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An analytical-numerical method of solving boundary-value static problems for transversally isotropic

infinitely long noncircular cylindrical shells of variable thickness is formulated and developed. The

system of basic equations is derived using the relations of the refined theory of deep shells with low shear

stiffness. Expressions for internal power factors and generalized displacements of closed and open

cylindrical shells with arbitrary cross-section acted upon by surface and linear forces are presented. The

integrals appearing in these expressions are calculated with the method of trapezoids. The numerical

results for a closed shell of elliptic cross-section under uniform internal pressure presented in the form of

tables and plots are analyzed
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Introduction. Noncircular cylindrical shells, which are used in different fields of technology, industrial and civil

engineering, in a number of cases are more strong, stable and light in comparison with shells of circular cross-section.

Due to variability in radius of curvature of cross-sections, the solution of boundary-value problems for noncircular

shells involves severe mathematical difficulties. The exact analytical solutions of the given problems have been obtained only

for an infinitely long cylindrical shell with oval cross-section [12] and cross-section whose curvature varies by the quadratic law

[4]. Because of this, in analyzing noncircular shells, numerical, approximate analytical, and experimental methods are widely

used that makes it possible to study the stress-strain state (SSS), stability, and vibrations of oval and elliptic cylindrical shells of

constant and variable thickness [1–3, 7, 10, 11, 13–18].

In numerical solving the boundary-value problems for infinitely long closed cylindrical shells with a noncircular

cross-section, we meet with so-called locking. The computational phenomenon of membrane locking has been demonstrated by

examples of the variational-difference and finite-element methods presented in [2] and [7], respectively. From the point of view

of locking, two-dimensional deformation of a noncircular cylindrical shell with fixed ends presents the simpler problem due to

decrease in bends as a result of reinforcing action of ends.

In what follows, we will formulate the statement of the static problems for an infinitely long noncircular cylindrical

shell of variable thickness with allowance for transversal shear strains and develop the analytical-numerical procedure, free of

membrane and shear locking, for numerical solving of the above class of problems. We will consider, as an example, a closed

elliptical shell under uniform normal pressure.

1. Problem statement. Basic relations. Let us consider an infinitely long cylindrical shell of arbitrary cross-section

made of a transversally isotropic material and acted upon by surface and linear forces. Assume that the directrix of the shell

cross-section varies smoothly while the shell thickness h along the generatrix is constant and continuously varies along the

directrix. The load applied to the shell is uniformly distributed along the generatrix. Under such conditions, the displacements,

strains, and stresses in each cross-section will be the same while all searched values will vary along the directrix only.
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To describe the shell, we will use a curvilinear orthogonal coordinate system ( )s, ,� � aligned with the lines of principal

curvature (Fig. 1). Here s and � are the lengths of the generatrix and normal to the coordinate surface (� � 0), � is the angle

between the normal to the coordinate surface and vertical axis.

We will present the coordinate surface of the shell in the global Cartesian coordinate system ( )X Y Z, , , whose OX-axis

is parallel to the generatrix (Fig. 1). Then the cross-section plane ( )Y Z, in a parametric form will be described as Y Y� ( )� ,

Z Z� ( )� , � � �
1 2
� � .

In studying the SSS of long nonthin cylindrical shells with noncircular cross-section, the equations of the refined shell

theory, which is based on the straight-line hypothesis (the transverse shear strains are taken into account), are considered as

initial ones. In this case, kinematic equations take the following form [1]:
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where � � �, , are the strain components of the shell; u w, are the tangential displacement and bending of the shell mid-surface;	 is

the angle of rotation of the normal; r is the cross-sectional radius curvature.

In accordance with Hooke’s law, the internal forces and moment are related to the strain components as follows:
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whereN andQ are the tangential and shearing forces;M is the bendingmoment;D D D
N M Q
, , are the stiffness characteristics of

the shell; E and�are the elastic modulus and Poisson’s ratio in the isotropy plane;G
�


is the shear modulus in the cross-sectional

plane; k is a coefficient depending on how the shear is distributed across the thickness andmean value of the shear is determined.

The equilibrium equations are
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where q q
�
,



are the components of the surface load.
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2. General Solution for a Noncircular Cylindrical Shell of Variable Thickness. From the two first equations in

(1.3), we obtain the following equation to determine the transverse force:

d Q

d

Q rq

d rq

d

2

2
� �

�
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( )

. (2.1)

The characteristic equation k
2

1 0� � of the associated homogeneous equation has roots k i
1 2,

� � . Because of this, the

function Q C C
*

cos sin� �
1 2

� � yields the general solution of a homogeneous equation. The partial solution Q
**

of the

inhomogeneous equation (2.1) should be found with the method of variation of arbitrary constants. In this case, we arrive at the

general solution of Eq. (2.1) in the form
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The tangential force can be found from the second equilibrium equation in (2.2):

N
dQ

d
rq Ñ C q dx q dx� � � 
 � 
 
 �


 � �
�

� � � �

� �

1 2 1

0

2

0

sin cos sin cos ( )| cosrq

 0

� . (2.3)

From the third equilibrium equation in (1.3), we determine the moment

M rQdx Ñ M Ñ� � � ��
0

3 3
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*
, M rQdx

*
� �

0

�

. (2.4)

Using the kinematic relation for the bending strain (1.1), whose value ( / )� �M D
M

is calculated with (1.2), we arrive

at a formula for the angle of rotation of the normal:
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Then the tangential displacement follows from the second-order linear inhomogeneous differential equation with

constant coefficients
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where � � N D
N

/ , � �Q D
Q

/ .

The general solution of equation (2.6) is

u Ñ C f dx f dx r� � � � 
� �5 6 1

0

2

0

0
cos sin cos sin sin� � � � �� �

� �
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1
� 
 	 
� �cos ( )sin , � �f r x x

2
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With w rN D u
N

� 
 �/
�
, we obtain an expression for the deflection:
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w Ñ C f dx f dx r� 
 � 
 �� �5 6 1

0

2

0

0
sin cos sin cos cos� � � � �� �
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. (2.9)

In solving specific problems, the integration constants (C C C
1 2 6
, , ,� ) are determined from the appropriate boundary

conditions.

3. Closed Infinitely LongCylindrical Shell with Noncircular Cross-Section.Assume that the cross-section of a long

cylindrical shell closed along the directrix (
 � �� � �) has twomutually perpendicularOY- andOZ-axes of symmetry. The shell

is acted upon by two pairs of antipodal transverse forces P
y
�const and P

z
�const uniformly distributed along the generatrices

and by normal surface forces q q

 

� ( )� applied symmetrically with respect to the XOY- and XOZ-planes (Fig. 2).

Since the cross-sectional geometry and force distribution are symmetrical, we will consider a quarter ( / )0 2� �� � of

the shell cross-section as a design model and specify the following boundary conditions at the points � � 0and � �� / 2:
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The stress–strain state of the shell is described by the system of equations (1.1)–(1.3), whose general solution is

presented in Sec. 2. The integration constants are determined using the boundary conditions (3.1).

At first, we define the integration constantsC
1
andC

2
from the boundary conditions for transverse forcesQ P

z
( ) /0 2�
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y
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For the internal forces, which satisfy the prescribed boundary conditions (3.1), we have:
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Next, using boundary conditions	 �( )0 0and	 �( / )� 2 0, we find the constantsC
3
andC

4
:
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Then, using formulas (2.4) and (2.5), we define the moment and angle of rotation of the normal:
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From the boundary conditions for the tangential displacement u( )0 0� and u( / )� 2 0� , we obtain the values of the

constantsC
5
andC

6
:
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Substituting the expressions for C
5
and C

6
into (2.7) and (2.9) and performing some transformations, we obtain

formulas for the tangential displacement and deflection:
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4. Open Long Cylindrical Shell with Noncircular Cross-Section and Hinged Longitudinal Edges. Let us study the

strain state of an open (along a directrix ( )
 � �� � � ) long cylindrical shell with arbitrary cross-section and hinged longitudinal

edges ( )� �� � . The shell is subject to normal q q
� �

�� ( )and tangential q q
� �

�� ( )surface forces as well as a transverse force

P �const applied at the apex (Fig. 3) and uniformly distributed along the generatrix.

The cross-section and load are symmetrical with respect to the vertical plane XOZ. This makes it possible to consider

only half ( )0 � �� � the shell. Let u w M� � � 0at the edge � �� and u �	 � 0andQ P� / 2on the edge � � 0.

Determining the integration constant C P
1

2� / from the boundary condition Q P( ) /0 2� , we represent the internal

forces (2.2) and (2.3) as follows:

Q C Q� �
2 1
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2 1
cos � , (4.1)

whereC
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is the unknown constant of integration;
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Substituting the relation for transverse force (4.1) into the expression for moment (2.4), we arrive at the formula
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, (4.3)

where
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Let us express the integration constantC
3
that appears in (4.3) in terms of the constantC

2
using the boundary condition

M ( )� � 0:

C C l M
3 2 0 0
� 
 
( ) ( )� � . (4.5)

Then the expression for the moment becomes:
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2 1 1

, (4.6)

where

M M M
1 0 0
� 
 ( )� , l l l

1 0 0
� 
 ( )� . (4.7)

In accordance with the boundary condition	 �( )0 0, the constantC
4
appearing in (2.5) is equal to zero.

With (2.5) and (4.6), the expression for the angle of rotation of the normal becomes:
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The boundary condition for the tangential displacement at the shell apex ( ( ) )u 0 0� is satisfied ifC
5
= 0.

Satisfying the boundary conditions at the longitudinal edge � �� (u( )� � 0 and w( )� � 0), we arrive at a system of

equations for the remaining constantsC
2
andC

6
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Solving this system, we obtain:
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At first, we determine the integration constantC
2
from the equation f dx

1

0

0

�

� � :
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Next, we find values N Q M, , ,	, andC
6
by formulas (4.1), (4.6), (4.8), and (4.11).

Using values of the integration constants, we reduce Eqs. (2.7) and (2.9) for the shell displacements to the following

form:

u f dx f dx� 
� �cos sin� �

�

�

�

1

0

2
,

w f dx f dx� �� �sin cos� �

�

�

�
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0

2
. (4.13)

5. Open Long Noncircular Cylindrical Shell with Clamped Longitudinal Edges. Consider an infinitely long

cylindrical shell, open along the directrix, with a noncircular cross-section. The longitudinal edges of the shell are clamped. The

shell is made of a transversely isotropic material and subject to surface q q
� �

�� ( ) and q q
� �

�� ( ) and linear forces P �const

(Fig. 4).

Taking into account the geometrical and force symmetry with respect to the vertical plane XOZ, we will restrict our

calculations to the half the shell (0 � �� �). Assume that the edge � �� is clamped (u w� �	 � 0), while the edge � � 0is under

mixed boundary conditions (u �	 � 0andQ P� / 2).

It should be noted that initial equations (equilibrium, constitutive, and kinematic) are the same as in the previous

problem. Because of this, in calculating the internal forcesN,Q, momentM, angle of rotation of the normal	, and displacements

u w, of the shell, we can use the formulas presented in Sec. 4. The differences are held only in determining the integration

constantC
3
(4.5) and components M

1
, l
1
(4.7) defined as follows:

(i) the angle of rotation of the normal is determined by substituting (4.3) into (2.5):
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D
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(ii) the constantC
4

0� is determined from the condition	 �( )0 0and the constantC
3
from the condition	 �( )� 0:

C
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D
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. (5.2)
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(iii) considering (5.2), the components of the moment appearing in (4.6) take the form

M M
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, l l
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. (5.3)

6. Long Cylindrical Panel with Noncircular Cross-Section andOne Longitudinal Edge Being Clamped.Consider

an open infinitely long cylindrical shell with arbitrary cross-section whose longitudinal edge � �� is clamped while the edge

� � 0 is subject to a shearing force P �const. Moreover, the panel is subject to normal q q
� �

�� ( ) and tangential q q
� �

�� ( )

surface forces (Fig. 5).

The general solution of the problem is described by Eqs. (2.2)–(2.5), (2.7), (2.9). The integration constants are

determined from the following boundary conditions:

Q P( )0 � , N M( ) ( )0 0 0� � , u w( ) ( ) ( )� � �� �	 � 0. (6.1)

Substituting solutions (2.2)–(2.5), (2.7), (2.9) into (6.1), we arrive at a system of six equations:
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The constantsC C
1 6

 can be determined from (6.2):

C P
1
� , C rq

2 0
� 




( )| , C

3
0� , C

rM

D
dx

M

4

0

� 
�

�

, C f dx
5 1

0

� 
�

�

, C
rN

D
f dx

N

6

0

2

0

�
�

�

� 
 �

�

. (6.3)

As a result, we obtain the following expressions for the internal force factors and generalized displacements of the

panel:

Q P q dx q dx� � 
� �cos cos sin� � �

� �

1

0

2

0

, N P q dx q dx� 
 
 
� �sin sin cos� � �
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1

0

2

0

,
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7. Evaluation of the Integrals Appearing in the Expressions for Internal Forces and Generalized Displacements.

Because the integrands that appear in the formulas for internal forces, bending moment, angle of rotation of the normal,

tangential displacement, and shell deflection are continuous, the integrals in these formulas exist, but the primitive functions for

the most of the cross-sections of the cylindrical shell cannot be expressed in terms of elementary functions. For this reason, these

integrals should be evaluated numerically with the trapezoidal rule:

g x dx x
g a g b

g x g x g x

a

b

n
( )

( ) ( )
( ) ( ) ( )� (

�
� � � �

"

#
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%

&
'


)
2

1 2 1
� , (7.1)

where x a i x
i
� � ) are the integration nodes that divide the segment [ , ]a b into n equal parts of length )x b a n� 
( ) / .

Note that the integrand in the trapezoidal formula can be defined either analytically or by a table collecting its values at

the integration nodes.

8. Validation of the Analytical-Numerical Approach. To estimate the efficiency of the method developed, we will

solve a number of test problems and compare the results obtained with the exact solution. As an example, we will consider the

boundary-value problem on the SSS of a closed infinitely long cylindrical shell with oval cross-section. The shell is acted upon

by uniform internal pressure q �const.

Let us assume that the shell cross-section has two symmetry axes and is described parametrically as

Y r Z r� �
�

�
�

�

�
� �

"

#
$

%

&
'

� 

�

�
�

�

�
�0 0

1
2 6

3 1
2

*
�

*
�

*
sin sin , cos �

*
��

"

#
$

%

&
'

6
3cos ,

r
a b

0
2

�
�

, * �



�
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a b
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, 
 � �� � �, (8.1)
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TABLE 1

SSS �
~
�

Analytical-numerical solution
Exact

solution
n = 10 n = 25 n = 50 n = 100 n = 200

~
+

0

0.5 108.056 109.689 109.922 109.981 109.995 110

–0.5 –92.122 –93.699 –93.925 –93.981 –93.995 –94

� � 2

0.5 –124.470 –125.388 –125.939 –125.985 –125.996 –126

–0.5 148.453 149.354 149.938 149.984 149.996 150

~
w

0 0 3.99900 4.09961 4.11413 4.11776 4.11867 4.11898

� � 2 0 –2.84891 –2.87974 –2.89762 –2.89915 –2.89954 –2.89966

)
max

, % 2.00 0.69 0.12 0.03 0.008 0



where a and b are the major and minor semi-axes of the cross-section.

The curvature radius of the oval is calculated by

r r� �
0
1 2( cos )* � . (8.2)

The input data in the case of the constant thickness h are: r h
0
/ � 10, a b/ � 1.5, E � 38.4 GHz, G

�

� 0.2 GPa, � �

0.1933, k � 5/6.

Table 1 summarizes values of the dimensionless deflections
~

/w wE hq�
0

(E
0

10� MPa) and stresses
~

/+ +� q

( / /+ �� �N h M h
3
) on the outside (

~
/� �� �h 0.5) and inside (

~
� � –0.5) shell surfaces at two points of the cross-sectional

contour (at the ends of the minor and major semi-axes). The data are obtained with the method developed (analytical-numerical

solution) for the number n of parts into which the integration segment [ , / ]0 2� is divided. The results of the analytical (exact)

solution [12] are presented in the same table.

Analysis of Table 1 reveals that the maximum difference ()
max

) between the exact solution and the

analytical-numerical solutions obtained with the integration interval divided into 10, 25, 50, 100, 200 parts does not exceed 2.00,

0.69, 0.12, 0.03, 0.008%, respectively.

Thus, the analytical-numerical method developed for solving boundary-value problems for infinitely long noncircular

cylindrical shells eliminates entirely the adverse locking effect. This increases considerably the accuracy of solutions.

9. Numerical Results and Their Analysis.

9.1. Noncircular Cylindrical Shell of Constant Thickness. Consider an infinitely long closed cylindrical shell of

constant thickness with elliptic cross-section. The shell is acted upon by uniform internal pressure q.

The cross-section of the coordinate surface of the shell is defined parametrically as

Y
a

a b

�

�

2

2 2 2 2 1 2

sin

( sin cos )
/

�

� �

, Z
b

a b

�

�

2

2 2 2 2 1 2

cos

( sin cos )
/

�

� �

,

where a and b are the ellipse semi-axes.

The curvature radius of the ellipse is calculated as follows:
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TABLE 2

K SSS �
~
�

a b/

1.0 1.2 1.4 1.6 1.8 2.0

1; 2
~
+

0

0.5 10 61 100 130 155 175

–0.5 10 –43 –83 –115 –141 –161

� � 2

0.5 10 –46 –97 –142 –182 –219

–0.5 10 68 120 166 208 245

1
~
w

0 0.0 0.0091 0.6831 1.3210 1.9103 2.4485 2.9380

� � 2 0.0 0.0091 –0.5568 –0.9409 –1.2018 –1.3783 –1.4960

2
~
w

0 0.0 0.0091 0.3716 0.7201 1.0448 1.3432 1.6157

� � 2 0.0 0.0091 –0.2876 –0.4820 –0.6084 –0.6893 –0.7395



r
a b

a b

�

�

2 2

2 2 2 2 3 2
( sin cos )

/
� �

.

The input data are: r h
0
/ � 10, E � 38.4 GPa,G E

�

� 0005. , � � 0.3, k � 5/6.

Values of the dimensionless deflections
~

/w wE hq� 10
4

and stresses
~

/+ +� q on the outside (
~
� � 0.5) and inside (

~
� �

–0.5) surfaces of the shell at the ends of minor and major semi-axes (� � 0 and � ��� 2) are collected in Table 2. The data are

obtained for a number of aspect ratios (a b/ �1.0, 1.2, 1.4, 1.6, 1.8, 2.0) and two values ofK:K = 1 (Timoshenko’s model) andK

= 2 (Kirchhoff–Love model).

An analysis of the results obtained reveals that the deflections in closed elliptical shells subjected to uniform internal

pressure are maximum at the end (� � 0)of the minor semi-axis. Allowing for the strains of transverse shear (K = 1) results in an

increase of maximum deflections compared with the Kirchhoff–Love model (K = 2). At a b/ = 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, the

maximum deflection increases by 0, 84, 83, 83, 82, 82%, respectively.

The shell with elliptical cross-section acted upon by internal pressure at the above aspect ratios tends to the circular

form that results in occurrence of deflections with dissimilar signs at the points � � 0and � �� / 2.

The results obtained show that stresses in closed shells are maximum at the end of the major semi-axis on the inside

surface of the shell. The stresses obtained with both models (K = 1 and 2) are similar.

The maximum values of all the SSS components considerably increase with deviation of the cross-section from circular

shape (with increase in a b/ ). Thus, in calculations with allowance for transverse shear strains at a b/ = 2.0, the maximum

stresses increase by a factor of 24.5, whereas the maximum deflection by a factor of 323.

9.2. Noncircular Cylindrical Shell with Variable Thickness. Consider a closed elliptical cylindrical shell with

thickness varying along the directrix. The shell is subject to uniform normal pressure q �const. The shell thickness varies as

h h� �
0
1 2( cos ), � so that the weight of the shell remains unchanged with variation in the parameter , [1].

Let us study how the variation in the shell thickness influences the distribution of the deflection and stresses along the

directrix while its weight remains constant if r h
0 0
/ � 15, a b/ � 2, E � 38.4 GPa,G E

�

� 0005. , � � 0.3, k � 5/6, , � 0, �0.187,

�0.3, �0.5.

Figures 6–8 demonstrate the distribution of the dimensionless deflections
~

/w wE h q� 10
4

0
and stresses on the outside

(
~

)+
�

and inside (
~

)+



surfaces of the shell along the directrix (
~

0 1� �� ,
~

/ )� � �� 2 depending on the thickness (, � 0, �0.187,

�0.5).

Table 3 summarizesmaximum relative stresses
~
max

+ and deflections
~
max

w for a number of values of the coefficient,.

The data presented in Fig. 6 and Table 3 show that the deflections are maximum for all values of,at the end (� � 0)of

the major semi-axis, i.e., the maximum deflection increases with the thickness in the vicinity of the apex of the minor axis of the

ellipse and at , � –0.5 exceeds the same value for the shell with constant thickness ( ), � 0 by a factor of 1.94. Increase in the

thickness in this region (, � 0.187, 0.3, 0.5) results in a negligible decrease of the maximum deflection.
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Fig. 6
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As is seen from Figs. 7 and 8 and Table 3, the stresses peak on the inside surface of the shell in the section � �� / 2at, �

0, 0.187, 0.3, 0.5, on the outside surface in the section � � 0at, �–0.3, –0.5, on the inside surface in the section � �� / 2and the

outside surface in the section � � 0at , � –0.187, i.e.,
~ ~

( )
~

( )
max

+ + �� +� � �

 �

2 0 450. Therefore, at , � 0.187, �0.3, �0.5, the

stresses are maximum in sections with minimum thickness.

Applying the minimax criterion [9], which minimizes the maximum stress, to the data in Table 3, we can conclude that

the thickness variation law (9.3) is optimal at , � –0.187.

Considering the shell thickness at , � –0.187 as a reference point, we see that the maximum stress increases with

decrease in the thickness in the vicinity of the major axis (, �0, 0.187, 0.3, 0.5) or in the vicinity of the minor semi-axis (, �–0.3,

–0.5) and exceeds the stress for the shell with optimal thickness by 60% at, �–0.5 and by 79% at, �0.5, the weight of the shell

remaining constant.

Thus, by varying the shell thickness, it is possible to control the distribution of the SSS components along the directrix

with the weight being unchanged.

Conclusions. We have developed an analytical-numerical method to solve linear elastic static problems for

transversally isotropic long cylindrical shells with noncircular cross-section. The method, based on analytical and numerical

integration, takes into account transverse-shear strains, is free of locking, and ensures high accuracy of the results. Using the

method, we have studied how the aspect ratio of the cross-section, the transverse-shear strains, and thickness influence the

stress–strain state of a closed elliptical cylindrical shell under uniform normal pressure.

In future, it would be of interest to study the deformation of noncircular cylindrical shells either of discrete-variable

thickness or reinforced with ribs taking into account the nonlinear properties of a material and features of their deformation [5, 6,

8, 9].
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Fig. 7 Fig. 8
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TABLE 3

SSS

,

–0.5 –0.3 –0.187 0 0.187 0.3 0.5

~
max

+ 721 513 450 542 648 713 807

~
max

w 21.623 15.001 13.059 11.137 10.074 9.638 8.967
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