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The evolution of a vertically polarized plane transverse wave (SV-wave) propagating in a nonlinear

elastic medium is analyzed. The deformation process is described by the Murnaghan model, where the

cubic nonlinearity is taken into account. Two approximate approaches are used and the solutions of the

corresponding nonlinear wave equations are found for the first two approximations. Numerical

examples are shown and commented
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Introduction. The subject of this study is a vertically polarized plane transverse wave (SV-wave) propagating in a

nonlinear elastic material whose deformation is described by the Murnaghan model [1–4]. The motion of this wave is set by a

nonlinear wave equation that takes into account quadratic and cubic nonlinearities [8, 10, 11]:
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Equation (1) has been studied in detail for harmonic wave. The cases of quadratic (Eq. (2)) and cubic (Eq. (3))

nonlinearities have been considered:
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If only an SV-wave has been excited in the material (i. e., P-wave and SH-wave are not excited), then Eqs. (2) and (3)

are become simpler:
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Finally, Eq. (4) becomes linear, while Eq. (5) is still nonlinear. This is usually given as a fact that, in the context of

quadratic nonlinearity, the SV-wave does not generate itself (is not self-excited) and the wave profile evolution cannot be

described, while the description of the self-excitation of the wave and the wave profile evolution is possible in the context of

cubic nonlinearity.

The cases of non-harmonic profiles are considered only for P-waves [2–5, 9–12].
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2. SV-wave with initial Gaussian profile. Let only an SV-wave be excited. Then, its motion can be described by cubic

nonlinear wave equation (5). Let us preset the initial profile in the form of Gaussian function:
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Let us suppose that the initial non-periodic profile (6) forms a solitary (non-periodic) wave in the form of
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where the phase variable of the wave is denoted by 	 	� �
o
x c t( )
1 3
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3

� � 
 � is the constant phase velocity of the

SV-wave. The parameter 	 in the solitary wave corresponds to the wave number k in harmonic wave: a change in the wave

number results in a change of the wavelength, while a change in parameter 	
o
results in a change of the trough of the solitary

wave.

Obviously, wave (7) is a representation of a D’Alembert simple wave [1, 2, 4–6, 9–12] and satisfies linear Eq. (4),

which is also a linear part of Eq. (5).

Then, let us consider two approximate methods of nonlinear wave equation.Method 1 is a classic (in linear acoustics)

approximate method of nonlinear solution to wave Eq. (1) [1, 2, 9].Method 2 is based on an approximate decomposition of the

variable wave velocity [1, 2, 12].

Method 1. Let us consider linear solution (4) as the first approximation of nonlinear solution (5)
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Let us define the second approximation u x t
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2( )
( , ) as the solution of inhomogeneous equation
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Since the third harmonic e
�3 2

2
( / )	

is the solution of Eq. (4), then, the solution of Eq. (10) is of resonant type:
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Comments 1 on Solution (11). This solution strongly depends on the phase 	: it changes in different ways at different

profile points.When	 � 0(bell top), there are no changes, i.e., the crest amplitude of the profile remains unchanged. There are no

changes at the point 	 �1, where the nonlinear growth changes the sign from positive to negative. This can be commented as

follows: the central part of the profile ( [ ; ])	  �1 1 enlarges (“get bigger”), while the tail part of profile narrows (“gets thinner”).

Herewith, the tail “is getting thinner” in different ways on the left and right.

Comment 2 on Solution (11). The solution consists of two parts: one part corresponds to the classical single Gaussian

wave (conventionally, the first harmonic wave) with constant parameters, while the other part conditionally corresponds to the

third harmonic wave with variable amplitude. This amplitude deserves special attention: it is linearly dependent on the wave
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propagation distance and material properties. This dependence is typical of the approach adopted and has been earlier observed

in other types of waves. It is the dependence that controls the profile evolution, when the wave moves.

Method 2. Let us describe Eq. (5) as
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Subject to more general, than (6), initial condition u x F x
3 3 1

0( , ) ( )� , the solution of Eq. (10) can be found in the form of

a D’Alembert wave
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which allows describing approximate solution (13) as follows:
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Let us reduce the analysis to the first two members of decomposition (16), assuming | |� �1. Since the smallness
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The description of solution (17) is of common nature and, for different selected profiles F x
3 1
( ) it will describe the

nonlinear wave effect, consisting in the inception of the third harmonic or similar new components and, finally, in the wave

profile evolution.

Now, let us assume that we have a wave with Gaussian profile: the wave is set by Eq. (7). Then, Eq. (17) acquires more

concrete form
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Comment on Solution (18). This solution depends on the phase 	 significantly: it changes in different points in different

ways; however, the nonlinear growth is always antisymmetric. When 	 � 0 (bell top), there are no changes, i.e., the crest

amplitude of the profile remains unchanged. However, at other profile points (symmetrical to the bell top), the profile changes

asymmetrically: the right part of the profile enlarges (“gets bigger”), while the left part of profile narrows (“gets thinner”).

The comparison of Eqs. (11) and (18) shows that they describe the cubic nonlinearity and, consequently, the wave

evolution in different ways; moreover, they are obtained under different assumptions.

Based on Eqs. (11) and (18), we plotted 2D graphs with “displacement u
3
–wave travel distance x

1
” coordinates

corresponding to the following parameter values: aluminum, L � 30, 	
o
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Figures 1–3 show that the initial stage of the wave profile evolution is characterized by asymmetrical change in the

symmetrical profile. Herewith, the crest amplitude on the trailing edge increases. Single hump tends to transform into three (the

central hump remains and new humps appear on the trailing and leading edges. The trough of the curve remains virtually

unchanged.

Figures 4–6 show that the initial stage of wave profile evolution is described slower and the profile change occurs

slower. All changes observed in Figs. 1–3 are also seen in Figs. 4–6 (trough stability, formation of three humps, and asymmetry

in trailing and leading edges), however, for longer distances. The difference can be explained by a short-time examination of

evolution.

Conclusions. It has been established that a change in the wave trough significantly affects the evolution of the wave

profile. It has been found out a difference in the evolution of the central and tail parts of the profile.
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