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The distribution of stress intensity at the front of a mode I crack in an elastic-plastic body is analyzed.

From this distribution, the shape of the plastic zone is identified and its dimensions in two mutually

orthogonal directions are established.
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Introduction. The energy expended for fracture of elastoplastic bodies with cracks almost wholly dissipates in the

plastic zone at the crack front [5]. Therefore, it is important to know the parameters of the zone and strains or stresses on its

boundaries. Moreover, such parameters are needed to validate crack models. Of importance is to validate the solutions of

boundary-value problems of the limiting equilibrium of elastoplastic bodies with cracks. The literature on fracture mechanics

contains few data on the plastic zone due to serious obstacles that hinder experimental studies.

There are methods widely used for determining the fracture characteristics of various cracked bodies [16]. Less

accurate methods are usually used to study the plastic zone, including etching methods [9, 10], photoelastic coating technique

[8], replica and net methods [13, 15].

However, studying the plastic zone with the above methods requires conducting complex analysis of experimental data

due to the difficulties of separating the elastic and plastic strains. Moreover, these methods can only be applied on the body’s

surface.

Some information on the shape and sizes of the plastic zone may be obtained from the intensity of stresses in the crack

vicinity. To this end, the hardness method [6] can be used, which is based on the change in the body hardness during plastic

deformation. This method assumes that the dependence of the stress intensity on hardness is invariant to the loading history. This

assumption is validated by the results obtained in [7], according to which the influence of hydrostatic compression on hardness is

negligible. The above assumption was also validated experimentally in [1–3], from which it follows that the difference in the

data obtained does not exceed 10%.

It should be noted that the above method is not free of certain disadvantages. One of them is related to the determination

of hardness attributed to the cold-hardening of the surface layer, which must be eliminated. Indentation causes local plastic

deformation of the body. However, as shown in [6], the results obtained in determining the hardness are scarcely affected by this

deformation, owing to which its influence can be neglected.

The purpose of the present work is to analyze the plastic zone at the front of a mode I crack using the hardness method.

With this method, wewill determine the shape and dimensions of the plastic zone in some directions and the distribution of stress

intensities.

1. Experimental Methods. Flat and compact specimens made of 12Kh18N10T steel were tested. The data needed to

determine the dependence of stress intensity on hardness were obtained in testing the flat specimens, while the compact

specimens were employed to determine the hardness in the vicinity of the crack front.
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The thicknesses of flat and compact specimens were equal to 3�
�

10
3
and 10�

�

10
3
m, respectively. The length of the

crack in the compact specimens was equal to 11�
�

10
3
m. To test the specimens, a TsDMU-30t testing machine with accuracy of

loading �1% was used.

The hardness was determined with a PMT-3 device. Note that the accuracy of hardness measurements depends on the

load applied to an indenter. The accuracy increases with the load. The least load on the indenter at which the accuracy can be

considered sufficient is equal to 0.049 N. We determined the hardness under a load of 1.961 N which provided high accuracy

(�1.5%).

In the testing, we measured both diagonals of each impression, then calculated the arithmetic mean of the results and

found the hardness, repeating this operation 10 times. Next we calculated the mean hardness.

Let us now determine the dependence of stress intensity on hardness.

The stress intensity X is described as square root of the second invariant of the stress deviator. The quantity X can be

expressed in terms of the first and second invariants of the stress deviator S:

X � ��

�

2

3

, (1.1)

where

� � g S
�	

�	

, � � g g S S
�
 	�

�	 
�
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Here S
�

are the contravariant components of the tensor S.

In the rectangular orthogonal Cartesian coordinate system x x x
1 2 3
, , fixed to the specimens, we have
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Note that the axes x
1
and x

2
are aligned with the longitudinal and transverse axes of the specimens (Fig. 1a). As is seen,

only the component S
11

is nonzero

S
�

� � � �0 2 3( , , � � ). (1.4)

With (1.3) and (1.4), invariants (1.2) are expressed as follows:

� � S
11
, � � S S

11 11
. (1.5)

With (1.5), formula (1.1) becomes:

X S� 2 3
11

/ . (1.6)
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We used four specimens. After application of the load, we measured (with accuracy up to � �

�

05 10
6

. m) the transverse

dimensions (along the x
2
-axis) of the specimens with a MIG-1 indicator. As a result, we obtained the following values of the

component S
11
: 254.08�10

6
Pa, 290.98�10

6
Pa, 323.92�10

6
Pa, 394.59�10

6
Pa. Using these values in (6), we found the value of X.

Next, we determined the hardness H for each specimen (over the x
3
-plane).

Let

�X X� �

�

10
6
,

�H H� �

�

10
9
. (1.7)

The values of
�X and

�H calculated with (1.7) are collected in Table 1.

Let us assume that the function
�X ( �H) is described by the following expression [4]:

�
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The coefficientsC
i
are evaluated as follows:
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As calculations with formulas (1.8)–(1.11) show, function (1.8) can be described with sufficient accuracy by the

parabola

�

. .
�

.
�X H H� � �67740508 70106581 25744010
2
. (1.12)

In what follows, we will consider how the hardness at the crack front is determined. Since plastic deformation results in

hardness change, a vicinity of the crack front that is not larger than the plastic zone was subject of interest. In tests of three

specimens, the load N applied was equal to 4903.32 N, 5393.65 N, and 5883.99 N, respectively. The crack did not move in the

first and second specimens and started in the third specimen.
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TABLE 1

�X , Pa
�H , Pa

207.45 1.53334

237.58 1.73673

264.47 1.86717

322.18 2.04885
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Fig. 2

TABLE 2

x
1 3

10� , m

x
2 3

10� , m

0 0.1 0.2 0.3 0.4 0.5

0.2

2.19625 2.05175 1.90731 1.77760 1.70603 1.68312

379.45 322.73 276.77 244.66 230.65 226.72

0.4

2.23044 2.13021 1.97756 1.85378 1.80246 1.72940

394.44 352.19 297.78 262.47 250.14 234.94

0.6

2.23044 2.14644 1.97756 1.92106 1.84074 1.78996

394.44 358.68 297.78 280.69 259.21 249.35

0.8

2.11416 2.02158 1.93495 1.89371 1.81509 1.76536

345.91 312.24 284.74 273.00 253.05 242.08

1.0

1.99207 1.96320 1.88025 1.84074 1.78996 1.74126

302.44 293.28 269.36 259.21 247.35 237.22

1.2

1.89371 1.88025 1.85378 1.81509 1.76536 1.71765

273.00 269.36 262.47 253.05 242.08 232.75

1.4

1.81509 1.81509 1.78996 1.76536 1.74126 1.70603

253.05 253.05 247.35 242.08 237.22 230.65

1.6

1.76536 1.77760 1.75325 1.74126 1.70603 1.68312

242.08 244.66 239.60 237.22 230.65 226.72

1.8

1.71765 1.71765 1.72940 1.70603 1.68312 1.66068

232.75 232.75 234.94 230.65 226.72 223.14



To describe the specimens, we used a rectangular Cartesian coordinate system x x
1 2
, , x

3
with the x

2
-axis oriented

along the crack, the plane x
3

0� coinciding with themid-surface, and the origin being at the crack tip (Fig. 1b). The hardness was

measured in the planes x x
3 3 3

0 2 10� � �

�

, m and x
3 3

4 10� �

�

m.

Since the plane x
3

0� is in the state of plane strain, the results obtained for this plane are the most interesting.

First, we examined, using a BS-301 electron microscope, the surface of the specimens near the crack tip. It was

established that before the crack starts, a fracture process zone (destruction zone) withmicrocracks, pores, and laminations arises

ahead of the crack (Fig. 2).

Note that the fracture process zone is usually taken into account in solving boundary-value problems of fracture

mechanics [11, 12, 14].

3. Analysis of the Results. Let us analyze the results obtained for the plane x
3

0� of the third specimen. Using the

hardness values and the second formula from (1.7), we determine the values of
�H and then, with (1.12), the values of

�X . The

values of
�H and

�X are summarized in Table 2 as upper and lower, respectively.

Using the values of
�X and the first formula in (1.7), we determine the values of X, which were used to plots the curves in

Fig. 3. The coordinate x
1
corresponding to these plots has the following values: 02 10

3
. �

�

m (curve 1), 0.4�
�

10
3
m (curve 2), 0.6

�

�

10
3
m (curve 3), 0.8�

�

10
3
m (curve 4), 1.0�

�

10
3
m (curve 5), 12 10

3
. �

�

m (curve 6), 1.4�
�

10
3
m (curve 7), 1.6�

�

10
3
m (curve 8),

1.8�
�

10
3
m (curve 9).

It should be noted that the stress intensity for x
1 3

02 10� �

�

. m and x
2

� 05 10
3

. �

�

m is noticeably lower because of the

presence of the fracture process zone.

Let us consider how the stress intensity changes with the x
1
-coordinate. As the coordinate increases from 02 10

3
. �

�

m to

0.4�
�

10
3
m, the stress intensity increases. As the x

1
-coordinate increases from 06 10

3
. �

�

m to 1.8�
�

10
3
m, the stress intensity

decreases, which is true for x
2

� 05 10
3

. �

�

m.

Using the plots in Fig. 3, we determined the coordinates x
1
and x

2
of the points at which the stress intensity takes equal

values. These coordinates were used to plot the curves in Fig. 4, where the values of X for curves 1 and 2 are 280 10
6

� Pa and

260 10
6

� Pa, respectively.

As can be seen, the plastic zone is elongated along the x
1
-axis. This fact is in agreement with the numerical solution of

the boundary-value problem of the equilibrium of an elastoplastic body with a mode I crack [5].

The dimensions of the plastic zone along the axes x
�

�( , )�1 2 are denoted by d
( )�

. They were determined as distances

from the origin to the points on the axes x
1
and x

2
at which X � �21302. 10

6
Pa.
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Figure 5 demonstrates how the dimensions of the plastic zone depend on the load N. The curves are similar. However,

the rates at which the dimensions of the plastic zone along the axes x
1
and x

2
increase are essentially different. For example, the

rate of increase in the dimension d
( )1

is much higher than the rate of increase in the dimension d
( )2

. This is natural because the

dimension d
( )1

is much larger than d
( )2

. In the planes x
3 3

2 10� �

�

m and x
3 3

4 10� �

�

m, the plastic zone is more elongated

along the x
2
-axis. The dimensions of the plastic zone along the axes x

1
and x

2
increased.

Conclusions. We have studied experimentally the plastic zone at the front of a mode I crack. Using hardness

measurements, we have determined the distribution of stress intensities. The fracture process zone near the crack has been

discovered. It has been shown how this zone affects the distribution of stress intensity, from which the shape of the plastic zone

has been determined. The dimensions of the plastic zone in two mutually orthogonal directions have been determined.

The results obtained can be used to validate crack models and solutions of boundary-value problems of the limit

equilibrium of an elastoplastic body with a mode I crack.
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