k

us

us
612 12

( ) ( )
( )

( ) ( )

( )�

�

�

�

�




�

�

�




�

�

�




�

�




�

�

�

�

��

!ny

b
U

ls

k

l

1

0

( )

�




�

�




�

� �B f x f x
ny

b
TU f x f

ll

k

us us
ll

k

us us
22 2

2

( ) ( )
( ) ( ) ( )

!

( )

( ) ( )
( ) ( )

x B
f x

x

f x

x
U

ll

k us us

ls

k
�

�

�

�

�




�

�

�




�

�

�

622
2

�




�

�




�

� � � �BD
ny

b
TUW CUW SD

lp

k

lp

k

lp

k

lp

k
22 2 2 2

3

( ) ( ) ( ) (
(

! )
( ) ( )




�

�

�




�

�

�




�

�




�

�




�

�

�




�

�

�

!ny

b
f x f x
wc us

� � �

�

�

( ) ( )

( )
( ) ( ) ( )

BD BD f x BD
f x

x
lp

k

lp

k

ws
lp

k wc
611 622 21

2

2 2

0




�

�

�




�

�

�




�

�

�




�

�

�

�

�

�

�

�

�f x W q f x dx
us ps

k

l

k

us
( ) ( )

( ) ( )
,

BD

x

BD
ny

b
SD

lp

k

lp

k

lp

k
11 12 1

2

2

2

( ) ( ) ( )�

�

�




�

�




�

� �




�

�

�




�

!

�

�

�

�




�

�

�

�

�

�

�

�

f x

x
f x

us

ws

l
( )

( )

0

� � � �( ) ( )
( ) ( ) ( ) ( )

TUW CUW BD BD f x
lp

k

lp

k

lp

k

lp

k

us
1 1 611 622

�

�




�

�

�

f x

x
U

ws

ls

k
( )

( )

1

�




�

�




�

� � � �BD
ny

b
TUW CUW SD

lp

k

lp

k

lp

k

lp

k
22 2 2 2

3

( ) ( ) ( ) (
(

! )
) ( ) ( )

!ny

b
f x f x
ws us




�

�




�

�




�

�

�




�

�

�




�

�

�

319



� � �( ) ( ) ( ) (
( ) ( ) ( )

BD BD f x f x BD f
lp

k

lp

k

us ws
lp

k

us
611 622 21 x

f x

x

U
ws

ls

k
)

( )
( )

�

�




�

�

�




�

�

�




�

�

�

2

2 2

�

�

�

� �




�

�




�

�DD
f x

x

ZD DD
ny

b
pp

k ws

pp

k

pp

k
11 1 12

2

2

( ) ( ) ( )
( )

!

2 2

2




�

�

�




�

�

�




�

�

�




�

�

�

�

�




�

�

�

f x

x

ws
( )

�




�

�




�

� � � � �DD
ny

b
TW CC CW

pp

k

pp

k

pp

k

pp

k
22 2 2 2

4

( ) ( ) ( ) ( )
(

!

ZD
ny

b
ZZ f x f x

pp

k

pp

k

ws ws
2

2

( ) ( )
) ( ) ( )

!


�

�




�

� �




�

�

�




�

�

�

� � �




�

�




�

�




�

�

�

( )
( ) ( ) ( )

DD DD DD
ny

b
pp

k

pp

k

pp

k
611 622 612

2

!

� � �




�

�( )

( ) ( )
( ) ( ) ( )

TW CC CW
df x

dx

df x

dx
pp

k

pp

k

pp

k ws ws
1 1 1

�

�

�

�

�
�W q f x dx

pc

k

p

k

ws

( )

�

( )
( )

3
0. (1.8)
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The derived system of algebraic equilibrium equations for a finite element is formulated in terms of the following

unknown quantities: (a) the tangential displacement amplitudes along the X axis at the finite element nodes on the outer edges of

the layer (U U
k k

111 121

( ) ( )
, for the first node andU U

k k

112 122

( ) ( )
, for the second node); (b) the amplitudes of the tangential displacement

along the Y axis at the finite element nodes on the outer edges of the layer (U
k

211

( )
,U

k

221

( )
for the first node andU U

k k

212 222

( ) ( )
, for the

second node); (c) the amplitudes of the normal displacement and rotational angles at the nodes of an element located on the outer

edge (W
k

11

( )
, "

11

( )k
,W

k

21

( )
, "

21

( )k
for the first node andW

k

12

( )
, "

12

( )k
,W

k

22

( )
, "

22

( )k
for the second node); (d) the amplitudes of the shear

analogs of the vertical displacements (W
k

31

( )
, "

31

( )k
for the first node andW

k

32

( )
, "

32

( )k
for the second node). Generally, we have a

system of 20 equations with 20 unknowns formulated for each finite element. There are eight unknown displacements for each

node located on the layer surface. The location of nodes on the outer edges of a finite element enables both in-plane and

through-the-thickness modeling of the structure.

The following techniques are used for the method application.

The equation for a layer accounting for the end boundary conditions has the following matrix form:
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, (1.9)

where { }
( )

v
k

1
and { }

( )
v

k

2
are the displacement amplitudes on the top and bottom surfaces of the layer; { }

( )
v

k

3
are the amplitudes of

the shear analogs of layer displacements;{ }
( )

p
k

1
and{ }

( )
p

k

2
are the force amplitudes on the top and bottom surface of the layer.

The amplitudes of the shear analogs of the layer displacement are internal quantities over the layer. For layered structure

calculation, they are not compatible with the correspondent displacements for other layers. To eliminate them from the analysis,

the well-known superelement approach can be used.With Eqs. (1.9), the vector of the shear analogs of the layer displacements is

expressed as

{ } [ ] [ ]{ } [ ] [
( ) ( ) ( ) ( ) ( ) (

v k k v k k
k k k k k

3 33

1

31 1 33

1

32
� � �

� � k k
v

) ( )
]{ }

2
.

Then Eqs. (1.9) are rearranged as follows:
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In turn, Eqs. (1.10) are transformed as
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The type and kind of the matrices [ ]
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k
k

11
, [ ]
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k
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k
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21
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k
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22
are obvious.

Let us group the neighboring layers by two. The resolving system of equilibrium equations for them is of the form (1.9)

but now the { }
( )

v
k

3
stands for the displacement amplitudes over the interface between the layers. The displacements { }

( )
v

k

3
are

reduced according to the procedure described above. This step should be repeated until a single system of equations of the form

(1.11) is derived:
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where { }
( )

v
k

1
and { }

( )
v
n

k

�1
are the displacement amplitudes on the top and bottom edge of the laminate, respectively, while { }

( )
p

k

1

and { }
( )

p
n

k

�1
are the force amplitudes at the same edges.

This technique reduces considerably the amount of operations needed to solve the resolving system of equations (the

number of operations with zeroes decreases substantially). The advantage of the technique becomes especially vivid after

subdivision of the layers (into 2, 4, 8, 16, 32, 64, etc. sublayers) as well as in the case of two alternating layers of the same

material with different orthotropy directions. There are many way of implementing this technique. The proposed version is

definitely not the most effective but it can be coded easily. It is a challenge to investigate analytically the stability of the method.

Its capabilities are studied below for illustrative examples where rather fine meshing of the structure is used (100 finite elements

with subdivision of the three layers by 16 sublayers resulting in 49 edges where the displacement amplitudes are defined). With

boundary conditions (hinged left edgeW U� �0 0
2

, with shear equivalent displacementW
3

0� and the moving support of the

right edge W U
,

,
1 1

0 0� � with shear equivalent displacement W
3 1

0
,
� ), one can calculate (101�8 – 4)�49 = 39396

displacements and (101�2 – 2) �48 = 4752 shear analogs of the displacements resulting in 44148 unknowns total for 150 terms of

the series. The calculated results are validated by against the results obtained with the alternative technique described below.

2. Elaboration of the Version of SAFEM Involving the Determination of the Distributions of the Unknown

Functions over the Structure Thickness Based on the Analytical Solution of the Appropriate System of Differential

Equations (V2). Let us introduce the following approximation for the unknown displacement and stress functions within a finite

element:
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where �
1

1( ) /x x l� � , �
2
( ) /x x l� , l is the finite element length; v z
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( ),w z
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k( )
( ), %
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z
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( )are the unknown distribution

functions of displacements and stresses at the ith node.

With expressions (2.1), the unknown strain tensor components can be found using the Cauchy relations:

e x y z
x

x
v z

x

x
v z

k k k

11

1

11

2

12

( ) ( ) ( )
( , , )

( )

( )

( )

( )�

�

�

�

�

�


 � �

�

�

�




�

�

�

sin

!ny

b
,

e x y z
n

b
x v z x v z

k k k

22 1 21 2 22

( ) ( ) ( )
( , , ) ( ( ) ( ) ( ) ( ))s� � �

!

� � in

!ny

b
,

e x y z x

w z

z
x

w z

z

k

k k

33 1

1

2

2( )

( ) ( )

( , , ) ( )

( )

( )

( )

�

�

�

�

�

�




�

�

� �

�




�

�

�

sin

!ny

b
,

2
23 1

21

2

22
e x y z x

v z

z
x

v z

z

k

k k

( )

( ) ( )

( , , ) ( )

( )

( )

( )

�

�

�

�

�

�

� � � �




�

�

�




�

�

�

!

�

!

�

!n

b
x w z

n

b
x w z

ny

b

k k

1 1 2 2
( ) ( ) ( ) ( ) cos

( ) ( )
,

2
13 1

11

2

12
e x y z x

v z

z
x

v z

z

k

k k

( )

( ) ( )

( , , ) ( )

( )

( )

( )

�

�

�

�

�

�

� � �

�

�

�

�

�




�

�

�




�

�

�

� �
!

1

1

2

2

( )

( )

( )

( ) sin
( ) ( )

x

x
w z

x

x
w z

ny

b

k k
,

2
12 1 11 2 12
e x y z

n

b
x v z

n

b
x v z

k k k( ) ( ) ( )
( , , ) ( ) ( ) ( ) ( )� �

!

�

!

� �

�

�

�

�

�




�

�

�




�

�

�

� �
!

1

21

2

22

( )

( )

( )

( ) cos
( ) ( )

x

x
v z

x

x
v z

nyk k

b
.

The stresses and strains are related by
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The system of governing equations and appropriate boundary conditions can be derived using the Reissner variational
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Then using Eqs. (2.2), we derive the governing system of differential equations for the layer with kinematic boundary

conditions:
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The vector of unknown functions can be represented as
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is worth mentioning here that there are specialized and standard libraries that can successfully be used to find the roots of

characteristic equations and their eigenvectors computing, but elaborating them is not our aim here);C
j

k( )
are the constants of

integration determined from the contact conditions between the layers and the conditions at the each node of the FE mesh on the

face planes; J is the total number of unknown functions in the layer.

3. Numerical Results and Discussion. As a testing example, let us consider the SSS of a three-layer slab with

composite layers. The mechanical characteristics of the layers are as follows: E E
1

1

2

1
25 1

( ) ( )
/ /� , E E
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1
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1( ) ( )
� ,G E
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1
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1
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G E
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/ . /� , G G
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1( ) ( )
� , v v v

12

1

13

1

23

1( ) ( ) ( )
� � � 0.25. The lay-up of the laminate is 0°/90°/0°. The thickness of the second

layer is twice the thickness of the first or third layer, which are assumed to be of the same thickness. The slab is chosen to be

square (a b L� � with the length-to-thickness ratio L h/ )�10 . The slab is loaded at the center by a normal local load uniformly

distributed over a small square (Fig. 2). The side length of the load square is equal to the slab thickness. The edge of the slab is

assumed to be simply supported.

Three techniques were used to solve the problem: (i) the analytical model (A) from [8] with retaining of 150 terms of the

series in the each direction; (ii) semi-analytic technique (V1) with polynomial approximation of the unknown functions over the

slab thickness; (iii) semi-analytic technique (V2) with analytical determination of the unknown functions.
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TABLE 1

Layer

number

U
3

�

11
�

22

Â1_4 Â2 À Â1_4 Â2 À Â1_4 Â2 À

1

4.3398 4.3626 4.3637 –7.1456 –7.3334 –7.3405 –0.8910 –0.9036 –0.9042

4.1575 4.1759 4.1767 1.6001 1.6764 1.6810 –0.3499 –0.3604 –0.3606

2

4.1575 4.1759 4.1767 –0.1661 –0.1669 –0.1670 –4.4661 –4.7064 –4.7081

3.9323 3.9461 3.9466 –0.0052 –0.0044 –0.0046 4.3057 4.5329 4.5341

3

3.9323 3.9461 3.9466 –0.2247 –0.2299 –0.2328 0.1321 0.1399 0.1398

3.8906 3.9033 3.9038 5.2464 5.3351 5.3434 0.5446 0.5540 0.5543

TABLE 2

Layer

number

U
3

�

11
�

22

Â1_4 Â2 À Â1_4 Â2 À Â1_4 Â2 À

1

0.6877 0.6980 0.6988 –2.9738 –3.1161 –3.1195 –0.4835 –0.4907 –0.4912

0.4762 0.4821 0.4826 1.7391 1.8185 1.8219 –0.2296 0.2351 0.2354

2

0.4762 0.4821 0.4826 –0.1465 –0.1460 –0.1461 –1.0022 –1.1220 –1.1232

0.1336 0.1335 0.1336 –0.1276 –0.1271 –0.1271 0.5786 0.6817 0.6821

3

0.1336 0.1335 0.1336 0.1301 0.1500 0.1512 –0.1140 –0.1109 –0.1111

0.0000 0 0 –0.1689 –0.1685 –0.1686 –0.1365 –0.1361 –0.1362



The semi-analytic technique considers half the slab along the X axis. Partitioning the half the slab into 100 elements, we

assume that just 10 of them are under loading. 150 terms of the series in the Y direction are retained. Retaining 100 terms of the

series produces the same results. Insignificant deviations occur immediately under the region of load application only.

Table 1 presents the dimensionless results of calculation ( ( / , / , ) / ( )U U L L z E q h
3 3 3 3

2 2� ,

� �

11 11 3
2 2� ( / , / , ) /L L z q , � �

22 22 3
2 2� ( / , / , ) / )L L z q for the loading considered. Calculated SSS characteristics are

shown for the points belonging to the layer boundary.

The calculations performed according to the three models mentioned are in good agreement. To obtain the reliable

results with the V1model, further partitioning of the layers into four sublayers is necessary in the case of local loading. In spite of

the high order of approximation of the unknowns over the thickness, calculation within the singular sublayer provides just rough

estimation of the results and is not shown here.

The calculation results for the same structure with zero displacements of the bottom surface (numerical model of the

road paving on a bridge) are given in Table 2.

The results obtained with the three techniques are in very good agreement as well. The V1 model is less accurate in this

case but its accuracy is still quite acceptable.

Table 3 shows the calculation results for the same structure with infinite third layer (road paving slab resting on an

elastic foundation). The infinite layer is simulated by a finite thickness layer (h h
( ) ( )3 2

21� ' ) subdivided into 64 sublayers in the

V1 model. The layer thicknesses h
( )1

and h
( )2

are the same as in the previous case. As before, they are subdivided into four

sublayers.
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Fig. 2 Fig. 3

y

x

y

x

TABLE 3

Layer

number

U
3

�

11
�

22

Â1_4 Â2 À Â1_4 Â2 À Â1_4 Â2 À

1

1.0163 1.0258 1.0266 –3.6731 –3.8230 –3.8276 –0.5681 –0.5762 –0.5767

0.8114 0.8162 0.8168 1.8159 1.8927 1.8965 –0.2474 –0.2549 –0.2551

2

0.8114 0.8162 0.8168 –0.1432 –0.1434 –0.1435 –1.6235 –1.7876 –1.7889

0.5077 0.5069 0.5071 –0.1097 –0.1105 –0.1106 1.1074 1.2458 1.2464



The calculation results obtained with the models V2 and A are almost identical. The simulation of an infinite layer by a

finite-thickness layer within the V1 model provides accuracy that is quite acceptable for civil engineering calculations.

Table 4 contains the results of calculation ( ( , / , ) / ( )U U L z E q h
1 1 3 1

0 2� , U U L L z E q h
3 3 3 1

2 2� ( / , / , ) / ( ), �

22

� �

22 1
2 2( / , / , ) / )L L z q of a slab with free bottom surface. The slab is under tangential loading applied locally to the edges

symmetrically in the X direction (Fig. 3). The side length of the load square is equal to the slab thickness.

The stress values � �

11 11 1
20 2 100 2� ( / / , / , ) /L L z q at a point belonging to the boundary loaded locally by the

tangential force for different number of sublayers (4, 8, 16) are shown in Table 5.

To reach the desired stress accuracy at the tangential loading exit point ( / /x L� 20 2 100, y L� / )2 , finer partitioning of

the layer into sublayers is necessary.

Table 6 contains the results of calculation ( ( , / , ) / ( )U U L z E q h
1 1 3 1

0 2� , U
3

�U L L z E q h
3 3 1

2 2( / , / , ) / ( ),

� �

11 11 1
2 2� ( / , / , ) /L L z q , � �

22 22 1
2 2� ( / , / , ) / )L L z q of the same structure with rigidly fixed bottom surface.

Table 7 shows the stresses � �

11 11 1
20 2 100 2� ( / / , / , ) /L L z q at a point belonging to the boundary loaded locally by

the tangential force for different number of sublayers (4, 8, 16) in the case of fixed bottom surface.

Once again, to reach the desired stress accuracy at the tangential loading exit point (x L� 20 2 100/ / , y L� / 2), finer

partitioning of the layer into sublayers is necessary.
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TABLE 4

Layer

number

U
1

U
3

�

11
�

22

Â1_4 Â2 Â1_4 Â2 Â1_4 Â2 Â1_4 Â2

1

0.6059 0.6086 0.5356 0.5371 –1.8559 –1.8565 –0.0393 –0.0394

0.2935 0.2955 0.5418 0.5433 –1.5364 –1.5372 –0.0265 –0.0266

2

0.2935 0.2955 0.5418 0.5433 –0.0643 –0.0644 –0.2907 –0.2919

0.0559 0.0564 0.5458 0.5473 –0.0088 –0.0088 0.4158 0.4216

3

0.0559 0.0564 0.5458 0.5473 –0.3267 –0.3282 0.0137 0.0139

–0.0138 –0.0140 0.5448 0.5463 –0.0982 –0.0996 0.0374 0.0377

TABLE 5

Layer number 4 8 16 Â2

1

–9.9723 –10.8682 –11.5241 –11.4411

–1.2020 –1.1672 –1.1571 –1.1562

2

–0.0692 –0.0684 –0.0684 –0.0685

–0.0120 –0.0118 –0.0118 –0.0118

3

–0.2910 –0.2918 –0.2925 –0.2930

0.3693 0.3796 0.3828 0.3838



Conclusions. Two versions of semi-analytic finite element method have been developed for investigation of the

stress–strain state of a locally loaded multi-layer composite slab. Bottom surface of the slab is considered to be either free or

clamped or resting on an infinite layer. Each of the two approaches has its own advantages and disadvantages. Both of them are

highly accurate. The disadvantage of the version with polynomial approximation over the thickness is the large number of

stiffness characteristics and the high order of the governing equation. The version with analytical determination of the unknown

functions over the slab thickness requires determination of the eigenvalues and eigenvectors of the characteristic system of

equations. All of the disadvantages listed can be easily overcome with modern computers and, therefore, are insignificant for the

class of problems under consideration. The techniques complement to each other.

To reach the acceptable accuracy within the first version of SAFEM, it is shown that the subdivision of a slab layer into

four sublayers is sufficient for the case of normal local loading. For the case of tangential local loading, due to the high stress

gradients in the vicinity of the loading exit point, the layer subdivision into 16 sublayers is necessary for adequate calculation of

the structure with the V1 version of SAFEM.
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TABLE 6

Layer

number

U
1

U
3

�

11
�

22

Â1_4 Â2 Â1_4 Â2 Â1_4 Â2 Â1_4 Â2

1

0.5285 0.5306 –0.0024 –0.0024 –1.4455 –1.4451 –0.0023 –0.0022

0.2670 0.2689 0.0013 0.0013 –1.2823 –1.2821 –0.0100 –0.0099

2

0.2670 0.2689 0.0013 0.0013 –0.0509 –0.0509 0.0658 0.0692

0.0268 0.0271 0.0021 0.0021 –0.0088 –0.0088 0.0188 0.0191

3

0.0268 0.0271 0.0021 0.0021 –0.1763 –0.1765 –0.0029 –0.0029

0 0 0 0 –0.0036 –0.0036 –0.0029 –0.0029

TABLE 7

Layer number 4 8 16 Â2

1

–9.5412 –10.4301 –11.0841 –11.0007

–1.2101 –1.1761 –1.1663 –1.1654

2

–0.0690 –0.0683 –0.0683 –0.0684

–0.0177 –0.0177 –0.0177 –0.0177

3

–0.0917 –0.0879 –0.0872 –0.0874

–0.0180 –0.0185 –0.0186 –0.0186
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