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Introduction. Thin plates made of polymer-based composite materials are widely used in various areas of modern

engineering. Forced harmonic vibrations, including resonant ones, are one of the most frequent modes of operation of such

elements [2, 4, 18–20]. During vibrations, all materials show hysteresis losses, and mechanical or electromechanical energy is

converted into heat. Hysteresis losses are much greater in viscoelastic materials. This effect is widely used in developing passive

methods of damping of forced resonant vibrations of thin-walled elements to reduce their dynamical stress when components

with high hysteresis losses are incorporated into the structure of an element with low hysteresis, which results in a reduction of

amplitudes of vibrations. The extensive literature in the form of encyclopedias, monographs, and articles deals with the study of

passive damping of vibrations [6, 7, 9, 11, 16, 17]. However, an increase of hysteresis losses can be accompanied by a significant

increase in temperature, which is further called dissipative heating temperature (DHT). DHT can affect all aspects of the

mechanical and thermal state of the structure, in particular, the distribution of strains and strains in the deformed body, the

dynamic characteristics of resonant vibrations (amplitude-frequency, temperature-frequency characteristics, frequency

dependence of the damping factor), dynamic and static stability of thin-walled elements, their mechanical and heat fracture,

creep [1, 3–5, 14]. Moreover, every material has a definite temperature, so-called degradation temperature at which mechanical

and electromechanical properties become considerably worse. As a rule transition of a material from one aggregate state to

another corresponds to the point of degradation. For a passive material, the point of degradation is melting temperature, and for

piezo-electric material, this is the Curie point, on reaching which the piezo-effect is lost. Here a specific type of thermal damage

takes place, when the structure element is not split into parts, but ceases to fulfill its function. Therefore, it is necessary to take

into account DHT in studying the forced vibrations of structural elements made of inelastic materials, since neglecting this

phenomenon can result in unreliable results. In spite of this evident fact, the overwhelming majority of works on forced resonant

vibrations of inelastic thin-walled elements neglect it.

In recent years, active methods based on piezoactive components incorporate into the structure of a passive thin-walled

element made of metallic, polymeric, or composite material have been effectively used for damping the vibrations of thin-walled
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elements. In most cases, piezoelectric components act as active elements. Survey of foreign publications on active control of

stationary and non-stationary vibrations of structure elements is presented in [11–13, 15, 27–29]. One of the main methods of

active damping is the method based on the use of piezo-actuators, to which the potential difference is applied to compensate the

action of the mechanical loading, as the result of which the amplitude of vibrations reduces considerably. Here the main problem

is to determine the difference of potentials considering the size of the actuator, its location, etc. Temperature, including the DHT

has a noticeable effect on the efficiency of actuators. As the vibrational heating temperature reaches the Curie point of the

piezo-material, the actuator ceases to fulfill its function due to the loss of the piezoelectric effect by the active material [3–5, 14,

21–25]. For anisotropic materials and for large amplitudes of harmonic loading, it is necessary to consider shear strains and

geometric nonlinearity.

Here we state the problem of the forced vibrations and dissipative heating of viscoelastic plates with actuators taking

into account geometrical nonlinearity and transverse shear strains. An approximate analytical solution for a hinged rectangular

plate is found using the Bubnov–Galerkin method. The dissipative function is determined. The analytical solution of the energy

equation is obtained. The effect of geometrical nonlinearity, shear strains, and DHT on the efficiency of actuators is analyzed.

1. Constitutive Equations for Viscoelastic Piezoelectric Plates with Shear Strains. Consider a three-layer plate

composed of passive (without piezoeffect) middle orthotropic viscoelastic layer of thickness h
0
and two face layers of thickness

h
1
made of transversely isotropic viscoelastic piezoelectric materials polarized across the thickness. The properties of the

piezo-layers are the same; they have opposite polarization. The plate is loaded by uniform surface harmonic pressure with

frequency close to the resonant frequency of the plate. A Cartesian coordinate system (x y z, , ) is used, where the axis Oz is

oriented along the plate thickness. The middle plane of the inner layer is chosen the reference one.We accept two hypotheses for

modeling the electromagnetic vibrations of the plate, namely,

(i) the normal component of the stress tensor �
zz

� 0.2;

(ii) the normal component of the induction vector D
z
is considerably greater than the tangential components, D

z
� 0,

D
x

� 0, D
y

� 0.3;

(iii) all the components of the vector of electric field strength are not equal to zero, E E E
x y z

� � �0 0 0, , .

Under these hypotheses, three-dimensional constitutive equations of electromagnetic elasticity take the form
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S d e
ij ij ij
, , are compliances, piezo-modulus, and dielectric constant of the piezoelectric layer [2, 4, 27–29].

For passive elastic materials, the simplified constitutive equations under the Timoshenko hypotheses are given, for

example, in [26]. From them, using the correspondence principle [10], we obtain the constitutive equations for viscoelastic

materials.

For the refined Timoshenko model, the components of the displacement vector are approximated by the linear law

w w s u s z u s z s v v s z s
x y

� � 	 � 	( , ), ( , , ) ( , ) ( , ), ( , ) (� � � � � � �
0 0

, )� , (1.3)

where �
x
, �

y
characterize independent turn of the normal about the plate. Expressions for the plate strains �

1
, �

2
, �

12
, �

13
, �

23
,

�
1
, �

2
, �

12
in terms of u v

0 0
, ,�

x
,�

y
w, are given, for example, in [26], and, if only squares of angles are retained, have the form
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Substituting these expressions into (1.1) and integrating over thickness, we obtain the constitutive equations for forces

and moments in the piezo-layers with shear strains:
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whereV
0

2/ is the potential difference applied to the active layers deposited on the surface of the passive layer.

The constitutive equations for the passive layer are derived similarly. For elastic orthotropicmaterial, they are given, for

example, in [26]. From them, using the correspondence principle [10], we obtain the constitutive equations for the passive

viscoelastic layer:
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Here asterisk “*” denotes the Volterra operator [10] and will be omitted hereafter.

The quantities

~
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,
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for elastic passive orthotropic material are given in [26] and have the form
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If we consider the active material as elastic, then m
0
is constant. We obtain the constitutive equations for the layered

plate by summing the stiffness characteristics of the active and passive layers. After introduction of the correction coefficientK
s
,

they take the form
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where, for example, the stiffness characteristics A D
11 11
, are defined by
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The remaining formulas for the stiffness characteristics are obtained from (1.4), (1.5) by summing the expressions

multiplying the corresponding strain components.

2. Forced Vibrations of Viscoelastic Plates with Actuators with Shear Strains and Geometric Nonlinearity.

Problem Statement. The universal equations of the refined theory of plates (motion equations for forces and moments,

kinematic relations, boundary and initial conditions) have the same form as in the pure mechanical theory of plates [25]. The

behavior of the material is described by the above constitutive equations. The constitutive equations (1.6) for plates formally

coincide with the constitutive equations of thermoelasticity where the thermal terms are replaced by M
0
depending on the

potential difference applied to the electrodes. Therefore, many of the results obtained in the field of thermoelasticity can be

applied to electroelasticity. However, the physical meaning of these problems is fundamentally different. For example, it is

practically impossible to realize a high-frequency temperature effect on the plate. At the same time, this is easily done by

applying a harmonic potential difference to the electrodes on the plate.

Using the universal equations of electroelasticity and the above constitutive equations, it is possible to obtain the

equations for displacements and angles. Considering the above-mentioned analogy, we can derive equations from those given in

monographs on thermoelasticity of thin-walled elements. Retaining the only normal forces of inertia, we can show that the

equations for displacements and angles of rotation coincide with Eqs. (10.1.31)–(10.1.35) from [26], where it is only necessary

to modify the strength characteristics and differently interpret the thermal terms. Represent these equations as
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where the expressions for L i
i
( )� �1 5 are given in [26]. According to the correspondence principle, it is necessary to replace all

elastic characteristics by the Volterra integral operators using operator algebra [10]. For example, the operator L
1
coincides with

operator (10.1.31), where it is necessary to replace the elastic constants by the Volterra operators:
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The operator L u v w
2
( , , ) derives from (2.2) after the following substitutions: u v v u� �, , x y� , y x A A� �,

11 22
.

The operator L
4
is linear and has the form
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We obtain from (2.3) the operator L
5
after the following substitutions: � � � �

x y y x
� �, , x y y x� �, ,D D

11 12
� ,

A A
55 44

� . The operator L
3
has the form
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Retaining only the transverse forces of inertia, we get
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3. Analytical Solution of the Problem of Electroviscoelasticity for a Hinged Plate. As mentioned above, the

operators L L
4 5
, are linear in �

x
, �

y
w, . Consider the resonant vibrations in the vicinity of a certain (say, first) resonance

frequency of a rectangular plate with sizes 0 � �x a, 0 � �y b. Represent the solution of the problem as

w W k x p y
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� sin( )sin( ), �
x mn m n

U k x p y� cos( )sin( ),

� �
y mn m n m

V k x p y k m a� �sin( )cos( ) ( / , p n b
n

� � / ), (3.1)

satisfying the hinged boundary conditions. The mechanical and electric loads are represented similarly:

M M k x p y
mn m m0

� sin( )sin( ), q q k x p y
mn m n0

� sin( )sin( ).

Hereafer we omit the indices m n, . Substituting these expressions into the operators L L
4 5
, we obtain

U x M w W� 	
11 1
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Here the coefficients multiplyingM andW are Volterra-type operators, which are expressed in terms of electric and mechanical

characteristics of the plate:
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Substituting expressions (3.2) into the operators L L
1 2
, , we arrive at a linear system of integral-differential equations for

u and v:
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The boundary conditions for u and v are
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For these boundary conditions, the solution of system (3.3) has the form
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Substituting expressions (3.1), (3.2), (3.6) into the operator equation (2.4), applying the Bubnov–Galerkin method, and

performing very awkward computations, we get a nonlinear integral-differential equation forW t( ):
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Let the viscoelastic properties of the passive material be described by the same kernel, so that, for example,

~
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, , , , , in the operator L

( )1
should be considered constants

rather than operators, so that only A
ij
remain to be Volterra operators. Similarly, the operator Q should also be considered

constant. If we do not accept this assumption, it is necessary to make use of the algebra of Volterra operators. For example, using

Rabotnov kernels for describing the viscoelastic properties of a material, product, quotient, sum, and difference of these kernels

lead to the same operators with modified parameters. Therefore, it is possible to represent the operator L
( )1

as a certain operator

with kernel depending on all parameters entering the expression of L
( )1
. As a result, we get
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where the constant L
0
and the kernel L

1
depend on all constants and parameters of kernels in L

( )1
.

If the effects of geometrical nonlinearity and viscosity are of same order of smallness, then it is possible to consider the

operator L
( )2

to be a constant. For solving the integral-differential equation, we can use methods of nonlinear mechanics [8], as

well as the Bubnov–Galerkin method. In using asymptotic methods [8], any operator L w
( )

*
1

is replaced by the expression

Lw w	 � � . Here the integral-differential equation (3.7) is represented as
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�W W W K W q	 	 	 �2

1 0

2

1

3

1
� � , (3.8)

where

q q QM I
1 0

� �( ) / . (3.9)

If the piezo-layers are elastic, thenQ is a constant proportional to the difference of potentials applied to the actuator

Q QV�
0
.

Solution of Eq. (3.8) is discussed in detail in [1]. For harmonic loading, it has the form

W W t W t�  �   cos sin� � .

An algebraic cubic equation for squared amplitude was obtained in [1] X W W W� �  	   | | ( ) ( )
2 2 2

:

b X b X b X b
3

3

2

2

1 0
0	 	 � � . (3.10)

The coefficients b i
i
( , , , )� 0 1 2 3 are given in [1] where also amplitude–frequency curve of hard type is given and so is an

expression for the maximal amplitude | |
max

W .

After determination of W, we find u
1
and u

2
from (3.10). Then u and v are determined from (3.6). Knowing

w u v u v, , , ,
1 1

, we can determine the strains, and the forces and moments from the constitutive equations.

4. Determination of Dissipative Heating Temperature. Assuming that it is constant across the plate thickness, the

dissipative heating temperature is determined by solving the stationary energy equation

! � � " �( ) ( / ) /
xx yy

h D h	 � 	 �2 0 (4.1)

subject to the appropriate boundary and initial conditions for temperature.

The dissipative function D is determined by the formula
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where | |ab a b a b
2

�   	     .

Assuming that geometrical nonlinearity and viscosity are of the same order of smallness, it is possible to neglect the

nonlinear terms | | , | | , | | , | |� � � � �
xx yy xy xx yy

2 2 2 2
in the kinematic equations for determining the dissipative function.

If the ends of the plate are heat-insulated, we determine the stationary solution of the energy equation from the solution

of the electromechanical problem in the form

� � � � �� 	 	 	
0 1 2 3

2 2 2 2cos( ) cos( ) cos( )cos( )kx py kx py . (4.3)

We easily determine the constants �
i
i( )� �0 3 by substituting (4.3) into Eq. (4.1) and equating the coefficients of

1 2 2 2 2,cos( ),cos( ),cos( )cos( )kx py kx py . Due to their awkwardness, we omit the expressions for �
i
.

5. Analysis of the Solution.When actuators are used for active damping of the vibrations of plates, the main problem is

to determine the potential difference to be applied to the actuator to compensate the mechanical load. As can be seen from

(3.8)–(3.9), when the potential difference determined fromM q Q� / is applied to the actuator, the load on the plate is cancelled

and the amplitude of forced transverse vibrations becomes zero. Here geometrical nonlinearity does not affect the potential

difference applied to the electrodes. Therefore, to calculate this potential difference, it is possible to use a simpler linear theory

detailed in, for example, [2, 3]. For a transversely isotropic activematerial, this potential difference is determined by the formula
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For the main mode m = n = 1, it follows from formula (5.1) that
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In this case, the correction to the classical result obtained based on the Kirchhoff–Love hypotheses depends on the ratio

of the shear moduli ( / )G G and the ratio of the plate thickness to the size a. Depending on their values, the correction can be very

large.

It follows from expression (5.2) and physical considerations that when vibrations occur in the first node, the

temperature is maximum in the plate center x a� / 2, y b� / 2, and it is equal to

� � � � �
max

| | | | | | | |� 	 	 	
0 1 2 3

. (5.3)

Equating the maximum temperature to the point of degradation �
k
, we obtain the critical mechanical or electric load

under which the plate loses its function. For example, if the Curie point is the degradation point of a piezo-material, then applying

a harmonic potential difference to the electrodes does not generate vibrations of the plate because of depolarization.

For an electric load exceeding the critical value, it is necessary to determine the critical time at which the maximal

temperature reaches the Curie point by solving the non-stationary problem of heat conduction under a load exceeding the critical

value. Solving this problem for different amplitudes of electric load, we obtain a Weller curve that asymptotically tends to the

critical load from above [5, 21, 23].

Conclusion. A model of forced resonant vibrations of flexible viscoelastic rectangular plates with piezo-actuators has

been developed based on the refined Timoshenko hypotheses supplemented by corresponding hypotheses on the distribution of

electric field quantities. To allow for geometrical nonlinearities in the kinematic equations, we retained squared angles of

rotation. The Bubnov–Galerkin method has been used to reduce the problem to a nonlinear integral-differential equation with

cubic nonlinearity in transverse bending. Methods of nonlinear mechanics were used to solve it. A cubic algebraic equation for

squared amplitude of transverse vibrations has been derived. We have determined the potential difference that should be applied

to the actuator to compensate the mechanical load, reducing the amplitudes of forced resonant vibrations to zero. The solution of

the problem of electromechanics has been used to determine the dissipative function and represent an approximate solution of

the heat conduction equation with a known heat source. Thermal failure of the plate upon temperature’s reaching the Curie point

and depolarization of the active material have been discussed.
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