NONSTATIONARY VIBRATIONS OF TRANSVERSELY REINFORCED ELLIPTIC CYLINDRICAL SHELLS ON AN ELASTIC FOUNDATION

Yu. A. Meish

The forced vibrations of transversely reinforced elliptic cylindrical shells on an elastic foundation under nonstationary loads are studied using the Timoshenko-type theory of shells and rods. A numerical algorithm for solving problems of this class is developed. A numerical example for the case of distributed impulsive loading is given

Keywords: transversely reinforced cylindrical shell, elastic foundation, Timoshenko-type theory of shells and rods, nonstationary process, numerical method

Introduction. The dynamic behavior of a reinforced shell on an elastic foundation can be studied by solving two problems: (a) influence of the elastic foundation on plates and shells without reinforcement [4, 10–12, 15, 16, 19] and (b) influence of reinforcement on the inhomogeneous structure [3, 8, 9, 14, 16]. The influence of both elastic medium and reinforcement on the stress–strain state of inhomogeneous structures is addressed in [1, 3, 4, 13, 15, 17, 18].

The dynamic behavior of discretely reinforced cylindrical and spherical shells as a special case of reinforced shells of elliptic cross-section on an elastic foundation, was studied in [3].

Here we will solve the problem of the forced vibrations of a discretely reinforced elliptic cylindrical shell on a Pasternak two-parameter foundation under a distributed impulsive load. The dynamic behavior of the reinforced inhomogeneous shell will be analyzed using a geometrically linear theory of shells and rods and the Timoshenko hypotheses. The problem posed will be solved with the finite-difference method [3, 6]. Numerical results will be obtained depending on the geometrical and mechanical parameters of the structure and the elastic foundation.

1. Problem Statement. Basic Equations. Consider a reinforced elliptic cylindrical shell under a distributed internal load P_3 (s_1 , s_2 , t), where s_1 , s_2 , and t are the space and time coordinates. The coefficients of the first quadratic form and the curvatures of the coordinate surface of the shell are given by

$$
A_1 = 1, \quad k_1 = 0,
$$

\n
$$
A_2 = (a^2 \cos^2 \alpha_2 + b^2 \sin^2 \alpha_2)^{1/2},
$$

\n
$$
k_2 = ab(a^2 \cos^2 \alpha_2 + b^2 \sin^2 \alpha_2)^{-3/2},
$$
\n(1.1)

where *a* and *b* are the semiaxes of the elliptical cross-section of the cylindrical shell.

To derive the vibration equations for a reinforced cylindrical shell on an elastic foundation, we will use the Hamilton–Ostrogradsky variational principle [1, 3, 5]. Performing standard transformations over the variational functional, we obtain two groups of equations:

(i) the equations of vibration of a smooth elliptic cylindrical shell

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3 Nesterova St., Kyiv, Ukraine 03057, e-mail: juliameish@gmail.com. Translated from Prikladnaya Mekhanika, Vol. 52, No. 6, pp. 104–110, November–December, 2016. Original article submitted December 28, 2015.

$$
\frac{\partial T_{11}}{\partial s_1} + \frac{\partial S}{\partial s_2} = \rho h \frac{\partial^2 u_1}{\partial t^2}, \qquad \frac{\partial S}{\partial s_1} + \frac{\partial T_{22}}{\partial s_2} + k_2 T_{23} = \rho h \frac{\partial^2 u_2}{\partial t^2},
$$
\n
$$
C_2 \left(\frac{\partial^2 u_3}{\partial s_1} + \frac{\partial^2 u_3}{\partial s_2} \right) + \frac{\partial T_{13}}{\partial s_1} + \frac{\partial T_{23}}{\partial s_2} - k_2 T_{22} - C_1 u_3 + P_3 (s_1, s_2, t) = \rho h \frac{\partial^2 u_3}{\partial t^2},
$$
\n
$$
\frac{\partial M_{11}}{\partial s_1} + \frac{\partial H}{\partial s_2} - T_{13} = \rho \frac{h^3}{12} \frac{\partial^2 \varphi_1}{\partial t^2}, \qquad \frac{\partial H}{\partial s_1} + \frac{\partial M_{11}}{\partial s_2} - T_{23} = \rho \frac{h^3}{12} \frac{\partial^2 \varphi_2}{\partial t^2},
$$
\n(1.2)

(ii) the equations of vibration of the *j*th transverse rib aligned with the s_2 -axis

$$
\frac{\partial T_{21j}}{\partial s_2} + [T_{11}]_j = \rho_j F_j \left(\frac{\partial^2 u_1}{\partial t^2} \pm h_{cj} \frac{\partial^2 \varphi_1}{\partial t^2} \right),
$$
\n
$$
\frac{\partial T_{22j}}{\partial s_2} + k_{2j} T_{23j} + [S]_j = \rho_j F_j \left(\frac{\partial^2 u_2}{\partial t^2} \pm h_{cj} \frac{\partial^2 \varphi_2}{\partial t^2} \right),
$$
\n
$$
\frac{\partial T_{23j}}{\partial s_2} + k_2 T_{22} + [T_{13}]_j = \rho_j F_j \frac{\partial^2 u_3}{\partial t^2},
$$
\n
$$
\frac{\partial M_{21j}}{\partial s_2} \pm h_{cj} \frac{\partial T_{21j}}{\partial s_2} + [M_{11}] = \rho_j F_j \left[\pm h_{cj} \frac{\partial^2 u_1}{\partial t^2} + \left(h_{cj}^2 + \frac{I_{torj}}{F_j} \right) \frac{\partial^2 \varphi_1}{\partial t^2} \right],
$$
\n
$$
\frac{\partial M_{22j}}{\partial s_2} \pm h_{cj} \frac{\partial T_{22j}}{\partial s_2} - T_{23j} + [H] = \rho_j F_j \left[\pm h_{cj} \frac{\partial^2 u_1}{\partial t^2} + \left(h_{cj}^2 + \frac{I_{2j}}{F_j} \right) \frac{\partial^2 \varphi_2}{\partial t^2} \right],
$$
\n(1.3)

where $u_1, u_2, u_3, \varphi_1, \varphi_2$ are the components of the generalized displacement vector of the mid-surface; ρ and ρ_j are the densities of the shell and the *j*th rib, respectively; *h* is the thickness of the shell; $h_{cj} = 0.5(h + h_j)$; h_j is the cross-sectional height densities of the shell and the *j*th rib, respectively; *h* is the thickness of the *j*th rib; $[f]_i = f^+ - f^-$, where f^{\pm} are the values of the functions on the right and on the left of the *j*th discontinuity line (projection of the center of gravity of the *j*th rib onto the mid-surface of the shell); C_1 is the Winkler coefficient of subgrade reaction; C_2 is the Pasternak coefficient of subgrade reaction.

The forces/moments in the vibration equations (1.2) for the shell are related to the strains by

$$
T_{11} = B_{11}(\epsilon_{11} + v_2 \epsilon_{22}), \quad T_{22} = B_{22}(\epsilon_{22} + v_1 \epsilon_{11}),
$$

\n
$$
M_{11} = D_{11}(\kappa_{11} + v_2 \kappa_{22}), \quad M_{22} = D_{22}(\kappa_{22} + v_1 \kappa_{11}), \quad H = D_{12} \kappa_{12},
$$

\n
$$
\epsilon_{11} = \frac{\partial u_1}{\partial s_1}, \quad \epsilon_{22} = \frac{\partial u_2}{\partial s_2} + k_2 u_3,
$$

\n
$$
\epsilon_{12} = \frac{\partial u_1}{\partial s_2} + \frac{\partial u_2}{\partial s_1}, \quad \epsilon_{13} = \varphi_1 + \frac{\partial u_3}{\partial s_1}, \quad \epsilon_{23} = \varphi_2 + \frac{\partial u_3}{\partial s_2} - k_2 u_2,
$$

\n
$$
\kappa_{11} = \frac{\partial \varphi_1}{\partial s_1}, \quad \kappa_{22} = \frac{\partial \varphi_2}{\partial s_2}, \quad \kappa_{12} = \frac{\partial \varphi_1}{\partial s_2} + \frac{\partial \varphi_2}{\partial s_1},
$$

\n(1.4)

where

$$
B_{11} = \frac{E_1 h}{1 - v_1 v_2}, \qquad B_{22} = \frac{E_2 h}{1 - v_1 v_2}, \qquad B_{12} G_{12} h, \qquad B_{13} = G_{13} h, \qquad B_{23} = G_{23} h,
$$

$$
D_{11} = \frac{E_1 h^3}{12(1 - v_1 v_2)}, \qquad D_{22} = \frac{E_2 h^3}{12(1 - v_1 v_2)}, \qquad D_{12} = G_{12} \frac{h^3}{12},
$$

where $E_1, E_2, G_{12}, G_{13}, G_{23}, v_1, v_2$ are the mechanical parameters of the orthotropic material of the shell.

The forces/moments in the vibration equations (1.3) for the *j*th rib are related to the strains by

$$
T_{22j} = E_j F_j \varepsilon_{22j}, \t T_{12j} = G_j F_j \varepsilon_{12j}, \t T_{13j} = G_j F_j \varepsilon_{13j},
$$

\n
$$
M_{22j} = E_j I_{1j} \kappa_{22j}, \t M_{12j} = G_j I_{\text{torj}} \kappa_{12j},
$$

\n
$$
\varepsilon_{22j} = \frac{\partial u_2}{\partial s_2} \pm h_{cj} \frac{\partial \varphi_2}{\partial s_2}, \t \varepsilon_{12j} = \frac{\partial u_1}{\partial s_2} \pm h_{cj} \frac{\partial \varphi_1}{\partial s_2},
$$

\n
$$
\varepsilon_{23j} = \varphi_2 + \frac{\partial u_3}{\partial s_2} - k_{2j} u_2, \t \kappa_{22j} = \frac{\partial \varphi_2}{\partial s_2}, \t \kappa_{12j} = \frac{\partial \varphi_1}{\partial s_2},
$$

\n(1.5)

where E_i and G_j are the mechanical parameters of the material of the *j*th rib; F_j , I_{1j} , $I_{\text{tor}j}$ are the geometrical parameters of the cross-section of the *j*th rib.

The vibration equations (1.2) – (1.5) are supplemented with appropriate boundary and initial conditions.

2. Numerical Problem-Solving Algorithm. The numerical algorithm for solving the initial–boundary-value problem (1.2) – (1.5) is based on the integro-interpolation method for the construction of difference schemes with respect to the space coordinates s_1 and s_2 and an explicit approximation with respect to the time coordinate t [3, 6].

Let us consider a domain $D = \{s_{10} \le s_1 \le s_{1N}, s_{20} \le s_2 \le s_{2N}\}\.$ Choosing a subdomain $D_{kl}^1 \subset D$, $D_{kl}^1 = \{s_{1k-1/2} \le s_1 \le s_{1k+1/2}, s_{2l-1/2} \le s_2 \le s_{2l+1/2}\}\$ and integrating the vibration equations (1.2) over this subdomain, we obtain the following difference formulas for finding the solution at the $(n+1)$ th time step:

$$
\frac{T^n_{11k+1/2,l}-T^n_{11k-1/2,l}}{\Delta s_1}+\frac{S^n_{k,l+1/2}-S^n_{k,l-1/2}}{\Delta s_2}=\rho h(u^n_{1k,l})_{\overline{u}},
$$

$$
\frac{S_{k,l+1/2}^{\,n}-S_{k,l-1/2}^{\,n}}{\Delta s_1}+\frac{T_{22k+1/2,l}^{\,n}-T_{22k-1/2,l}^{\,n}}{\Delta s_2}+\frac{k_{2k,l}}{2}\left(T_{23k,l-1/2}^{\,n}+T_{23k,l+1/2}^{\,n}\right)=\rho h(u_{2k,l}^{\,n})_{\overline{u}},
$$

$$
\frac{T_{13k+1/2,l}^{n} - T_{13k-1/2,l}^{n}}{\Delta s_{1}} + \frac{T_{22k,l+1/2}^{n} - T_{22k,l-1/2}^{n}}{\Delta s_{2}} + \frac{k_{2k,l}}{2} (T_{22k,l-1/2}^{n} + T_{22k,l+1/2}^{n}) + P_{3k,l}^{n} = \rho h(u_{3k,l}^{n})_{\overline{t}},
$$
\n
$$
\frac{M_{11k+1/2,l}^{n} - M_{11k-1/2,l}^{n}}{\Delta s_{1}} + \frac{H_{k,l+1/2}^{n} - H_{k,l-1/2}^{n}}{\Delta s_{2}} - \frac{1}{2} (T_{13k+1/2,l}^{n} + T_{13k-1/2,l}^{n}) = \rho \frac{h^{3}}{12} (\varphi_{1k,l}^{n})_{\overline{t}},
$$
\n
$$
\frac{H_{k+1/2,l}^{n} - H_{k-1/2,l}^{n}}{\Delta s_{1}} + \frac{M_{22k,l+1/2}^{n} - M_{22k,l-1/2}^{n}}{\Delta s_{2}} - \frac{1}{2} (T_{23k,l+1/2}^{n} + T_{23k,l-1/2}^{n}) = \rho \frac{h^{3}}{12} (\varphi_{2k,l}^{n})_{\overline{t}}.
$$
\n(2.1)

Thus, in the difference equations, the generalized displacements $u_1, u_2, u_3, \varphi_1, \varphi_2$ are referred to the integer nodes of the difference mesh, while the forces/moments (and strains) to half-integer nodes $(k \pm 1/2, l)$, $(k, l \pm 1/2)$. To derive the generalized difference equations for the forces/moments, Eqs. (1.4) are integrated over the following domains:

$$
D_{kl}^2 = \{s_{1k-1} \le s_1 \le s_{1k}, s_{2l-1/2} \le s_2 \le s_{2l+1/2}\},\
$$

$$
D_{kl}^2 = \{s_{1k} \le s_1 \le s_{1k+1}, s_{2l-1/2} \le s_2 \le s_{2l+1/2}\}
$$

etc. In (2.1), difference derivatives are denoted as in [3]. The difference formulas for the vibration equations (1.3), (1.5) for the *j*th rib are derived in a similar way [3, 6].

3. Numerical Results. Let us consider, as a numerical example, the dynamic behavior of a transversely reinforced elliptic cylindrical shell under a distributed internal impulsive load. All sides of the shell are clamped.

The distributed impulsive load P_3 (s_1 , s_2 , t) is defined by

$$
P_3(s_1, s_2, t) = A \cdot \sin \frac{\pi t}{T} [\eta(t) - \eta(t - T)],
$$

where *A* is the amplitude of the load; *T* is the duration of the load. In the example: $A = 10^6$ Pa and $T = 50$ usec.

The geometrical and mechanical parameters of the shell: $E_1 = E_2 = 7 \cdot 10^{10}$ Pa, $v_1 = v_2 = 0.3$, $h = 10^{-2}$ m, $L = 0.4$ m. The aspect ratio of the elliptic cross-section: (i) $a = b = 0.1$; (ii) $a = 12b$. The domain $D = \begin{cases} 0 \le s_1 \le L, & 0 \le s_2 \le A \end{cases}$ $0 \le s_1 \le L, \ 0 \le s_2 \le A_2 \frac{\pi}{6}$ $\left\{ \begin{array}{l} 2 & 1 \\ 1 & \le L, \ 0 \le s_2 \le A_2 \frac{\pi}{8} \end{array} \right\}$ and the time interval $0 \le t \le 80$ T were used in the numerical analysis. Transverse ribs are located in the sections $s_{1j} = 0.25jL$, $j = 1,3$. The Winkler coefficients: $C_1^1 = 10^9 \text{ N/m}^3$, $C_1^2 = 2.10^9 \text{ N/m}^3$, $C_1^3 = 3.10^9 \text{ N/m}^3$. $\ddot{}$ $\ddot{}$

Figures 1 and 2 show numerical values of u_3 for C_1^1 . Curves *1* correspond to *a* / *b* = 1, while curves 2 to *a* / *b* = 1.2. Figure 1 shows the variation in u_3 with time *t* at the point $s_1 = 0.375L$, $s_2 = 0$ (the middle between the first and second ribs in the section $s_2 = 0$.

It can be seen that the ellipticity of the cross-section of the shell is the reason why its amplitude and frequency are so much different from those of the shell of circular-section.

Figure 2 shows the variation in u_3 with the coordinate s_1 in the section $s_2 = 0$ at $t = 3.5T$ (the instant the u_3 reaches its maximum when $a/b = 1$).

The considerable difference between the values of u_3 in the two cases is analyzed in Fig. 1. The calculated results for C_1^2 and C_1^3 are similar qualitatively and quantitatively.

Conclusions. The forced vibrations of discretely reinforced elliptic cylindrical shells on an elastic foundation under a distributed impulsive load have been studied using the Timoshenko-type theory of shells and rods.

The problem posed has been solved with the finite-difference method.

Numerical results have been presented. The influence of the elastic foundation on the stress–strain state of the reinforced structure has been analyzed.

REFERENCES

- 1. A. V. Vestyak, A. G. Gorshkov, and D. V. Tarlakovskii, "Nonstationary interactions of solids with the environment," in: *Advances in Science and Technology: Solid Mechanics* [in Russian], Issue 15, VINITI, Moscow (1983), pp. 69–148.
- 2. K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, "Solution of axisymmetric dynamic problems for cylindrical shells on an elastic foundation," *Int. Appl. Mech.*, **43**, No. 12, 1390–1395 (2007).
- 3. K. G. Golovko, P. Z. Lugovoi, and V. F. Meish, *Dynamics of Inhomogeneous Shells under Nonstationary Loads* [in Russian], Poligr. Tsentr "Kievskii Universitet," Kyiv (2012).
- 4. P. Z. Lugovoi, V. F. Meish, and K. G. Golovko, "Solving axisymmetric dynamic problems for reinforced shells of revolution on an elastic foundation," *Int. Appl. Mech.*, **45**, No. 2, 193–199 (2009).
- 5. A. V. Perel'muter and V. I. Slivker, *Design Models of Structures and Capabilities for Their Analysis* [in Russian], Stal', Kyiv (2000).
- 6. A. Samarskii, *The Theory of Difference Schemes*, Marcel Dekker, New York (2001).
- 7. B. Akgoz and O. Civalek, "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations," *Steel Compos. Struct.*, **11**, No. 5, 403–421 (2011).
- 8. M. Bayat, I. Pakar, and M. Bayat, "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell," *Steel Compos. Struct.*, **14**, No. 5, 511–521 (2013).
- 9. E. Carrera, E. Zappino, and M. Filippi, "Free vibration analysis of thin-walled cylinders reinforced with longitudinal and transversal stiffeners," *J. Vibr. Acoust.*, **135**, No. 1, 177–188 (2013).
- 10. ?. Civalek, "Geometrically nonlinear dynamic and static analysis of shallow spherical shell resting on two-parameters elastic foundations," *Int. J. Pres. Vessels Piping*, **113**, 1–9 (2014).
- 11. A. P. Gupta, "Vibration of rectangular orthotropic elliptic plates on quadratically varying thickness on elastic foundation," *Trans. ASME*, *J. Vibr. Acoust.*, **126**, No. 1, 132–140 (2004).
- 12. K. Güler, "Circular elastic plate resting on tensionless Pasternak foundation," *J. Eng. Mech.*, *ASCE*, **130**, No. 10, 1251–1254 (2004).
- 13. P. Z. Lugovoi and N. Ya. Prokopenko, "Influence of an elastic foundation on the dispersion of harmonic waves in longitudinally reinforced cylindrical shells," *Int. Appl. Mech.*, **51**, No. 5, 583–590 (2015).
- 14. B. A. J. Mustafa and R. Ali, "Prediction of natural frequency of vibration of stiffened cylindrical shells and orthogonally stiffened curved panels," *J. Sound Vibr.*, **43**, 317–327 (1987).
- 15. D. N. Paliwad, "Free vibrations of orthotropic cylindrical shell on elastic foundation," *AIAA J.*, **37**, No. 9, 1135–1139 (1999).
- 16. M. S. Qatu, *Vibrations of La*min*ated Shells and Plates*, Elsevier Academic Press, Amsterdam (2004).
- 17. Yu. V. Skosarenko, "Free vibrations of a ribbed cylindrical shell interacting with an elastic foundation," *Int. Appl. Mech.*, **50**, No. 5, 575–581 (2014).
- 18. Yu. V. Skosarenko, "The stress–strain state of a ribbed cylindrical shell interacting with elastic foundation under short-term loads," *Int. Appl. Mech.*, **51**, No. 1, 92–101 (2015).
- 19. F. Tornabene, N. Fantuzzi, E. Viola, and J. N. Reddy, "Winkler–Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels," *Composites. Part B. Engineering*, **57**, No. 1, 269–296 (2014).