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Nonlinear plane longitudinal elastic waves with different profiles are studied using the Murnaghan

model. The novelty is that the waves are analyzed using the same approximate method and the solutions

of the nonlinear wave equations are similar in form. The distortion of the initial wave profile described

by cosinusoidal, Gaussian, andWhittaker functions is described theoretically and numerically. About 80

variants of initial parameters are studied numerically: three analytical representations of the initial

profile, three materials (aluminum, copper, steel), three wave lengths, three initial maximum

amplitudes. For each variant, four (cosine) and five (Gauss,Whittaker) two-dimensional graphs of wave

shape versus traveled distance are plotted to demonstrate the distortion of the wave profile

Keywords: nonlinear plane longitudinal wave, approximate method, wave profiles, cosine, Gauss function,

Whittaker function, initial wave profile, distortion

1. Introduction. Analytic Formulas for Numerical Analysis of the Evolution of a PlaneWave with Initial Profile

Described by a Smooth Function.

Let the nonlinearity of the material in which a wave propagates be described by the Murnaghan potential [4, 15, 16]:
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are the components of the displacement vector; � �, , , ,A B C are the elastic constants in the Murnaghan model.

Let us choose a model that keeps the second and third powers in the expression of the Murnaghan potential in terms of

the displacement gradients:
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Expression (3) can be used to derive various nonlinear wave equations for analyzing harmonic (periodic) or solitary

(acyclic) waves. Let us consider three plane longitudinal waves with different profiles: (i) profile described by a cosine function

(harmonic wave), (ii) profile described by a Gauss function (solitary wave), (iii) profile described by a Whittaker function

(solitary wave).
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Harmonic nonlinear elastic waves have been much studied [3, 7, 10, 15, 16, 18]. Solitary waves in materials have been

actively studied in recent years [4, 5, 10, 11, 14]. A nonlinear elastic wave with cosine profile was studied in different ways by

different scientists [3, 4, 12, 14]. Here we will analyze this wave using the approximate approach to compare to the curves of

evolution of the initial wave profile plotted earlier and to solitary waves of complex profile. A wave with Gaussian profile

(bell-shaped solitary wave) was earlier studied numerically on an IBM286 computer with very limited graphics capabilities [3];

therefore, we can only use the results of this study to compare the general trends in wave profile evolution. A wave with profile

described by the Whittaker functions was studied using the mixture model [4]. Because of the significant difference of the

models, the results of this study can only be used to compare the general trends in wave profile evolution.

Without loss of generality, we will analyze a plane wave in the case where the displacements u u x t
k k

� ( , )
1

depend

only on one space coordinate of time (displacements along the Ox
1
-axis of the Cartesian coordinate system Ox x x

1 2 3
). Then

potential (3) becomes simpler:
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From (4), we obtain the simplest nonlinear wave equations—quadratic nonlinear wave equations for three elastic

polarized (longitudinal, transverse horizontal, transverse vertical) plane waves. The equation for a longitudinally polarized wave

has the form
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We will restrict the analysis to the so-called first standard problem where a longitudinal wave is only generated [2] and

the main nonlinear phenomenon is the self-generation of a wave. Then the nonlinear equation (5) becomes
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where the velocity of a linear longitudinal plane wave is denoted by c
L

� �( ) /� � �2 .

2. Approximate Approach to the Analysis of the Evolution of the Initial Wave Profile Using the Nonlinear

Equation (7).

Let us represent Eq. (7) in the form
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Let us consider a D’Alembert wavewith initial profile described by a sufficiently smooth function u x t F x( , ) ( )
1 1

0� � :
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where the velocity of the wave is defined by
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We will consider the following three variants of the function F x( )
1
:

(i) F x k x
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(solitary wave),

(iii) F x W ax( ) ( )
/ , /1 5 4 1 4 1

� (solitary wave), where k
L
determines the length of the harmonic wave and a determines the

“length” of the solitary wave.

Assume that
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which allows expansion of the root in (11) into a series:
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and an approximate representation of solution (12):
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The accuracy of (13) depends on how accurately condition (12) is satisfied, which includes constraints for two

parameters: � � �� � � � �3 2 3 2( ) / ( )A B C and u
1 1,
. Let us restrict the analysis to the class of structural materials to which the

Murnaghan model can safely be applied and that are soft-nonlinear (i.e., A B C� �3 is always negative). For example, the

constant � is approximately equal to –9, –4, and –8 for aluminum, copper, and steel, respectively. For many metallic materials,

2 19� �� [1]. Hence, the displacement gradient u
1 1,

can only be considered small. Then it is sufficient to make the assumption,

popular in the theory of elasticity, that the strains are small:

u
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1
,

�� (14)

(small displacement gradient). This is consistent with the well-known fact that the Murnaghan potential describes nonlinear

deformation assuming small strains. Next it is necessary to define an acceptable error of formula (11). Let it be 0.1%. Based on
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When the profile of a wave is known, constraint (14) can be assigned a geometrical meaning: u
1 1,

can be considered as a

tangent to the wave profile and its smallness corresponds to the smallness of the tangent of the angle between the tangent and the

abscissa axis. The tangent of an angle is equal to the angle when 0 5� � ��� 0.0873.

Then constraint (14) means that the wave profile is such that the wavelength exceeds the maximum amplitude by one to

two orders of magnitude. This constraint should be tested in each specific case.

Denoting the phase of a wave with constant phase velocity by � � �a x c t
L
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, we expand solution (13) into a Taylor series:
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L
, i.e., the class of structural materials: the typical size a

(length) of the wavemust bemuch less than the distance (from 1 to 10m) traveled by the wave). Since the equality below follows

from (15):
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solution (15) can be represented as
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The approximate solution (16) is general and describes the same nonlinear wave effect irrespective of the functions

chosen: occurrence of the second harmonic or the like and increase in the amplitude of the second harmonic with time.

Formula (16) allows describing the evolution of a solitary wave of any profile described by a function with finite weight

whose derivative can be expressed analytically.

3. Parameters of the Material and Wave in Numerical Simulation. We choose three structural materials with the

following parameters in the Murnaghan model (SI system) [18]:
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Aluminum: � � �27 10
3

. , � � �52 10
10

. , � � �27 10
10

. , A � � �065 10
10

. , B � � �205 10
11

. ,C � � �37 10
11

. , c
L

� �627 10
3

. , � � �1681. ;

Copper: � � �893 10
3

. , � � �107 10
10

. , � � �4 8 10
10

. , A � � �28 10
11

. , B � � �172 10
11

. ,C � � �24 10
11

. , c
L

� �4 77 10
3

. , � � �7207. ;

Steel: � � �78 10
3

. , � � �94 10
10

. , � � �79 10
10

. , A � � �325 10
11

. , B � � �31 10
11

. ,C � � �8 0 10
11

, , c
L

� �568 10
3

. , � � �1331. .

The parameters of the harmonic wave are the following: initial frequency � determined from the given velocity

c k
L L

� ( / )� and wavelength L k
L

� ( / )2� determined from the given wave number k c
L L

� ( / )� (for each material);

�� �16 10
5

. , L � 0.246 Aluminum; L � 0.187 Copper; L � 0.233 Steel;

�� �32 10
5

. , L � 0.246 Aluminum; L � 0.187 Copper; L � 0.233 Steel;

�� �4 8 10
5

. , L � 0.246 Aluminum; L � 0.187 Copper; L � 0.233 Steel.

For solitary waves described by Gauss andWhittaker functions (which are of finite weight), we assume that their length

L is the interval (distance) beyond which the area under the wave profile is negligibly small.

Then, according to the 3�-rule, the length of the Gaussian (bell-shaped) wave e e
x x� �
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is the wave length defined by the formula� � ( / )1 a . For all the threematerials,

the initial wave length is the same identical, and three variants are considered: L � {0.09, 0.15, 0.20} (a � {167, 40, 25.9}).

The Whittaker waveW x
5 4 1 4/ , /

( ) has length L � 20. Therefore, the parameter a in F x W ax( ) ( )
/ , /1 5 4 1 4 1

� is the wave

length defined by the formula � � ( / )1 a . For all the three materials, the initial wave length is the same identical L �0.20 ( )a � 50 ,

and three variants are considered: L � {0.143, 0.20, 0.25} (a � {70, 50, 40}).

Three initial amplitudes were selected for each material and for each initial wave length: a
o
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o
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3
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�
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3
. �

�
(for Whittaker profile).

Thus, 81 variants of waves (three materials, three types of profile, three wavelengths, three initial amplitudes) were

analyzed and about 400 two-dimensional evolution curves were plotted.

4. Numerical Analysis of the Harmonic Wave. The initial wave profile is described by F x e
ik x
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, and formula

(16) takes the form
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The approximate solution (17) is identical to the solutions of the nonlinear wave equation (9) (up to a constant factor,

which has no qualitative effect on the evolution of the wave) obtained by the method of successive approximations [3, 4, 16]:

u x t u k x t x k u
o L L o1 1 1 1 1
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2
1 8 2( , ) cos( ) ( / ) ( ) ( ) cos (� � �� � � k x t

L 1
�� ). (18)

Formula (17) was used to plot two-dimensional curves of displacement u
1
versus traveled distance x

1
. There were 27

sets of plots (three materials, three wavelengths, three maximum initial amplitudes). Each set includes four graphs of a wave

profile for different distances: from the initial position of the wave to the position at a distance of approximately 20 wavelengths

where the effect of nonlinearity and the distortion of the wave profile are significant. The fifth graph shows the shape on only the

second term in (18).

Figure 1 shows the curves of one set for the following parameters: aluminum, L �0.246, k
L

� �
�

12 10
2

. , a
o

� �
�

50 10
5

. . It

can be seen that the initial wave profile evolves asymmetrically: the positive portion of the profile as if keeps the shape of the first

harmonic, whereas the negative portion tends to transform into the profile of the second harmonic.

The curves in Fig. 1 corresponding to formula (17) and the curves in [3, 4, 16] corresponding to formula (18) are in

qualitative agreement. Hence, formula (17) is applicable to a harmonic wave. This allows us to assume that the formulas for the

other profiles derived from the general formula (16) are applicable as well.

5. Numerical Analysis of the Gaussian Wave. The initial wave profile is described by F x e
ax

( )
(( ) / )

1

2
1

2

�
�

, and

formula (16) takes the form
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The concepts of first and second harmonics are inapplicable to profile (19), and the functions e
a x c t

L
� �[ ( ) / ]

2

1

2
2

and

e
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L
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2

1

2
( )

can be considered the first and second harmonics very approximately. However, the approximate solution (19) is

very similar to solution (19). The obvious difference between solutions (17) and (19) is in that the nonlinear term does not

explicitly depend on the wave phase � �� �k x t
L 1

for wave (17), whereas the squared wave phase � � �a x c t
L

( )
1

appears

explicitly in the expression for the amplitude of wave (19).

Formula (19) was used to plot two-dimensional curves of displacement u
1
versus traveled distance x

1
. There were 27

sets of plots (three materials, three wavelengths, three maximum initial amplitudes). Each set includes five graphs of a wave

profile for different distances: four curves of evolution from the initial position of the wave to the position at a distance of

approximately 80 wavelengths where the effect of nonlinearity and the distortion of the wave profile are significant, and one

curve for the second (nonlinear) component showing the effect of nonlinearity.

Figure 2 shows the curves of one set for the following parameters: aluminum, L � 0.15, a � 40, a
o

� �
�

50 10
3

. .

It can be seen that the initial wave profile, which is symmetric, evolves symmetrically: the maximum amplitude slowly

increases and one hump tends to transform into two humps (which is demonstrated by the fifth curve in Fig. 2) and the middle

portion of the initial profile widens, i.e., the profile as if bloats, but its length remains constant.

Thus, by allowing for the nonlinearity in analyzing the propagation of a Gaussian solitary wave, we can describe the

distortion of its profile.

6. Numerical Analysis of the Whittaker Wave. Let the initial wave profile be described by F x W ax( ) ( )
/ , /1 5 4 3 4 1

� .

Then formula (16) takes the form
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5 4 3 4 1/ , /
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solution (17) takes the form
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Solution (20) describes the change in the solitary wave profile (due to the time dependence of the nonlinear component)

and the spreading of the wave profile (due to the presence of the nonlinear component).

Formula (20) was used to plot two-dimensional curves of wave shape u
1
versus traveled distance x

1
. There were 27 sets

of plots (three materials, three wavelengths, three maximum initial amplitudes). Each set includes five graphs of a wave profile

for different distances: four curves of evolution from the initial position of the wave to the position at a distance of approximately

40 wavelengths where the effect of nonlinearity and the distortion of the wave profile are significant, and one curve for the

second (nonlinear) component showing the effect of nonlinearity.

Figure 3 shows the curves of one set for the following parameters: aluminum, a � �
�

12 10
2

. , a
o

� �
�

10 10
5

. . It can be seen

that the asymmetric wave profile evolves in three different ways: themaximum amplitude slowly increases, the left portion of the

profile becomes shallower, and the right portion becomes shallower much faster. The wave length corresponds to the length of

the nonlinear term (which is demonstrated by the fifth curve in Fig. 3), the middle portion of the wave profile as if bloats, but its

length remains constant. Thus, by allowing for the nonlinearity in analyzing the propagation of aWhittaker solitary wave, we can

describe the distortion of its profile.
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Conclusions. Harmonic, symmetric solitary, and asymmetric solitary nonlinear elastic longitudinal plane waves

u x t( , )
1

have been analyzed numerically. The wave profiles are described by trigonometric function cos ( )x e
ix

1

1 , Gaussian

function e
x�
1

2
2/

, andWhittaker functionW x
5 4 3 4 1/ , /

( ), respectively.What all the three wave profiles have in common is that they

distort during propagation due to the nonlinear interaction of the wave with itself. However, these wave profiles distort

differently. The harmonic wave does not originally change its length and tends to form two humps instead of one, which can

result in transformation of the first harmonic into the second harmonic and decrease in the wavelength to half the initial value.

The bell-shaped solitary wave remains symmetric. Like the harmonic wave, this wave does not originally change its length and

tends to form two humps instead of one, which can lead to formation of a two-hump profile (the fifth curve in Fig. 2) with the

same length as that of the single-hump profile. The middle portion of the bell spreads, the profile as if bloats, but its length

remains constant. The asymmetric Whittaker wave profile evolves in three different ways: the maximum amplitude slowly

increases, the left portion of the profile becomes shallower, and the right portion becomes shallower much faster. The

wavelength does not change at the initial stage (the fifth curve in Fig. 3); the middle portion of the profile spreads, the profile

itself as if bloats, but its length remains constant.
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