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The critical loads for a layered material compressed by a surface load are determined numerically using

the three-dimensional linearized theory of stability and the piecewise-homogeneous material model.

Symmetry conditions on the lateral sides of a layered composite sample are assumed. It is shown that

internal loss of stability in the layered composite is microbuckling near the loaded surface manifested as

end crushing. The buckling modes decay with distance from the end. The effect of the inhomogeneity of

the initial state induced by the load on the buckling modes is studied. The inhomogeneity of the initial

state has a strong effect on the amplitudes of the buckling modes and the area of their localization
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Introduction. Mechanical loads on structural members made of composite materials are usually directed along

reinforcements. The strength characteristics of composites in compression and tension differ substantially and are very difficult

to predict under compression. This motivates studies on the mechanics of composites compressed [2–4, 13, 24, 26, 30].

Compressive stresses may cause loss of stability and fracture of composites at macro- and micro-scales. One of the main failure

mechanisms in fibrous and laminated composites under compression is microbuckling [2–4, 7, 13–15, 17–19, 22, 24, 26, 27,

29–32]. Some analytical and numerical results on the behavior of compressed unidirectional composites subject to this type of

failure mechanism are analyzed in [26]. The Rosen model [29] was the earliest and is the most cited. This pioneering publication

was analyzed in detail in [3, 4, 22]. We will show qualitative contradictions and quantitative errors related to this model

compared with the three-dimensional linearized theory of stability of deformable bodies (TLTSDB) [1, 16]. The TLTSDB is the

most exact, rigorous, and consistent in solid mechanics.

As shown in [2], the failure mechanism of a composite longitudinally compressed by a surface loadmay be near-surface

buckling near the loaded end of the composite specimen, with buckling modes decaying with distance from that end.

Nonclassical problems of fracture mechanics were formulated in [3, 17, 20]. End crushing of composite specimens and structural

members under compression is considered one of such nonclassical problems. This problemwas first formulated in [3, 17, 20] as

a separate research area of the fracture mechanics of composites.

The continuum theory of end crushing was addressed in [2]. According to this theory, the brittle fracture of a composite

with nonclampled ends under uniaxial compression is described as follows [2, p. 581]: “First, the ends are crushed and surface

fracture occurs near free lateral surfaces under an external load slightly lower than the minimum reduced shear modulus. As the

external load becomes equal to the minimum reduced shear modulus, internal fracture occurs spreading avalanche-like over

surfaces, almost perpendicularly to the direction of the external load.” By nonclamped ends are meant the case where end

crushing is intentionally not excluded.
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The numerical results on the near-surface buckling of an under-reinforced laminate in piecewise-homogeneous

subcritical state under uniaxial surface loading obtained in [7, 23] using a piecewise-homogeneous material model confirm the

presence of such a failure mechanism.

The problem of the stability of a laminated composite uniaxially compressed by a surface load was numerically solved

in [6, 12] using the piecewise-homogeneous material model. The composite was represented by a two-layer model with

symmetry conditions on its lateral faces. The case of inhomogeneous subcritical state related to the constraints on displacements

in the end plane and the complex loading conditions on the surface (the surface load is applied only to the reinforcement and,

generally, has a spatial period comparable to or exceeding the typical length scale of the material. The size and geometry of the

inhomogeneity region of the stress state, the distribution of stresses and strains depend on the ratio of the mechanical and

geometrical characteristics of the composite components, the degree of their anisotropy, and the ratio of geometrical parameters

that define the microstructure of the composite and the size of the model [11, 25]. Nonzero shear stresses in the region of

application of the surface load are known to have a strong effect on the stability-critical parameters of the composite [27, 32]. The

inhomogeneity of the subcritical state also affects the microbuckling failure mechanisms, their sequence, and interaction in

structural members and specimens made of composites.

Here we will use the TLTSDB equations, which take into account the inhomogeneity of the initial state, and the

piecewise-homogeneous material model to study the near-surface buckling of unidirectional composite laminate compressed by

a surface load along the plies.Wewill consider an inhomogeneous initial state induced by a load applied to the reinforcement and

a piecewise-homogeneous state induced by a statically equivalent surface load applied to the reinforcement and matrix and

leading to a homogeneous stress–strain state in the reinforcement and matrix. We will study the influence of the inhomogeneity

of the initial state on the buckling modes of a composite laminate for two-layer models with symmetry conditions on the sides

and different concentrations of reinforcement.

Since it is difficult to find analytic solutions to problems of this class, modern numerical methods have to be used [5, 8,

9]. We will use a mesh-based method based on the modified variational difference approach [5]. This approach to analyzing the

stability of fibrous and laminated composites in inhomogeneous subcritical states was developed in [4, 6, 10–12, 22].

1. Problem Statement. DesignModels. Consider a laminated two-component composite of regular structure (Fig. 1a)

for two loading configurations. One loading configuration is uniform uniaxial compression of reinforcement plies by surface

load of constant intensity ((1) in Fig. 1a) that induces an inhomogeneous subcritical state.

The surface load p
1
acts along theOx

2
-axis and is applied to the reinforcement plies:

p x x p
1 1 22 1

0
0( ) ( , )� �� , | | /x h kb

1
2� �

r
, k � 0 1, , … . (1.1)

The spatial period b of the surface load is equal to the spatial period of the composite structure: b h� , h h h� �

r m
,

where h
r
and h

m
are the thicknesses of the reinforcement and matrix plies, respectively. The load does not vary along the

Ox
3
-axis. The other loading configuration is uniform uniaxial compression of the reinforcement and matrix plies by surface

loads of constant intensity that induce a homogeneous stress state ((2) in Fig. 1a). These loads are determined in computational

experiment using the first loading configuration. They are the normal stresses �
22

r
, �

22

m
in the reinforcement and matrix far from

the line of application of the surface load along the Ox
2
-axis. Such an experiment involves an analysis of the decay of the edge

effect in compressed reinforcement plies [11, 25]. For the second loading configuration, we, thus, have

p x x x p
2 1 22 1 2

0
( ) ( , )� � �� �

r

r
, | | /x h kb

1
2� �

r
,

p x x x p
2 1 22 1 2

0
( ) ( , )� � �� �

m

m
, | | ( / )x h h kb

1
2� � �

r m
,

k � 0 1, , …, (1.2)

where � is the edge-effect length determined with accuracy sufficient for our calculations. At infinity, the reinforcement plies are

compressed too. Since the load is symmetric and the structure of the composite is regular, the buckling problem can be solved

using finite models. We will use a two-layer model shown in Fig. 1 to study the influence of the inhomogeneity of the initial state

on the near-surface buckling of the composite. The boundary conditions on the sides of the model are symmetry conditions. As

shown in [6, 12], such a model can be used to study near-surface buckling during end crushing. It is well to bear in mind that, as

indicated in [12], the critical loads will be higher than for design models of a composite with periodic structure. This is due to
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additional constraints such as mixed boundary conditions on the lateral sides of the model, which correspond to the symmetry

conditions and include kinematic conditions for one of the components.

Thus, we will use two design models to compare the microbuckling of the material in inhomogeneous and

homogeneous initial states.

Let the load be a dead one, which is sufficient for applicability of the static TLTSDBmethod [18].Wewill use this static

method and the second theory of small subcritical deformations, assuming that the matrix and reinforcement are quite stiff. The

subcritical state can be determined by solving the problem of linear elasticity for piecewise-homogeneous bodies.

In formulating the problem, we will use a Cartesian coordinate systemOx x x
1 2 3

and place the composite in the upper

half-space x
2

0� . Let the plies extend along theOx
3
-axis, be parallel to the planeOx x

2 3
, and let the surface compressive load act

along the Ox
2
-axis. If these conditions are satisfied, the problem can be formulated as two-dimensional for plane strain in the

plane x Ox
1 2

(Fig. 1). Thus, we deal with a boundary-value problem with boundary conditions represented by the loading

conditions (1.1) and (1.2) shown in Fig. 1.
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If Euler’s static method is used, the buckling problem is reduced to a generalized eigenvalue problem in which the

minimum eigenvalue is the critical load and the associated eigenfunction describes the buckling mode. The equations and

boundary conditions for determining the critical loads of the composite structures are

( ) ,
, ,

� ��

im ik m k i
u x� � �

0
0 �, (1.3)

( ) ,
,

� ��

21 2

0

1 2 1
0 0� � � � �

k k
u u x S ,

( ) ,
,

� ��

12 1

0

2 1 2
0 0� � � � �

k k
u u x S ,

( ) ,
,

� ��

im ik m k
u x S� � �

0

3
0 ,

( ) ,
,

� ��

22 22 2 2 4
0� � �u x S ,

( ) ,
,

� ��

12 1

0

2 1 5
0 0� � � � �

k k
u u x S . (1.4)

The interface conditions between plies are

[ ] , [ ]�

ij i
u� �0 0. (1.5)

The critical load is determined from the following conditions:

p l l p x dx p l

x S S

cr
� � �

� �

�
min| |/( ) ( ) min| |� �
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1
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/ ( )l l
1

1

1

2
� , (1.6)

p l l p x dx p l

x S S

cr r
� � �

� �

�
min| |/( ) ( ) min| | (� �

1

1

1

21

1 1

0

1 3 4

1

1 0

1

2

1

1

1

2
� �p l l l

m
) / ( ), (1.7)

where min| |� is the minimum (in absolute magnitude) eigenvalue of problem (1.3)–(1.5). The form of (1.6) reflects the fact that

the compressive load is applied only to the reinforcement plies. Formula (1.7) corresponds to the case where the load is applied to

both reinforcement and matrix plies.

The subcritical state is determined from the equations of linear elasticity, which together with the boundary conditions

and the constitutive relations, have the form

�

ij i,

0
0� , x ��,

�

21

0

2

0

1
0 0� � � �u x S, ,

�

12

0

1

0

2
0 0� � � �u x S, ,

�

ij
x S

0

3
0� �, ,

� �

22

0 0

21

0
0� � �p , (1.8)

x S�

4
is inhomogeneous initial state;

� �

22

0 0

21

0
0� � �p

m
, x S�

3
,

� �

22

0 0

21

0
0� � �p

r
, x S�

4

is homogeneous initial state;
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�

12

0

1

0

5
0 0� � � �u x S, , (1.9)

� �

ii ik ik
A

0
� , � �

ij ij
G

0
2� , �

ij i j j i
u u� �05. ( )

, ,
, i j� , (1.10)

A
E

ii
�

�

� �

( )

( )( )

1

1 1 2

�

� �

, A
E

ij
�

� �

�

� �( )( )1 1 2
. (1.11)

Notation in (1.3)–(1.11) is standard, the indices change from 1 to 2, and “�” and “�” are the conjunction and disjunction

signs. In (1.3)–(1.9), the superscript “0” refers to the subcritical state. The index referring to a ply of the composite structure is

omitted for convenience. The following notation is used for the boundaries of the models:

� �
S x l l x l
1 1 1

1

1

2

2 2
0� � � � � �( ) ,

� �
S x l l x l
2 1 1

1

1

2

2 2
0� � � � � �( ) ,

� �
S l x l l x
3 1

1

1 1

1

1

2

2
0� � � � � �( ) , S x l x

4 1 1

1

2
0 0� � � � �( ),

S x x l
5 1 2 2

0 0� � � � �( ).

To compare the critical loads and buckling modes in the composite for homogeneous and inhomogeneous subcritical

states, the stationary inhomogeneous subcritical stresses are determined by conducting a computational experiment. These loads

are used at the subsequent stages of the computational experiment to set loading conditions that lead to a

piecewise-homogeneous subcritical state.

2. Numerical Solution. Problem (1.3)–(1.6) is solved by the mesh-based method using the concept of base scheme.

With such an approach, the difference scheme for the computational domain is constructed at each node as a sum of values of the

base scheme, which is a difference scheme obtained by a variational difference method for the cell template of the difference

mesh [5].

For numerical purposes, the problem for the original semi-infinite model of the composite is reduced to a problem for a

finite model. The size of this model is determined in a computational experiment from the condition that the parameters no

longer change with increase in the dimension of the domain along the Ox
2
-axis. Such parameters are the critical loads and the

size of the region in which the subcritical state is inhomogeneous.

Figure 2 shows the design model covered by a nonuniform difference mesh. Over the rectangular nonuniform

difference mesh � � �� � , which approximates the domain �, problem (1.3)–(1.6) is associated with the following difference

problem:

A B
m m
u u x� �� �, (2.1)
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where the variables are denoted (wherever possible) in the same manner as the respective continuum variables, which would

hardly lead to amisunderstanding; a
m
and b

m
are the components of the base operators a and b;H is the cell area; h

i
is the size of

the cell in the x
i
-direction; �

ij
and �

ij
are difference analogs of the stresses and strains in (1.3)–(1.7); z

i

,
&

is the difference

derivative of the mesh function z( )& in the x
i
-direction (right derivative for &

i
+ 0); & & & &� � ,( , ),

1 2 i
i is the node parameter of

the cell;
&�

% x
denotes the summation of a component of the reference scheme over those parameters & that coincide with the

mesh node x; & &

�

� �

i i
; E is an identity operator, �

u
m

is the section of the boundary � on which the mth component of the

difference analog of the boundary condition is set for displacements.

The discrete problems are solved using effective numerical methods [28] and the following procedure outlined in [5].

The algebraic problem is solved with the direct Cholesky method. After the refinement of the difference mesh, the

conjugate-gradient method is used. The solution found with the Cholesky method is interpolated and used as an initial

approximation for solving the discrete eigenvalue problem by the subspace iteration method.

3. Analysis of the Numerical Results. Consider a laminated composite material surface loading conditions (1.1) and

(1.2) and the following mechanical and geometric characteristics: E E
1 2
/ � 100, � �

1 2
� � 0.3, c

r
� S S S

4 3 4
/ ( )� � 0.333,

0.4, 0.5, 0.667 (where c
i
is the volume fraction of the reinforcement; E

1
, E

2
and �

1
, �

2
are, respectively, Young’s moduli and

Poisson’s ratios of the reinforcement and matrix).

Figure 3 shows buckling modes u x u
1 2 1
( ) /

max
in a reinforcement ply (left) and in a matrix ply (right) for different

concentrations of reinforcement in sections x h
1
/ corresponding to themaximum u

1

max
of the displacement perturbations u

1
. The

161

a b c d

Fig. 3

1

0

cr = 0.333

–1

0 20 40 60 x1/h 0 20 40 60 x1/h 0 20 40 60 x1/h 0 20 40 60 x1/h

u u
1 1
/

max

1

2

cr = 0.333u u
1 1
/

max

1

2

0 20 40 60 x1/h 0 20 40 60 x1/h 0 20 40 60 x1/h 0 20 40 60 x1/h

u u
1 1
/

max
u u
1 1
/

max
u u
1 1
/

max

1
2

2

1

1

2

0

–1

1

0

–1

1

0

–0.5

1

0.5

cr = 0.4 cr = 0.5 cr = 0.667

cr = 0.4 cr = 0.5 cr = 0.667u u
1 1
/

max
u u
1 1
/

max
u u
1 1
/

max

12

2

1
1

2

1

–1

0

1

–1

0

1

–1

0

1

–0.5

0

0.5



coordinate x
2
is divided by h h h� �

r m
. Curves 1 correspond to inhomogeneous initial state, and curves 2 to homogeneous

initial state.

It can be seen that the buckling modes are localized near the surface of the material and decay with distance from it.

With increase in the volume fraction of the reinforcement, the buckling mode in the reinforcement and matrix plies decay

differently. If the subcritical state is piecewise-homogeneous, the region where the bucklingmodes are localized is much smaller

than in an inhomogeneous subcritical state.

Conclusions. 1. Representing the composite by a two-layer model with symmetry conditions on its sides allows

studying the near-surface buckling during end crushing.

2. Microbuckling in a laminated composite material with a reinforcement volume fraction of 0.167–0.667 occurs near

the loaded surface with buckling modes decaying with distance from the end. This indicates that microbuckling in a composite

under uniaxial compression results in end-crushing failure.

3. The inhomogeneity of the subcritical state has a strong effect on the amplitudes of the buckling modes and the size of

the region where they are localized. If the subcritical state is piecewise-homogeneous, the region where the buckling modes are

localized is much smaller than in an inhomogeneous subcritical state.
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