
SOLUTION OF STRESS-STRAIN PROBLEMS FOR COMPLEX-SHAPED PLATES

IN A REFINED FORMULATION
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A numerical-analytical approach to solving problems on the stress–strain state of quadrangular plates of

complex shape is proposed. The governing system of equations is presented in new orthogonal

coordinates using transformations that take into account the plate geometry. A two-dimensional

boundary-value problem, which is described by a system of partial differential equations derived with

the spline-collocation method, is reduced to a one-dimensional one that is solved by the stable numerical

discrete-orthogonalization method. The numerical results obtained for plates in the form of a trapezium

and parallelogram are compared with the data obtained by other methods. The approach makes it

possible to calculate deflections of quadrangular plates of complex shapemade of anisotropicmaterials
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Introduction. Plates being considered are widely used as structural members in such fields as mechanical engineering,

instrument-making and construction. Due to the wide use of composite materials and diversity of shapes of structural members,

the set of appropriate problems to be solved becomes extremely large.

The methods and approaches to the practical analysis of the stress–strain state (SSS) of plates of different shapes have

been considered yet as far back as the last century. As a result, analytical solutions, including those in the form of expansions into

series, have been obtained for different fixation conditions, loadings, and such rather simple geometrical shapes as a circle or

square [1–3]. In other cases, the appropriate numerical methods taking into account the symmetry or possibility to reduce a

complex domain to a more simple one by the way of parametrization were developed in [6, 10]. Some questions relating to the

transformation of coordinates for static analysis of complex-shaped plates are considered in [7–9].

Schemes of the analysis based on the finite-element method are implemented in many specialized program packages.

They make it possible to numerically analyze the real subjects of complex shape but, however, have high requirements to

computing resources and leave many open questions about the adequacy of the models and the choice of their parameters.

The present paper proposes an approach that widens applicability of the discrete-orthogonalization and

spline-collocation methods [4] for the analysis of the SSS of quadrangular plates of complex shape. The approach is based on a

refined theory involving the straight-line hypothesis.

1. Problem Statement. Basic Equations. Let us analyze the SSS of a quadrangular plate ( , )0 0
1 2

� � � �x a x b of

thickness h. The equilibrium equations of the refined plate theory are expressed as follows [2]:

Q Q q
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0
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whereQ
1
andQ

2
are the shearing forces; M

1
, M

2
, and M

12
are the bending and twisting moments; q is the surface load.
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For the moments and shearing forces, elasticity relations are valid. They, as applied to an orthotropic plate whose axes

are aligned with the coordinate axes, take the form

M D D
1 11 1 12 2
� �� � , M D D

2 22 2 12 1
� �� � , M D

12 66 12
2� � ,

Q K
1 1 1
� � , Q K

2 2 2
� � ,

where �
1
, �

2
, and �

12
are the strains of the midsurface bending and twisting, which with

� �
1 1 1
�

,
, � �

2 2 2
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,
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w
,
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,

can be expressed in terms of angles of rotation of the surface element � �
1 2
, , angles of rotation of the normal 	 	

1 2
,

disregarding shear, and angles of rotation � �
1 2
, of the normal caused by shear. The stiffness coefficients K

i
and D

ij
are

determined by
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where E G
i ij i
, ,
 are the elastic and shear moduli and Poisson’s ratios, respectively.

Considering the elasticity relations and strains expressed in terms of the angles� �
1 2
, and plate deflectionw, the initial

equilibrium equations become

K K w K K w q
1 1 1 1 11 2 2 2 2 22
� �

, , , ,
� � � � � ,

D D D D K K w
11 1 11 12 2 12 66 1 22 66 2 12 1 1 1 1

0� � � � �
, , , , ,

� � � � � � ,

D D D D K K w
22 2 22 12 1 12 66 2 11 66 1 12 2 2 2 2

0� � � � �
, , , , ,

� � � � � � . (1.1)

The following boundary conditions at the edge x
1
�const are w � 0, �

1
0� , �

2
0� if clamped and w � 0, �

1
0

,1
� ,

�
2

0� if hinged. At the edge x
2

�const, the boundary conditions are similar.

The governing system of equations (1.1) for the deflection w and angles of rotation � �
1 2
, together with other

boundary conditions at the sides x
i
�const forms a two-dimensional boundary-value problem in a refined statement.

2. Basic Ideas of the Approach. Let us consider a domain in coordinates x
1
, x

2
, bounded by the sides of a convex

quadrangle and map it onto a normalized domain [ ], ] ]0 1 0 1
1 2

� � � �� � in a new coordinate system � �
1 2

(Fig. 1). Such

mapping is possible if

x T� � 
, (2.1)
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where x is a vector with components { , }x x
1 2

, 
 is a vector with components { , , , }1
1 2 1 2

� � � � . Note that the components t
ij
of the

matrix T depend on the geometry of the quadrangular plate. If the quadrangle apexes are at the points ( , ), ( , )x x x x
11 21 12 22

,

( , ), ( , )x x x x
13 23 14 24

, the components of the matrix T become:

t x
11 12

� , t x x
12 13 12

� � , t x x
13 11 12

� � , t x x x x
14 14 13 12 11

� � � � ,

t x
21 22

� , t x x
22 23 22

� � , t x x
23 21 22

� � , t x x x x
24 24 23 22 21

� � � � .

Considering relation (2.1) that describes the geometry of the quadrangle, we will represent the governing system of

equations (1.1) in new coordinates. To this end, we will introduce a vector f with 18 components

{ , , , , , , , , }
, , , , , ,

� � � � � � �
1 1 1 1 2 1 11 1 22 1 12 2 12

� w and corresponding 3�18matrix of coefficients S. Then, Eqs. (1.1) become

S f q� � , (2.2)

where q q� �{ , , }0 0 . For the nonzero components of the matrix S , we have

s K
12 1

� , s K
19 2

� , s K
116 1.

� , s K
117 2.

� ,

s K
21 1

� � , s D
24 11

� , s D
25 66

� , s D D
2 12 12 66.

� � , s K
2 14 1.

� � ,

s D D
36 12 66

� � , s K
37 2

� � , s D
3 10 66.

� , s D
3 11 22.

� , s K
3 15 2.

� � .

To determine the elements of the matrix

~

S , which is similar to S and consists of the coefficients of Eqs. (1.1) in the new

coordinate system, it is necessary, with transformation (2.1), to derive expressions for all the components of the vector f .Wewill

derive the relations for partial derivatives, using as an example, the deflection function w x x( , )
1 2

.

The first derivatives can be obtained from the system of the equations composed of the known expressions for a partial

derivative of a complex function (hereafter the derivatives with respect to �
i
are denoted by indices after semicolon):

w w x w x
; , ; , ;1 1 1 1 2 2 1

� � , w w x w x
; , ; , ;2 1 1 2 2 2 2

� � .

Its solution is

w Aw Bw
, ; ;1 1 2

� � , w Cw Dw
, ; ;2 1 2

� � , (2.3)

where A, B, C, D (expressions for � �
1 2
, ) are defined by

A x x x x x� �
2 2 1 1 2 2 1 2 2 1; ; ; ; ;

/ ( ), B x x x x x� � �
2 1 1 1 2 2 1 2 2 1; ; ; ; ;

/ ( ),

C x x x x x� � �
1 2 1 1 2 2 1 2 2 1; ; ; ; ;

/ ( ), D x x x x x� �
1 1 1 1 2 2 1 2 2 1; ; ; ; ;

/ ( ),

or in an explicit form:

A t t� �( ) /
24 1 23

� �, B t t� � �( ) /
24 2 22

� �,

C t t� � �( ) /
14 1 13

� �, D t t� �( ) /
14 2 12

� �, (2.4)

where � � �� � � � � �( ) ( ) (t t t t t t t t t t t t
12 24 22 14 1 14 23 24 13 2 12 23 22 13

).

The second partial derivatives can be determined using the first derivatives (2.3) and replacing the function w in the

right-hand side of (2.3) by either w
,1
or w

,2
:

w AA BA w AB BB w A w B w
, ; ; ; ; ; ; ; ;

( ) ( )
11 1 2 1 1 2 2

2

11

2

22
2� � � � � � � ABw

;12
,

w CC DC w CD DD w C w D w
, ; ; ; ; ; ; ; ;

( ) ( )
22 1 2 1 1 2 2

2

11

2

22
2� � � � � � � CDw

;12
,

w AC BC w AD BD w ACw BDw
, ; ; ; ; ; ; ; ;

( ) ( ) (
12 1 2 1 1 2 2 11 22

� � � � � � � AD BC w� )
;12

. (2.5)
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Consider a vector m with components { , , , , }
, , , , ,

w w w w w
1 2 11 22 12

, which are derivatives of the function w x x( , )
1 2

in

the initial coordinate system, a corresponding vectorm
*
with components{ , , , , }

; ; ; ; ;
w w w w w

1 2 11 22 12
in new coordinates, and a

transformation matrix L such that

m L m� �
*
. (2.6)

Deriving from (2.3) and (2.5) relations between the components ofm andm
*
, we determine the nonzero elements of the

transformation matrix L:

l A
11

� , l B
12

� , l C
21

� , l D
22

� ,

l AA BA
31 1 2

� �
; ;

, l AB BB
32 1 2

� �
; ;

, l A
33

2
� , l B

34

2
� , l AB

35
2� ,

l CC DC
41 1 2

� �
; ;

, l CD DD
42 1 2

� �
; ;

, l C
43

2
� , l D

44

2
� , l CD

45
2� ,

l AC BC
51 1 2

� �
; ;

, l AD BD
52 1 2

� �
; ;

, l AC
51

� , l BD
54

� , l AD BC
55

� � .

The expressions for A, B, C, and D are given in (2.4). Their derivatives A
;1
, A

;2
, …, D

;2
take the following form:

A t t t t t t t
;

( ( )( )) /
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2
� � � �� � � , A t t t t t t

;
( )( ) /
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2
� � � �� � ,

B t t t t t t
;

( )( ) /
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2
� � �� � , B t t t t t t t

;
( ( )( )) /

2 24 24 2 22 14 23 24 13

2
� � � � �� � � ,

C t t t t t t t
;

( ( )( )) /
1 14 14 1 13 12 24 22 14

2
� � � � �� � � , C t t t t t t

;
( )( ) /

2 14 1 13 14 23 24 13

2
� � �� � ,

D t t t t t t
;

( )( ) /
1 14 2 12 12 24 22 14

2
� � � �� � , D t t t t t t t

;
( ( )( )) /

2 14 14 2 12 14 23 24 13

2
� � � �� � � .

By analogy with the vector f for the initial coordinate system, we introduce a vector f
*
with 18 components {�

1
,�

1 1;
,

�
1 2;

, �
1 11;

, �
1 22;

, �
1 12;

, �
2
, …, w

;12
} and transformation matrix P such that

P f f� �
*

. (2.7)

The components of the vectors f and f
*
include derivatives of three functions, relation (2.6) applying to each of them.

Let us introduce the following notion: O is a 5�5 zero matrix; o
c
is a zero column vector of five components; o

r
is a zero row

vector of five components. Then the matrix P becomes:

P

o o o

o L o O o O

o o o

o O o L o O

o o o

o O

r r r

c c c

r r r

c c c

r r r

c

�

1 0 0

0 1 0

0 0 1

o O o L
c c

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

.

Considering (2.7), we write Eqs. (2.2) in the new coordinate system as

S P f q� � �( )
* *

or

~
* *

S f q� � , (2.8)
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where f
*
and q

*
are analogs of the vectors f and q in the new coordinate system while the nonzero components of the matrix

~

S S P� � are

~
s s l
12 12 11

� ,
~
s s l
13 12 12

� ,
~
s s l
18 19 21

� ,
~
s s l
19 19 22

� ,
~

. . .
s s l s l
114 116 31 117 41

� � ,

~

. . .
s s l s l
115 116 32 117 42

� � ,
~

. . .
s s l s l
116 116 33 117 43

� � ,
~

. . .
s s l s l
117 116 34 117 44

� � ,

~

. . .
s s l s l
118 116 35 117 45

� � ,
~
s s
21 21

� ,
~
s s l s l
22 24 31 25 41

� � ,
~
s s l s l
23 24 32 25 42

� � ,

~
s s l s l
24 24 33 25 43

� � ,
~
s s l s l
25 24 34 25 44

� � ,
~
s s l s l
26 24 35 25 45

� � ,
~

.
s s l
28 2 12 51

� ,

~

.
s s l
29 2 12 52

� ,
~

. .
s s l
2 10 2 12 53

� ,
~

. .
s s l
2 11 2 12 54

� ,
~

. .
s s l
2 12 2 12 55

� ,
~

. .
s s l
2 14 2 14 11

� ,

~

. .
s s l
2 15 2 14 12

� ,
~
s s l
32 36 51

� ,
~
s s l
33 36 52

� ,
~
s s l
34 36 53

� ,
~
s s l
35 36 54

� ,
~
s s l
36 36 55

� ,

~
s s
37 37

� ,
~

. .
s s l s l
38 3 10 31 3 11 41

� � ,
~

. .
s s l s l
39 3 10 32 3 11 42

� � ,
~

. . .
s s l s l
3 10 3 10 33 3 11 43

� � ,

~

. . .
s s l s l
3 11 3 10 34 3 11 44

� � ,
~

. . .
s s l s l
3 12 3 10 35 3 11 45

� � ,
~

. .
s s l
3 14 3 15 21

� ,
~

. .
s s l
3 15 3 15 22

� .

Equations (2.8) represent the governing system of equations (1.1) in the coordinate system � �
1 2

and describe geometry

of the quadrangular plate. Since the initial domain in the form of an arbitrary quadrangle in the new coordinates transforms into a

square, the boundary-value problem can be solved using the discrete-othogonalization and spline-collocation methods.

It should be noted that in solving the problem under the boundary conditions that include derivatives of the deflection

function w and angles � �
1 2
, (hinged or free edge), it is necessary to take into account the changes caused by passing, in

accordance with (2.6), to the new coordinate system. Particularly, if the sides �
1
�const are hinged, the above boundary

conditions (see Sec. 1) take the formw � 0, A B� �
1 1 1 2

0
; ;

� � ,�
2

0� with similar corrections for�
2
at the sides �

2
�const. It is

assumed that expressions for A and B are similar to those in (2.4).

3. Problem-Solving Methods. To validate the approach proposed, we will use the well-known

discrete-othogonalization and spline-collocation methods [1, 2, 4]. Since the governing system of equations was derived within

the framework of the refined theory of plates and the equations include the partial derivatives of the searched functions up to the

second order, the spline-approximation will be carried out using cubic B-splines. Then, we will search the solution for the

deflection function w x x( , )
1 2

, for example, in the form

w x x w x x
i i

i

N

( , ) ( ) ( )
1 2 1 2

0

�

�

� � , (3.1)

where w
i
are the unknown functions, �

i
are linear combinations of cubic B-splines. The approximating functions �

i
are

calculated using the boundary conditions at the edges as follows [2]:

� � �
0 2 11 3

1

12 3

0
( )x B B� �

�
, � � �

1 2 3

1

21 3

0

22 3

1
( )x B B B� � �

�
,

�
i

i
x B( )
2 3

� , i N� �2 2, ,� , � � �
N

N N N
x B B B

�

� �
� � �

1 2 3

1

21 3 22 3

1
( ) ,

� � �
N

N N
x B B( )
2 11 3

1

12 3
� �

�
.

The spline-functions B
i

3
are constructed on a uniform mesh of nodes �with spacing x x

i i

2

1

2

�
� ; the coefficients �

ij
and

�
ij
with notation

A
�

� �

� �
�
�

�
�

�

�
 

11 12

21 22

, A
�

� �

� �
�
�

�
�

�

�
 

11 12

21 22

,

are equal to:
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A A
� �

� �
�

�

�

�
�

�

�
 

4 1

1 2 1/

if the edges x
2

�const are clamped and

A A
� �

� �

�

�

�
�

�

�
 

0 1

1 2 1/

if the edges are hinged.

In order to increase the accuracy of the approximation, we choose collocation points within the intervals between mesh

nodes x x
i i

2

2

2

2 1
,

�
as 


2 2

2

1 2

2 1

2

2

i

i i i
x t x x� � �

�
( ), 


2 1 2

2

2 2

2 1

2

2

i

i i i
x t x x

�

�
� � �( ), where t

1
and t

2
are the roots of the second-order

Legendre polynomial on the segment [0; 1], i = 0, 1, …, n.

With (3.1), the initial two-dimensional boundary-value problem reduces to a one-dimensional one for the system of

ordinary high-order differential equations.

4. Calculated Results. To test the approach proposed, we will analyze the SSS of a rectangular plate using the

numerical method of discrete orthogonalization for 500 points of integration. To decrease the dimension of the initial

two-dimensional boundary-value problem, wewill employ the spline-approximaionmethodwith 20 pairs of collocation points.

Consider a rectangular isotropic plate (Fig. 2) with sizes a b� �2 3, , h � 0.1 for two variants of fixation of edges:

clamped and hinged ones. The surface load q q�
0
is constant and uniformly distributed. This makes it possible to compare the

solutions of the boundary-value problem obtained in the coordinates x x
1 2
, for system (2.2) and in the coordinates � �

1 2
, for

system (2.8). In the latter case, the problem was solved using the proposed transformation to the normalized domain [ ]0 1
1

� �� ,

[ ]0 1
2

� �� with the plate geometry (Fig. 2) being shown in the coefficients of the governing system of equations.

The physical parameters of the plate, mesh dimensions, and the number of integration points are the same for both

variants. Since the goal of the comparison is to validate the numerical results, the absolute values of the parameters are of

secondary importance.

As a result, the values of the deflection w in the form � /w wE q�
0
in the plate center that have been get for the scheme

with direct description of the domain [ ]0 2
1

� �x , [ ]0 3
2

� �x being studied have coincided up to the 11th sign with those

obtained by the scheme proposed above with the transformation to[ ]0 1
1

� �� , [ ]0 1
2

� �� . The discrepancy in the last digits may

be due to the computer roundoff error.

To evaluate the quality of describing complex-shaped objects, we will solve numerically some problems for a number

of plates in the form of a parallelogram and trapezium with clamped edges. The plates are acted upon by a uniformly distributed

load q q�
0
. The shape of some of them and form of the surface of the bending function �ware shown in Figs. 3–6 (plate thickness

h = 0.1, Poisson’s ratio is 0.3). The coordinates of the apexes of the plate-forming quadrangles are summarized in Table 1. In

calculating, we have used 30 pairs of collocation points for splines and 1500 integration points for the discrete -orthogonalization

method.

The results obtained are compared with data presented in [6], where the above plates were considered within the

framework of the classical Kirchhoff–Love theory. In problem solving, the discrete-orthogonalization method with parameters

(the number of collocation points for splines and the number of integration points) different from those in the present work were

used. To outline the complex shape, the authors have employed, depending on the plate shape, different transformations such as

transition to three-angular or oblique coordinates. The results obtained with the finite-element method (FEM) are presented in

the same place.
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The values of the maximum deflection �w obtained with the above scheme using the transformation (transl. 1�1), data

from [6] for the discrete-orthogonalization (d.ort.), and finite-element (FEM) methods as well as the associated values of the

relative distinction, i.e., divergence of the results, are collected in Table 2. The data calculated are in a good agreement: the

relative difference ! in the values of the deflection �w for the most objects being studied is within the limits of several percents.

The data in Figs. 3–6 indicate that the surfaces of the deflection function w x x( , )
1 2

have the similar shape, which varies

in accordance with the geometrical parameters of the plates. The values of the maximum deflection (Table 2) decrease with the

object area subject to the load q.

Since the results obtainedwith different methods are similar, we can conclude that the approach proposed for describing

the geometry of quadrangular complex-shaped plates can be employed for solving static problems with the discrete-

orthogonalization and spline- collocation methods. In spite of some distinctions in the theory applied and in the methods and

calculation parameters, the above schememakes it possible to obtain results being in agreement with those of other authors [6].

As advantages of the approach proposed, we can note a larger class of potentially solvable problems that have not been

considered earlier due to the complexity in the description of the domain being studied. The discrete-orthogonalization and

spline-collocation methods make it possible to solve the problems for plates made of orthotropic materials including those with

variable thickness and acted upon by differently distributed loads.

Conclusions. The present paper proposes an approach that widens the capabilities for analyzing the SSS of

quadrangular complex-shaped plates with the discrete-orthogonalization and spline-collocation methods. The calculation

scheme based on the transformation of the coordinates was tested by comparing numerical results with those obtained by direct

332

Fig. 3

14000

Fig. 4 Fig. 5 Fig. 6

74000

44000

103000
500

1600

2800

3900

40500

95200

67800

13200

1800

5800

9800

13800

TABLE 1

Object x
11

x
21

x
12

x
22

x
13

x
23

x
14

x
24

1 2.59 9.66 0 0 10.00 0 12.59 9.66

2 7.07 7.07 0 0 10.00 0 17.07 7.07

3 1.29 4.83 0 0 10.00 0 11.29 4.83

4 3.54 3.54 0 0 10.00 0 13.54 3.54

5 47.15 4.13 47.15 –4.13 57.15 –5.00 57.15 5.00

6 8.66 2.32 8.66 –2.32 18.66 –5.00 18.66 5.00

7 52.15 4.56 52.15 –4.56 57.15 –5.00 57.15 5.00

8 8.74 3.18 8.74 –3.18 13.74 –5.00 13.74 5.00



solving of the problem in the case of a rectangular domain. The results obtained with the approach developed are in a good

agreement with literature data.
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TABLE 2

No. �w, trans. 1�1 �w, d. opt. �w, FEM !, d. opt. !, FEM

1 118160 122400 123100 3.46% 4.01%

2 40205 41060 41460 2.08% 3.03%

3 15077 15150 15180 0.48% 0.68%

4 4483 4510 4505 0.60% 0.49%

5 108889 112400 113000 3.12% 3.64%

6 59309 60960 60760 2.71% 2.39%

7 17128 17030 17120 0.58% 0.05%

8 15628 15630 15650 0.01% 0.14%
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