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The results of linearization of the basic equations describing a compressible viscous fluid in which

low-amplitude oscillations occur or solids move or that interacts with elastic bodies in which small

perturbations propagate are discussed. The general solutions of the linearized equations are presented.

The results of studying wave processes in hydroelastic systems using the three-dimensional linearized

theory of finite deformations and theory of compressible viscous fluid are discussed. The results of

studying the propagation of acoustic waves of various types in waveguides with plane and circular

cylindrical interfaces between elastic and liquid media and the influence of large (finite) initial

deformations, viscosity and compressibility of the fluid on acoustic waves are presented. Studies of the

motion of objects in compressible ideal and viscous fluids under the action of radiation forces due to the

acoustic field are reviewed. The emphasis is placed on the studies that use a method involving the

solution of hydrodynamic problems for a compressible fluid with solid particles and the evaluation of the

forces acting on these particles. The radiation force is determined as the constant component of the

hydrodynamic force. The numerical results are presented in the form of plots, which are then analyzed
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Introduction. The dynamics of a fluid interacting with rigid and deformable bodies is one of the fundamental and

classical problems of mechanics, physics, and applied mathematics. The results obtained in studying this problem are of applied

importance for various problems of natural sciences and engineering, including newest technologies.

So far, the dynamic behavior of rigid and elastic bodies in a viscous fluid has mainly been studied assuming that the

fluid is incompressible and viscous. There are few publications where the fluid is considered to be viscous and compressible (see

[31, 76, 78, 91, 95, 171] for reviews of such studies). An analysis of the results shows that, despite the importance of the dynamic

problem, the low-amplitude vibrations of and the motion/interaction of rigid and elastic bodies in/with a compressible viscous

fluid have been studied inadequately.

The present paper is a review of the results obtained in studying, using the three-dimensional linearized theory, the

motion and interaction of solid particles in a fluid and the propagation of low-amplitude waves in elastic bodies interacting with a

compressible viscous fluid.

Section 1 deals with the linearized equations for a resting compressible viscous fluid undergoing nonstationary and

harmonic low-amplitude motions (oscillations). The exact expression for the total derivative of the velocity vector will be used.

The linearized theory for a resting compressible viscous fluid will be shown to be analogous to a specific rheological model of a

solid. The general solutions of the basic equations of the linearized theory for a compressible viscous fluid will be expressed in

terms of scalar and vector potentials. The equations from which these potentials are derived will be presented as well. It will be

International Applied Mechanics, Vol. 52, No. 5, September, 2016

1063-7095/16/5205-0449 ©2016 Springer Science+Business Media New York 449

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3 Nesterova St., Kyiv, Ukraine

03057, e-mail: zhuk@inmech.kiev.ua. Translated from Prikladnaya Mekhanika, Vol. 52, No. 5, pp. 3–77, September–October,

2016. Original article submitted June 8, 2015.

DOI 10.1007/s10778-016-0770-6



shown that by passing to the limit, these general solutions can be reduced to general solutions for simpler fluid models

(incompressible viscous fluid; compressible or incompressible ideal fluid).

The development of engineering and industry requires using theories that more adequately describe the properties of

real elastic and liquid media. In this connection, it is important to use prestressed body and compressible viscous fluid models to

study wave processes. Using such an approach is reasonable because neglecting the prestresses of the body and the viscosity of

the fluid changes the structure of the differential equations so much that many real phenomena cannot be studied even

qualitatively and the quantitative results obtained with approximate models do not meet the ever toughening accuracy

requirements. It is, therefore, of theoretical and applied interest to study wave processes in hydroelastic systems using the

equations of the three-dimensional linearized theory of elasticity with the assumption of finite deformation for the body and the

three-dimensional linearized Navier–Stokes equations for the compressible viscous fluid. These issues are covered in Sec. 2.

Section 2 addresses the results of studying wave processes in hydroelastic waveguides with plane and curved interfaces.

We will discuss statements of and problem-solving methods for the basic classes of aerohydroelastic problems for compressible

and incompressible elastic bodies subjected to large (finite) initial deformation and interacting with a compressible viscous fluid.

We will analyze the graphs of numerical solutions of the dispersion equations for some specific problems. They show how the

viscosity of the compressible fluid and the prestresses of the body affect the phase velocities, damping factors, and dispersion of

normal waves.

Section 3 analyzes the results of studying the interaction of an acoustic wave with rigid and elastic particles in a

compressible (viscous or ideal) fluid, themeasure of this interaction being radiation (period-average) forces. Radiation forces are

caused by the time-independent radiation stresses occurring in an acoustic field. Unlike pressure, they are tensor quantities [162,

163]; hence, the components of the force vector acting on a unit area of the body can be determined as the inner product of the

stress tensor and the unit normal vector to the area. This is not so with scalar pressure. The acoustic literature, however, uses the

term “radiation pressure” for this vector quantity [48, 137, 145]. A change in the time-average momentum flux within some

volume of a fluid is responsible for the occurrence of radiation stresses during the propagation of an acoustic wave (there were

controversies in the literature over themomentum and flux of momentum of various waves [48, 137, 145]). Such changes are due

to second-order effects such as scattering of sound by an obstacle, absorption of sound by a propagation medium, etc. Therefore,

radiation pressure is a quadratic function of the acoustic-field variables. In Lagrangian coordinates, acoustic radiation pressure is

the time-average acoustic pressure on the surface of an obstacle.

In this connection, linear approximation is insufficient to calculate the acoustic pressure exerted by a harmonic wave

because the pressure is a periodic function of time in this approximation [136] and its average over the wave period is equal to

zero. Therefore, to determine the acoustic pressure in a fluid, it is necessary to take into account the second-order effects due to

the inharmonicity of the wave profile near the obstacle. Radiation pressure strongly affects the motion of a solid particle in the

fluid and imparts a unidirectional displacement to it. If there are several particles in a fluid, the interference of the incident and

reflected (from the particles) waves creates a complex acoustic field in which radiation forces different in magnitude and

direction act on the particles, causing their relative drift. This circumstance is widely used to intensify many acoustically assisted

processes [147, 152].

There are two types of acoustic radiation pressure [48, 49, 137, 141]: Rayleigh and Langevin, or Langevin–Brillouin.

Rayleigh pressure occurs when waves propagate without interaction between the acoustic field and the unperturbed medium.

These cases are characteristic of closed volumes where the mass of the oscillating medium remains constant. An example is the

case, studied by Rayleigh, of plane standing waves between two fixed flat solid surfaces. The expression for Rayleigh acoustic

pressure depends on a coefficient that describes the nonlinear properties of the medium.

Langevin pressure occurs when an acoustic field interacts with an unperturbed medium that affects the time-average

pressure. An example is waves damped at infinity. Langevin acoustic pressure in one-dimensional acoustic fields was studied in

[48, 144, 161, 179, etc.].

Here we will discuss studies on the interaction of acoustic waves with rigid and elastic particles in a bounded or

unbounded viscous or ideal fluid conducted at the S. P. Timoshenko Institute of Mechanics.

1. Basic Equations of the Linearized Theory of Compressible Viscous Fluid. To adequately describe the dynamics

of rigid and elastic bodies in a fluid, it is necessary to devise suitable fluid models, because rigid or elastic solid models are

predetermined by a specific problem statement. The compressible viscous fluid model is the most general of the classical fluid

models, because it combines the property of compressibility, which allows describing the propagation of waves in a

compressible ideal fluid, and the property of viscosity, which allows describing the damping of dynamical processes in an

450



incompressible viscous fluid.When the viscous fluid model is used to describe the dynamics of rigid and elastic bodies in a fluid,

the most complete information can be obtained using the Navier–Stokes equations. This, however, involves severe mathematical

difficulties, which are overcome in each specific situation with the help of modern numerical methods and computers. There is a

class of viscous fluid problems for which the Navier–Stokes equations can be greatly simplified. This class encompasses

dynamic processes in which the disturbances are small, and the Navier–Stokes equations can be consistently linearized using the

exact expression for the total derivative of the velocity vector. These processes are also fully consistent with the theory of

low-amplitude vibrations of mechanical systems in the customary terminology used in mechanics. In [144], this situation is

interpreted as the oscillation of an object in a fluid with an amplitude much smaller than its dimensions. Thus, the

above-mentioned class includes problems of the dynamics (low-amplitude vibrations or motions) of rigid bodies in a

compressible viscous fluid and the propagation of small disturbances (low-amplitude waves) in elastic bodies interacting with a

compressible viscous fluid.

To derive the basic equations in the simplest and most compact form for the description of the motion of a continuum,

different coordinates are used, depending on how it is modeled. Eulerian coordinates and the Eulerian description of motion are

used in fluid mechanics and Lagrangian coordinates and the Lagrangian description of motion are used in solid mechanics.

Accordingly, a major issue in studying combinedmotions of a fluid, a gas, and elastic and rigid bodies is to choose coordinates so

as to simplify the basic equations of the coupled (general) problem. This issue is resolved most successfully if it is possible to

introduce general coordinates that are Eulerian coordinates for a fluid or a gas and Lagrangian coordinates for an elastic body.

Aspects of identifying specially chosen Lagrangian and Eulerian coordinates for fluids (including compressible viscous

fluids) and elastic bodies were analyzed in [75, 76, 78] using a linearized problem setting for the following classes of problems:

(i) a fluid at rest and a prestressed elastic body, (ii) a moving fluid with uniform flow at infinity and an elastic body without

prestresses, (iii) a fluid at rest and a prestressed elastic body, (iv) a moving fluid with uniform flow at infinity and a prestressed

elastic body.

Viscous fluid mechanics assumes, based on the statistical mechanics of irreversible processes, that the stress tensor can

be represented as the sum of a conservative stress tensor and a viscous (dissipative) stress tensor. Usually, these two terms are

pressure and viscous stress tensor. In deriving constitutive equations for fluids, it is assumed that the viscous-stress tensor is a

function of the strain-rate tensor. We will assume that viscous stresses and strain rates are in a linear relationship (i.e., the

Navier–Stokes law holds true). The constitutive equation for such fluids is as follows [75, 171]:

� ( ) �

�

* *
� � �� � � � 	 
 �p E ev 2 , (1.1)

where �p is the pressure in the fluid; v is the velocity of a fluid parcel; �E is a unit tensor; �� and �e are the stress and strain-rate

tensors; �
*
and �

*
are the kinematic and dynamic viscosity coefficients.

It is also assumed that the fluid is non-heat-conductive and the processes in it are slow; therefore, the volume viscosity

coefficient can be considered equal to zero [75]: � � �
* * *

/� � �1 3 0. This amounts to defining the pressure �p as the average

normal stress in a compressible viscous fluid at rest. The adiabatic motion of a compressible viscous fluid is desribed by the

following equations [75, 144]:
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�
�
� �	 � � � � 	 	 
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v
v v v v

t
p( ) ( ) ( )

* * *
� , (1.2)

the continuity equation

� �

�

�	 
 � �

�

�

t
( )v 0, (1.3)

and the constitutive equation for a non-heat-conductive fluid

� � � �p p ( )� , (1.4)

where �� is the density of the fluid. These equations are nonlinear. For the problems addressed below, it is assumed that the

motions and processes under consideration are small perturbations to some equilibrium states or primary motion, considered
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known. Considering the unknown functions first-order terms and rejecting the terms of the second order and higher, we

linearized Eqs. (1.2)–(1.4) [64, 75]:

� � � �
0

0
�

�

� �	 � � 	 	 
 �

v
v v

t
p

* * *
( ) ( )� , (1.5)

�

�

� 	 
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�

�

t
0

0v , (1.6)

p p� ( )� . (1.7)

After simplification, the constitutive equation (1.1) takes the following form [75]:

� ( ) �

�

* *
� � �� � � 	 
 �p E ev 2 , 2� ( )e

T
�	 � 	v v . (1.8)

If the oscillations of the fluid about the equilibrium position are small, the following equation can be used to close the

system:

�

�

�

p
a

�
0

2
. (1.9)

Equations (1.5)–(1.9) represent the linearized theory of non-heat-conductive compressible viscous fluid, where�
0
and

a
0
are the density of and the speed of sound in the fluid in equilibrium; pand� are the perturbations of the pressure and density of

the fluid; � � �p p p
0

, � � �� � �
0

.

The following general solutions of the equations of a compressible viscous liquid were first derived in [64]:

v �	 �	 �� �, 	 
 � �� �div 0, (1.10)
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where � and � are scalar and vector potentials,
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�

�

�

� �

t
� 0, (1.14)

where � � �
* *

/�
0
is the kinematic viscosity coefficient.

The boundary conditions are linearized as well. This is possible if the motion of a rigid body in a fluid is small

displacements about some position. In this case, the boundary conditions on the surface of the moving body are carried over

along the normal to the same surface at rest. If the body moves in a compressible viscous fluid, then no-slip conditions must be

satisfied on its surface S . This means that the velocity vector (1.10) is equal to zero if the body is at rest. A free body will move

under hydrodynamic forces [67, 77]. In this case, the no-slip conditions are

v v�
S
, v u r

S
� � �� � , (1.15)

where �u and v
S
are the velocity vectors of the center of inertia and an arbitrary point of the surface S ; � is the instantaneous rate

of rotation of the body; r is the position vector the center of inertia to an arbitrary point of the surface S . The quantities u and�are

determined from the equations of motion of a rigid body under hydrodynamic forces and moments:
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F N
r

S

dS� 

�

�� , M r N
r S

S

dS� � 

�

( � )� . (1.16)

To derive the equations ofmotion of a rigid body in a fluid, use is made of the center-of-mass andmomentum theorems:

�
1

2

2
V
d

dt
r

u
F� ,

d

dt
r

L
M� , (1.17)

whereV and�
1
are the volume and density of the body; L r r� � �

�
�
1

( )�

V

dV is the kinematic moment of the rigid body in the

moving frame of reference.

2.Waves in Prestressed Elastic Bodies Interacting with a Compressible Viscous Fluid.Most studies on prestrained

elastic bodies interacting with a fluid used simplified applied two-dimensional theories for prestressed bodies and assumed the

fluid to be ideal or incompressible viscous.

However, this approach has significant shortcomings which are manifested in dynamic problems. Additional

simplifying hypotheses strongly reduce the applicability of the results.

An approach free from these shortcomings and based on the linearized three-dimensional theory of finite deformations

for solids bodies and the linearized three-dimensional Navier–Stokes equations for a compressible viscous fluid was first

proposed in [57–59, 62–68, 71–79, 168, 170, 171]. This approach is more general and allows a more adequate description of

wave processes in real hydroelastic systems.

In this connection, wewill only focus on the studies conducted at the S. P. Timoshenko Institute ofMechanics using this

approach.

2.1. Statement of Three-Dimensional Problems of Hydroelasticity for Prestressed Bodies and Compressible Viscous

Fluid.The general problem of the interaction of compressible and incompressible elastic bodies with high (finite) prestrains with

a compressible viscous fluid at rest was formulated in [55–73, 75, 76, 78, 79], where a method of study was proposed and the

basic equations of the linearized theory of aerohydroelasticity for prestressed bodies and compressible viscous fluid were

derived.

Following this method, we can assume that elastic bodies can be described by isotropic hyperelastic materials with an

arbitrary elastic potential function. The elastic potential function of a nonlinear elastic body can be an arbitrary twice

continuously differentiable function of the components of the Green strain tensor. Also, let the fluid at rest be Newtonian and

have arbitrary viscosity. Thermal effects can be neglected, according to Mises. Such dynamic processes in hydroelastic systems

are considered that the additional strains induced, i.e., strain perturbations, are much lower than the prestrains.

The assumptions made allow applying the linearized theory of elasticity to elastic bodies, and the smallness of the

perturbations allow applying the linearized Navier–Stokes equations to the compressible viscous fluid. This problem statement

makes it possible to analyze the effect of prestresses of the elastic body and the viscosity of the fluid on the following parameters

of the wave process: phase velocity of perturbations, damping factor of modes, critcal frequencies, dispersion of waves, etc. The

general case is considered where the initial state is described by the theory of large (finite) deformations. Models based on

various theories of small initial deformations, approximate applied two-dimensional theories for bodies with or without

prestresses, the classical theory of elasticity, and approximate fluid models are special cases of the model considered in the cited

publications and can be arrived at by making additional simplifying assumptions.

With these assumptions, the system of linearized equations of aerohydroelasticity for prestressed bodies interacting

with a viscous compressible fluid takes the following form [55–73, 75, 76, 78, 79, 168, 170, 171]:

(i) compressible elastic bodies:
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(ii) incompressible elastic bodies:
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(iii) compressible viscous fluid:
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Specific features in the interaction between an elastic body and a fluid are described by the dynamic conditions

~
Q p N

j ij i
�

0
, z S

k
#

and the kinematic conditions

�

�

�

u
v

t
, z S

k
#

specified at the body–fluid interface.

The tensors
~
�

!"ij
,
~
%

!"ij
, and

~
q
ij
depend on the type of the initial state and the elastic potential of the body. The

expressions for the components of these tensors can be found in [61] where simplifications for various theories of small initial

deformations were proposed.

The equations for elastic bodies are expressed in terms of the Lagrangian coordinates z
i
of the initial state and are valid

for both homogeneous and inhomogeneous strains.

Harmonic wave processes of small amplitude in elastic bodies in initial state are further studied. Unlike solid bodies, the

equations for the fluid are expressed in terms of Eulerian coordinates of its natural state. In the hydroelastic problem, the initial

state of the elastic body is a natural state relative to the fluid and to the system as a whole. Since we are considering the

propagation of small perturbations, the Eulerian and Lagrangian approaches to the description of the behavior of the media

coincide, as indicated in Sec. 1. Therefore, the differences between the Lagrangian and Eulerian coordinates is ignored, which

eliminates the difficulties associated with the formulation of boundary conditions typical for nonlinear problems. Wave

processes in compressible and incompressible prestrained elastic bodies interacting with a compressible viscous fluid whose

initial state is homogeneous are further studied. The displacements to the initial state are defined by

u z
j j j j

0 1
1� �

�
� �( ) , �

j
�const,

where �
j
are the elongations along the coordinate axes. The following general solutions for compressible and incompressible

elastic bodies in homogeneous initial stress–strain state were obtained in [57–59, 71, 72, 75, 79, 168, 170]:
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for incompressible elastic bodies.
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The general solutions of the linearized equations of hydrodynamics of a Newtonian compressible viscous fluid at rest

expressed in terms of scalar and vector potentials in Sec. 1 are as follows [62–65, 71, 72, 75, 76, 78, 171]:
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where u is the displacement vector in the elastic body;� is the density of the elastic body; à
ij
and�

ij
are the coefficients of the

constitutive equations of the elastic bodies; s
""

0
are the prestresses; v is the velocity perturbation vector in the fluid; p

*
and�

*
are

the perturbations of the density and pressure in the fluid;�
0
and a

0
are the density of and the speed of sound in the fluid at rest;

�
*
and�

*
are the dynamic and kinematic viscosity coefficients of the fluid;V

1
is the volume of the elastic body;V

2
is the volume

occupied by the fluid; S is the interface between the media.

Note that these solutions are the most general and can be reduced, by making additional simplifying assumptions, to

special-case solutions for simpler models of elastic bodies and fluids.

The above system of equations of the three-dimensional linearized theory completes the statement of hydroelastic

problems for elastic bodies with homogeneous initial strains and a Newtonian compressible viscous fluid at rest, the thermal

effects being neglected. There are, as special cases, simpler models of fluid (incompressible viscous, compressible ideal,

incompressible ideal) and elastic body (various theories of small initial deformations, classical theory of elasticity, applied

two-dimensional theories for bodies with or without prestresses).

Note that the equations for perturbations are linear, but the initial stress–strain state is determined from the general

nonlinear equations. In this connection, despite the fact that the basic equations are written for the coordinates z
i
of the initial

stress–strain state and all quantities are referred to the dimensions of the body in this state (therefore, the general statement of

hydroelastic problems for prestressed bodies in coordinates z
i
is similar to the statement of linear problems of classical

hydroelasticity), there are, however, substantial differences in the equations and the boundary conditions in these problem

statements.

The above models helped to find solutions to some specific problems.

2.2. Wave Processes in Hydroelastic Systems with Flat Interfaces between the Media.

2.2.1. Stoneley Waves in the Interface between Prestressed Elastic and Compressible Viscous Liquid Half-Spaces. The

propagation of surface waves along the interface between prestrained compressible and incompressible elastic and compressible

viscous liquid half-spaces was studied in [9, 12, 28, 30, 31, 71, 72, 75, 79, 80, 171, 190, etc.].

The interest in these problems is due to the resonant effects that can occur in such hydroelastic systems and generate

waves localized near the interface. The effect of initial strains on the phase velocities of Stoneley waves in the interface between

an elastic body and an ideal fluid was studied in [3, 11, 31, 71, 72, 75, 79, 106, 107, etc.]. The prestresses in the body and the

viscosity of the fluid were taken into account in [9, 12, 28, 30, 31, 71, 72, 75, 79, 80, 171, 190, etc.].

2.2.1.1. Compressible Elastic Body and Compressible Viscous Fluid. The problem for compressible elastic and viscous

compressible liquid half-spaces is characterized by the following dynamic and kinematic boundary conditions:
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We will now use the following general solutions for the plane case under consideration [57, 62–65, 71, 72, 75, 79]:
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where x
i
are potentials determined from the following equations [57, 62–65, 71, 72, 75, 79]:
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The parameters characterizing the propagation of surface waves are defined in the class of traveling waves in the form:

x X z i kz t
j j
� �( )exp[ ( )]

2 1
� , j �1 3, , where k (k i� �" 2) is the wave number, 2 is the damping factor, and � is the circular

frequency ( )i
2

1� � .

Note that despite the fact that the class of harmonic waves selected above is the most simple and convenient for

theoretical studies, it does not reduce the generality of the results obtained because a linear wave of arbitrary profile can be

represented by harmonic components.

We will now discuss the solutions to two Sturm–Liouville eigenvalue problems for the equations of motion of the fluid

and the elastic body and the corresponding eigenfunctions. Substituting the solutions into the boundary conditions (2.1) and

(2.2), we obtain a system of linear homogeneous algebraic equations for arbitrary constants. From the condition for the existence

of a nontrivial solution, we derive the dispersion equation

det | | ( , , , , , , )| |
*

e c a s
lm ij ij ii

� � � �
0

0
0� ( , , )l m �1 4 . (2.3)

Note that the dispersion equation (2.3) is the most general and can be reduced, by making additional assumptions, to

equations for special cases of wave processes and simpler models of elastic bodies and fluids, some of which were used in

[43, 45, 46].

Passing to the limit in (2.3) yielded characteristic expressions for incompressible viscous, compressible ideal, and

incompressible ideal fluids and both bodies with and without prestresses. Note that in deriving Eq. (2.3), the only constraint

imposed on the elastic potential function was its continuous bidifferentiability. Therefore, Eq. (2.3) is general and valid for

prestressed compressible elastic bodies described by arbitrary elastic potential functions. It was shown that if the coefficient of

viscosity �
*
of the fluid and the prestresses s

ii

0
tend to zero, then the dispersion equation (2.3) goes over into the well-known

Stoneley characteristic equation [43, 45, 46, 197]. If, additionally, the density of the fluid is assumed zero, then Eq. (2.3) goes

over into the equation first derived by Rayleigh [41, 43, 45, 151, 193]. Note that both characteristic equations have been

thoroughly analyzed in seismology within the framework of the classical theory of elasticity and the hydrodynamics of ideal

fluid.
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The general dispersion equation (2.3) was solved numerically. It was assumed that the elastic half-plane is loaded along

the oz
1
-axis. With such a load, there is no analogy between linearized and linear problems. Hence, solutions for prestrained

bodies cannot be obtained from the linear solutions [68, 169]. For compressible stiff materials (organic glass) described by the

three-invariant Murnaghan potential function, expressions for the phase velocities and the damping factors of surface waves as

functions of the prestresses were derived. Numerical results were obtained for fluids (water and glycerin) in contact with organic

glass. An analysis of the resulting graphs shows that the prestresses �
11

0
(� � � � �

11

0

1 11

0

2 3
� s / ( ), where� is the shear modulus in

the elastic body without prestresses) increase the phase velocities c (c c ñ� /
s
, c

s
� � 3 �) and decrease the damping factors 2

( /2 2� k
s
, where k

s
is the wave number of a shear wave in the elastic body) of surface waves and that the viscosity of the fluid

has the inverse effect on these quantities.

Graphs of the phase velocity c and damping factor 2 of Stoneley waves versus the dimensionless speed of sound a
0
in

fluid were plotted numerically in [9, 12, 72, 75, 79].

Note that a
0
equal to the ratio of the velocity of acoustic wave in the fluid to the velocity of shear wave in the infinite

elastic body (a a ñ
0 0
� /

s
) characterizes the compressibility of the fluid. Therefore, these graphs illustrate the effect of the

compressibility of the fluid on surface waves.

Both the velocity and damping factor of Stoneley waves in water and glycerin change substantially with increasing a
0
.

If a
0
tends to infinity, we have the case of an incompressible viscous fluid. Thus, we may conclude that assuming the

incompressibility of the fluid in analyzing wave processes in hydroelastic systems consisting of compressible elastic bodies and

a fluid can lead to inaccurate quantitative results.

2.2.1.2. Incompressible Elastic Body and Compressible Viscous Fluid.Unlike compressible rigid bodies, highly elastic

incompressible materials such as rubber can be subjected to large initial deformations without failure. An analysis of the effect of

finite initial strains onwave process is of importance and interest. This problemwas addressed in [11, 30, 31, 38, 72, 75, 79, 190].

Wewill now use the following general solutions of the linearized equations for incompressible bodies interacting with a

incompressible viscous fluid in the plane case under consideration [58, 62–65, 71, 72, 75, 79]:
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where &
1
, x

2
, and x

3
are potential functions determined from the following equations [58, 62–65, 71, 72, 75, 79]:
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The following dispersion equation was derived for a highly elastic incompressible prestressed half-space interacting

with a compressible viscous fluid by a method similar to that for compressible materials:

det | |
~

( , , , , , , , , )| |
*

e c a a
lm ij ij i

2 � � � � �
0 0

0� (l m, ,�1 4). (2.4)

Note that the dispersion equation (2.4) is the most general and can be reduced, by making additional assumptions, to

characteristic equations for special cases of wave processes and simpler models of elastic bodies and fluids, some of which were

used earlier by other researchers.

Equation (2.4) was solved numerically for highly elastic incompressible bodies described by the Treloar potential

function [55, 56, 61, 69–72, 75, 79]. Graphs of the phase velocities of Rayleigh and Stoneley waves versus the prestrains were

plotted for different densities of and speeds of sound in the ideal fluid of the hydroelastic system. The influence of the viscosity of

the fluid and the finite prestrains on the phase velocities and damping factors of surface waves was analyzed as well.

It follows from the graphs that when the load is compressive and �
1
60.54 (more precise value �

1
�0.543694), i.e., the

length of the highly elastic incompressible body decreases by 46%, the phase velocity c
R
(c c c

R R s
� / ) of the Rayleigh wave

drops to zero. This suggests that if the initial stress–strain state of the highly elastic incompressible neo-hookean body is plane,

then surface instability occurs when �
1
60.54. This value is equal to that obtained in the theory of stability [55, 56, 61, 69–72, 75,

79] and corresponds to the critical shortening �
cr
. An analysis of the numerical results also shows that the phase velocity c

St

( /c c c
St St s

� ) of the Stoneley wave vanishes when the elastic half-space is compressed by �
1
� 0.543695, i.e., the surface

instability of the hydroelastic system occurs somewhat earlier. Also, the viscous fluid, as well as the ideal fluid, promotes surface

instability of the hydroelastic system at less compression of the elastic body. Thus, the linearized theory of waves in highly

elastic incompressible bodies allows studying not only wave processes in the general case and some special cases, but also the

conditions for the occurrence of surface instability of the elastic body and the hydroelastic system.

2.2.2. Wave Processes in Prestressed Elastic Half-Spaces Interacting with a Compressible Viscous Liquid Layer. The

propagation of perturbations in an elastic half-space interacting with a liquid layer, which are also among the main types of

surface waves, was studied in [13–16, 31, 33, 34]. A typical feature of such hydroelastic waveguides is that their wave field is

affected by the interaction of waves not only with the interface between the elastic and liquid media, but also with the free

surface.

In the cited publications, the propagation of such surface waves was studied taking into account the prestresses in the

elastic medium and the viscosity of the fluid. For this problem with the boundary conditions
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the following dispersion equations for compressible and incompressible bodies were derived:

det
s

| | ( , , , , , , , , / )| |
*

b c a s a h c
lm ij ij ii
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0

0 0
0� ( , , )l m �1 6 ,

det
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( , , , , , , , , / )| |
*

b c a a h c
lm ij ij i
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0 0

0� ( , , )l m �1 6 .

These dispersion equations are themost general and can be reduced, bymaking additional assumptions, to equations for

special cases of wave processes and simpler models of elastic bodies and fluids, some of which were earlier used by other

researchers.

The general dispersion equations were solved numerically for compressible and incompressible elastic half-spaces

interacting with a compressible viscous liquid layer for different densities of and speeds of sound in it. It was assumed that the

compressible elastic bodies are described by the three-invariant Murnaghan potential function, and the highly elastic

incompressible bodies are described by the Treloar potential function.

2.2.2.1. Compressible Elastic Bodies and Compressible Viscous Fluid. Dispersion curves for fluids with different

speeds of sound were plotted in [13–15, 31, 34]. An analysis of the curves shows that the compressibility of the fluid interacting
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with a compressible elastic body has a strong effect on the dispersion properties of the wave process. The more compressible the

fluid, the more there are propagating modes and the more their phase velocities change. This suggests that the fluid

incompressibility assumption in designing hydroelastic waveguides consisting of compressible elastic materials and a liquid

layer may lead to very inaccurate quantitative and qualitative results.

The effect of the pretension (�
11

0
�0.004) on the phase velocities of surface waves was studied as well. An analysis of

the graphs plotted shows that despite the fact that the decomposition of the surface wave typical for a compressible elastic

half-space into several modes is due to the presence of the liquid layer, the prestresses in the elastic body affect all themodes. The

effect of the prestrains on the phase velocities of the modes is especially strong at their critical frequencies. The higher the

frequency (the thicker the liquid layer), the weaker the effect of the prestresses. The phase velocities of the high-order modes

beginning from the second order asymptotically tend to the speed of sound in the fluid, and the effect of the elastic bodyweakens.

The influence of the viscosity of the fluid, the thickness of the liquid layer, and the prestresses on the phase velocities

and damping factors of surface waves was also analyzed for twomaterials: steel and organic glass. A comparative analysis of the

results for steel and organic glass shows that, unlike Stoneley waves existing for each ratio between the parameters of the elastic

and liquid media, the decomposition of the Rayleigh wave typical for an elastic half-space into several modes caused by the

liquid layer occurs only when the velocity of the shear wave in the elastic half-space exceeds the velocity of the acoustic wave in

the fluid [33, 34]. Otherwise, only one wave propagates in the system and its velocity monotonically decreases from the

Rayleigh-wave velocity to the Stoneley-wave velocity. The numerical results show that the prestresses and the viscosity and

density of and the speed of sound in the fluid affect the critical frequencies of waves and the phase velocities of themodes at these

frequencies.

2.2.2.2. Incompressible Elastic Bodies and Compressible Viscous Fluid. The effect of large (finite) initial strains and

the viscosity of the fluid on wave propagation was studied in [16]. The phase velocities c of the modes were plotted against the

thickness h (h h c� � /
s
) of the viscous liquid layer contacting with a precompressed (�

1
� 0.8) or prestretched (�

1
� 1.5)

incompressible half-space. Also, the function 2 � f h( )was plotted to demonstrate the effect of the prestresses on the damping

factor of waves.

2.2.3. Wave Processes in a Prestressed Elastic Layer on a Compressible Viscous Liquid Half-Space.The studies on this

class of waves and the associated results obtained using the classical theory of elasticity and the assumption of ideal fluid are

reviewed in [41, 43, 45, 53, 54]. As already mentioned, some factors inherent in real materials and affecting the wave process

cannot be described by the classical theory of elasticity and the hydrodynamics of an ideal fluid.

The propagation of normal waves in an elastic layer interacting with a compressible viscous liquid half-space, which are

also among themain types of acoustic waves, was studied in [31, 37, 39, 71, 72, 75, 79, 81]. A typical feature of such hydroelastic

waveguides is that their wave field is affected by the interaction of waves not only with the interface between the elastic and

liquid media, but also with the free surface of the elastic layer.

In the cited publications, the propagation of such surface waves was studied taking into account the prestresses in the

elastic medium and the viscosity of the fluid.

For this problem with the dynamic boundary conditions
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, the following dispersion

equations were derived for compressible and incompressible bodies, respectively:
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( , , , , , , ,
*

ý I c a a
lm ij ij i

2 � � � �
0 0

, �h c/ ) | |
s

� 0 ( , , )l m �1 6 .

Note that these dispersion equations are the most general and can be reduced, by making additional assumptions, to

equations for special cases of wave processes and simpler models of elastic and liquid media, some of which were used in [41,

43, 45, 53, 54]. Both general dispersion equations were solved numerically. The influence of the speed of sound in the fluid, its

density and viscosity, and the prestresses and the thickness of the elastic layer on the phase velocities and damping factors of

quasi-Lamb waves was analyzed.
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The phase velocities c
7
of the modes were plotted against the thickness h of the elastic layer (frequency) to illustrate the

influences of pretension (�
11

0
�0.004) on the phase velocities of normal waves. An analysis of the graphs shows that the effect of

the prestress (�
11

0
�0.004) is closely related to the compressibility of the fluid. For less compressible fluids (a

0
�2000 m/sec),

the prestresses reduce the phase velocities of the higher modes at the critical frequencies (thickness). With further increase in the

thickness of the elastic layer (frequency), the prestrains increase the phase velocity. An analysis also shows that in such

hydroelastic waveguides, there are certain modes whose phase velocities do not depend on the prestresses. Note that this

qualitatively new phenomenon, which is absent in unbounded and semibounded bodies, was discovered and described in [98] for

an elastic layer that does not interact with a fluid.

The influence of the viscous fluid on the wave process was analyzed as well. The dimensionless phase velocities c of

waves were plotted against the dimensionless thickness h of the elastic layer. Comparing the dispersion curves for an elastic

layer in vacuum [98] and the hydroelastic system shows that the compressible viscous fluid changes the critical frequencies of

waves. It was shown that with increase in the thickness of the elastic layer, all the modes in it, beginning from the fourth one, go

farther away from the surfaces into the layer. This is a major factor that weakens the effect of the viscosity of the fluid on the

phase velocities and reduces the damping factors of these modes. Unlike the high-order modes, mode 1 tends to the interface

between the media with increase in the thickness and becomes a quasisurface Stoneley-type wave. This explains why the

viscosity of the fluid decreases the phase velocities and increases the damping factors of this mode. Quasisurface Rayleigh-type

mode 2 in the elastic layer tends to the interface with increase in the thickness. This explains the effect of the viscosity of the fluid

on the kinematic characteristics of this mode over the entire frequency range.

Graphs of the damping factors 2 of the modes versus the thickness h of the layer were plotted as well. Their feature is

strong damping of the first mode at its critical frequency. The damping factors of the high-order modes first increase after the

origination of waves and then substantially decrease with increase in the layer thickness.

An analysis of the results obtained in the cited studies shows that the compressibility of the fluid has a strong effect on

the wave properties of a hydroelastic waveguide consisting of compressible elastic bodies and a fluid. The damping factors of the

high-order modes decrease with increase in the thickness of the elastic layer (frequency). The higher the viscosity of the fluid, the

lower the phase velocities and the higher the damping factors of waves.

The effect of the viscosity of a liquid half-space on the phase velocities of waves interacting with a prestrained

incompressible elastic layer was studied in [31, 39, 71, 72, 75, 79]. The relative change in the phase velocities c
*
of modes

( ( ) /
*

c c c c
i v i

� � , c
i
is the velocity of waves in the elastic layer–ideal fluid system; c

v
is the velocity of waves in the elastic

layer–viscous fluid system) was plotted against the thickness h of the elastic layer (frequency). Also, graphs were drawn

showing the influence of the frequency (the thickness of the elastic layer) h, the viscosity�
*
of the fluid, and the prestrains �

1
on

the damping factors of various modes.

An analysis of the graphs shows that the effect of the viscosity of the fluid on the damping factors and phase velocities of

the high-order modes weakens with increase in the frequency.

For a highly elastic incompressible neo-hookean thin elastic layer interacting with a liquid half-space, the combined

effect of the viscosity of the fluid and the prestresses is mainly exerted on the lower bending mode and becomes stronger with

increase in the prestrains. The rate of this change is maximum near the bending buckling mode.

2.2.4. Wave Processes in the Prestressed Elastic Layer–Compressible Viscous Liquid Layer System. The specific

behavior of propagating perturbations in such a hydroelastic waveguide is due to the presence of boundary surfaces in the elastic

body and the fluid. This considerably complicates the wave field in it, which is because the wave field is strongly affected not

only by the interaction of longitudinal and transverse waves with the surface of the elastic body contacting with the fluid, but also

by the presence and interaction of free boundaries. The interaction of waves on the boundary surfaces results in wave dispersion.

Waves propagating in such a hydroelastic system are a generalization of the well-studied Rayleigh, Stoneley, Love, and

Lambwaves. Studies on and results obtained using the classical theory of elasticity and the assumption that compressible fluid is

ideal are reviewed in [41, 43, 45]. For wide application of surface waves, it is necessary to allow for the characteristics of real

media. This is also because these properties affecting the wave process cannot be described by the classical theory of

hydroelasticity. Among such properties are the prestresses in the elastic body and the viscosity and compressibility of the fluid.

Relevant problems and results obtained with allowance for these properties are discussed in [17–25].

For this problem with the dynamic and kinematic boundary conditions
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the following dispersion equation was derived:

det
s s

| | ( , , , , , , , , / , / )|
*

r c a s à h c h c
lm ij ij ii

2 � � � � �
0

0 0 1 2
|� 0 ( , , )l m �1 8 .

Note that this dispersion equation is the most general and can be reduced, by making additional assumptions, to

equations for special cases of wave processes and simpler models of elastic and liquid media, some of which were used in [41,

43, 45, 143, 182, 198]. This general dispersion equation was solved numerically using the three-invariant Murnaghan potential

function for the elastic body [71, 72, 74, 100, 101, 170, 172, 173]. The influence of the viscosity of the fluid, the prestresses, and

the thicknesses of the elastic and liquid layers on the phase velocities and damping factors of quasi-Lambwaves was numerically

analyzed for two hydroelastic systems: (i) organic glass–water with the following parameters for the elastic and liquid layers,

respectively: � � 1160 kg/m
3
, � � 
396 10

9
. Pa, � � 
186 10

9
. Pa, a � � 
391 10

9
. Pa, b � � 
702 10

9
. Pa, c � � 
141 10

9
. Pa [98, 100,

101, 172, 173] and�
0
�1000 kg/m

3
, à

0
�1459.5m/sec,�

*
�0.001, a a c

0 0
� �/

s
1.152595; (ii) 09G2S steel–water waveguide

with the following parameters for the elastic and liquid layers, respectively:� �7800 m/sec, � � 
926 10
10

. Pa,� � 
775 10
10

. Pa,

a � � 
319 10
9
Pa, b � � 
303 10

9
Pa, c � � 
784 10

9
. Pa [98, 100, 101, 172, 173] and �

0
� 1000 kg/m

3
, à

0
� 1459.5 m/sec,

a a c
0 0
� �/

s
0.463021. The calculated results are presented in Figs. 2.1–2.30.
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Figures 2.1–2.14 represent the organic glass–water system. Figure 2.1 shows dispersion curves for the hydroelastic

waveguide (the dimensionless phase velocities c (c c ñ� /
s
) of modes versus the dimensionless thickness h

2
(h h c

2 2
� � /

s
) of

the elastic layer without prestrains in contact with the thick compressible viscous liquid layer of thickness h
1
�20 (h h c

1 1
� � /

s
)

and �
*
� 0.001.

Figures 2.2–2.5 show the dimensionless damping factors 2 (2 2� / ,k k
s s

is the wave number of the shear wave in the

elastic layer) versus the dimensionless thickness h
1
of the elastic layer of thickness h

2
without prestrains in contact with the

viscous liquid layer of thickness h
1
� 20 and �

*
� 0.001.

The effect of pretension (�
11

0
�0.004) on the velocities of normal waves in the hydroelastic system is demonstrated by

Figs. 2.6–2.8, which show the relative changes in the phase velocities ñ
7
(ñ ñ ñ c

7 �
� �( ) / , ñ

�
is the phase velocity of modes in

the prestressed layer, ñ is the phase velocity of normal waves in the elastic layer without prestrains) versus the thickness h
2
of the

elastic layer in contact with the viscous liquid layer of thickness h
1
� 20 and �

*
� 0.001.

The effect of pretension (�
11

0
�0.004) on the damping factors of modes in the elastic layer interacting with the viscous

liquid layer is demonstrated by Figs. 2.9–2.11, which show the relative changes in the damping factors 2
7
(2 2 2 2

7 �
� �( ) / , 2

�

are the damping factors of modes in the hydroelastic system with prestrained elastic layer, 2 are the damping factors of modes in

the hydroelastic systemwithout prestrains) versus the thickness h
2
of the elastic layer in contact with the liquid layer of thickness

h
1
� 20 and �

*
� 0.001.

The effect of the viscosity (�
*
� 0.001) of the fluid on the velocities of modes in the hydroelastic system is

demonstrated by Figs. 2.12–2.14, which show the relative changes in the phase velocities c
*
(

*
c � �( ) /c c c

i v i
, c

i
is the phase

velocity of normal waves in the hydroelastic system with an ideal fluid, c
v
is the phase velocity of modes in the system with a

viscous fluid) versus the thickness h
2
of the elastic layer in contact with the viscous liquid layer of thickness h

1
�20 and �

*
�

0.001.
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It can be seen from Fig. 2.1 that with increase in the thickness h
2
of the elastic layer, the velocity of the first mode tends

to the Stoneley-wave velocity c
St

(c c ñ
St St s

� �/ 0.769121) from below and the velocity of the second mode tends to the

Rayleigh-wave velocity c
R

(c c c
R R s
� �/ 0.933558) from above. Note that quasisurface mode 1 propagating along the

interface in the hydroelastic system with a c
0

1152595� 8 �.
R

0.933558 is localized near the surface of the elastic body [46] and

quasi-Rayleigh mode 2 propagates along the free surface of the elastic layer. The phase velocities of all the high-order modes

tend to the shear-wave velocity c
s
in the elastic body.With increase in the thickness, these modes are localized in the elastic layer

[45]. The fluid increases the number of normal quasi-Lamb waves in the hydroelastic system. The low-order modes have zero

cutoff frequencies.

Figures 2.2–2.5 indicate that there are thicknesses of the elastic layer for which the damping factor of each mode is

maximum or minimum.With increase in the thickness of the elastic layer, the damping factors of the quasi-Lampmodes (except

for the first one) decrease and the effect of the viscous fluid on them weakens.

It can be seen from Figs. 2.6–2.8 that the pretension (�
11

0
�0.004) of the elastic layer increases the phase velocities of

modes 1–7. At the critical frequencies, the velocities of modes 8–15 are lower than those in the elastic layer without prestresses.

It can easily be seen that there are certain values of the thickness of the elastic layer at which the prestrains do not affect the phase

velocities of all the modes beginning from the eighth. In the hydroelastic system with a thick liquid layer, there are three such

thicknesses of the elastic layer for each of modes 8, 9, and 10 and five thicknesses for the next high-order modes.

It follows from Figs. 2.9–2.11 that there are certain thicknesses of the elastic layer at which the pretension (�
11

0
�0.004)

does not affect the damping factors of all the modes beginning from the second.

It follows from Figs. 2.12–2.14 that there are certain thicknesses of the elastic layer at which the effect of the viscosity

of the fluid on the phase velocities of all the modes is the weakest. If the elastic layer is thick, there are thicknesses of the elastic

layer at which the effect of the viscosity of the fluid on the phase velocities of a number of modes is substantial. With increase in

the thickness of the elastic layer, the effect of the viscosity of the fluid on the phase velocities of all the modes beginning from the

second weakens.
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Figures 2.15–2.17 show dispersion curves for the hydroelastic waveguide (the dimensionless phase velocities c of

modes versus the dimensionless thickness h
2
of the elastic layer without prestrains in contact with the thick viscous liquid layer

of thickness h
1
�20 and�

*
�0.001). Figure 2.15 represents the first tenmodes and Figs. 2.16 and 2.17 represent modes 11 to 23.

Figures 2.18–2.22 show the dimensionless damping factors 2 of modes versus the dimensionless thickness h
2
of the

elastic layer without prestrains in contact with the viscous liquid layer of thickness h
1
� 20 and �

*
� 0.001.

The effect of pretension (�
11

0
�0.004) on the velocities of normal waves in the hydroelastic system is demonstrated by

Figs. 2.23–2.26, which show the relative changes in the phase velocities ñ
7
versus the thickness h

2
of the elastic layer in contact

with the liquid layer of thickness h
1
� 20 and �

*
� 0.001.

Figure 2.23 represents modes 1, 7–10, Fig. 2.24 represents modes 2–6, and Figs. 2.25 and 2.26 modes 11–24.

The effect of pretension (�
11

0
�0.004) on the damping factors of modes in the hydroelastic waveguide is demonstrated

by Figs. 2.27–2.30, which show relative changes in the damping factors 2
7
versus the dimensionless thickness h

2
of the elastic

layer in contact with the compressible viscous liquid layer of thickness h
1
� 20 and �

*
� 0.001.

Figure 2.15 shows that as the thickness h
2
of the elastic layer increases, the velocity of the first mode tends to the

Stoneley-wave velocity c
St

(c
St

� 0.461819) from below, which is slightly lower than the velocity a
0
(a

0
� 0.463021) of

acoustic waves in the fluid. The phase velocities of modes 2–10 tend to the velocities of waves that are higher than the

acoustic-wave velocity a
0
(a

0
� 0.463021) in the fluid, but lower than the quasi-Rayleigh-wave velocity c

R
(c

R
� 0.923008).

The dispersion curves of these normal waves are characterized by zero cutoff frequencies. Moreover, they become almost

dispersionless as their length decreases and frequency increasingly differs from the cutoff frequencies.

Figure 2.16 demonstrates that with increase in the thickness of the elastic layer, the velocity of mode 13 tends to the

Rayleigh-wave velocity c
R
(c

R
�0.923008) from below, the phase velocity of mode 14 tends to the Rayleigh-wave velocity c

R

from above, and the phase velocities of all the subsequent high-order modes tend to the shear-wave velocity c
s
(Figs. 2.16 and

2.17).
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Figures 2.18–2.22 indicate that there are thicknesses of the elastic layer for which the damping factor of each mode is

maximum or minimum. With increase in the thickness of the elastic layer, the damping factors of the quasi-Lamp modes

(beginning from the 13th) decrease and the effect of the viscous fluid on them weakens.

It can be seen from Figs. 2.23–2.26 that the pretension (�
11

0
�0.004) of the elastic layer increases the phase velocities of

modes 1–10. At the critical frequencies, the velocities of modes 11–24 are lower than those in the elastic layer without

prestresses. It can easily be seen that there are certain values of the thickness of the elastic layer at which the prestrains do not

affect the phase velocities of the second mode and all the modes beginning from the 11th. In the hydroelastic system with a thick

liquid layer (h
1

20� ), there is one such thicknesses for the second mode and for each of modes 11–24.

It follows from Figs. 2.27–2.30 that there are certain thicknesses of the elastic layer at which the pretension (�
11

0
�

0.004) does not affect the damping factors of all the modes.

2.2.4.1. Influence of the Viscosity of the Fluid on the Dispersion of Quasi-Lamb Waves in Hydroelastic Waveguides. In

a hydroelastic waveguide, the fluid changes the critical frequencies, shifts the dispersion curves to the long-wave part of the

spectrum, and changes their configuration for some modes and gives rise to new modes. As a result, the effect of the fluid on the

phase velocities of modes at their critical frequencies becomes substantial.

The effect of the viscosity of the fluid is due to its interaction with the displacements occurring in the hydroelastic

system during the propagation of waves. At those points of the modes where the shear displacements at the interface between the

media are predominant, the effect of viscosity is the strongest and the damping factors and relative changes in the velocities are

maximum. At points of waves with small surface shear displacements, the effect of viscosity is the weakest. As indicated above,

with increase in the thickness, the phase velocities of high-order modes tend to the shear-wave velocity in the elastic body. With

increase in the thickness [45], those transverse displacements dominate whose amplitude on the layer surfaces tends to zero

compared with the amplitudes inside the layer, i.e., the displacements in high-order modes shift from the surface into the layer.

As a result, the effect of the viscosity of the fluid on the phase velocities and damping factors of these modes weakens with

increase in the thickness of the elastic layer in the short-wave part of the spectrum.
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2.2.4.2. Influence of the Prestresses on the Dispersion of Quasi-LambWaves in Hydroelastic Waveguides.As shown in

[98], the pretension of an elastic waveguide without fluid changes the critical frequencies of the modes and shifts their dispersion

curves. As a result, at the critical frequencies, the phase velocities of themodes in a prestrained layer can be either lower or higher

than those in the absence of prestresses. This is also why there are frequencies (thicknesses) at which the prestresses do not affect

the phase velocities of some normal Lamb waves.

The pretension in hydroelastic waveguides changes the critical frequencies and shifts the dispersion curves to the

long-wave part of the spectrum. Because of this, there are certain thicknesses of the elastic layer at which the prestresses do not

affect the phase velocities of some quasi-Lamb modes.

In the organic glass–water system, the pretension (�
11

0
� 0.004) shifts the dispersion curves of the modes to the

long-wave part of the spectrum and changes their configuration. The scale of these changes depends on the mode number. The

higher the order of modes, the stronger these changes. Because of this, there is one frequency of the elastic layer at which the

phase velocity of each of the lower modes does not depend on the pretension. There are more such thicknesses for modes of

higher order.

In the steel–water system, the pretension also shifts the dispersion curves to the long-wave part of the spectrum and

changes their configuration. Unlike the organic glass–water system, the pretension (�
11

0
�0.004) stretches the dispersion curves

of the modes. Therefore, there is one thickness of the elastic layer at which the phase velocity of each of the modes beginning

from the 16th does not depend on the pretension.

2.2.4.3. Localization Properties of the Lower-Order Modes in Hydroelastic Waveguides. Figure 2.1 demonstrates that

as the thickness h
2
of the elastic layer in the organic glass–water system increases, the velocity of mode 1 propagating along the

interface between the media tends to the Stoneley-wave velocity c
St

(c
St

� 0.769121) from below. Regarding the behavior of

this mode in the short-wave part of the spectrum, the following is noteworthy. The phase velocity and profile of a Stoneley wave

in the interface between solid and liquid half-spaces is known [46] to depend on the mechanical parameters of the hydroelastic
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system and are determined by the ratio between the acoustic-wave velocity in the fluid and the Rayleigh-wave velocity in the

solid half-space. The mechanical parameters of the organic glass–water system are such that the speed of sound a
0
in the fluid

(a
0
�1.152595) is higher than the quasi-Rayleigh-wave velocity c

R
(c

R
�0.933558). According to [46], in the short-wave part

of the spectrum, quasisurface mode 1 penetrates deeper into the elastic body than into the fluid. Therefore, mode 1 propagating

along the interface of themedia is mainly localized near the surface of the elastic layer. The velocity of mode 2 propagating in the

elastic layer along its free boundary tends to the Rayleigh-wave velocity c
R
(c

R
�0.933558) from above. The velocities of all the

high-order modes tend to the shear-wave velocity c
s
in the elastic body. With increase in the thickness of the elastic layer, these

modes tend to localize in it [45].

Thus, in this hydroelastic system, the low-order modes get into the solid body and, as well as the high-order modes,

propagate in the elastic layer. This explains the influence of the prestresses on the phase velocities of all modes. The elastic layer

makes the major contribution to the formation of the wave field and to the transfer of the wave energy.

Figures 2.15–2.17 demonstrate that as the thickness h
2
of the elastic layer in the steel–water system increases, the

velocity of mode 1 propagating along the interface between the media tends to the Stoneley-wave velocity c
St

(c
St

�0.461819)

from below. The mechanical parameters of the steel–water system are such that the speed of sound a
0
in the fluid (a

0
�

0.463021) is lower than the quasi-Rayleigh-wave velocity c
R
(c

R
�0.923008). According to [46], in the short-wave part of the

spectrum, quasisurface mode 1 penetrates deeper into the fluid than into the elastic body. Therefore, mode 1 propagating along

the interface of the media is mainly localized near the surface of the liquid layer. This also applies to modes 2–12 which

propagate in the fluid. Since no low-order mode penetrates into the elastic body, the surface of the elastic layer adjoining the fluid

remains free of them. This region is occupied by mode 13. The velocity of this mode propagating in the elastic layer along the

interface tends to the Rayleigh-wave velocity c
R
(c

R
�0.923008) from below, as in an elastic layer that interacts with no fluid.

The velocity of mode 14 propagating in the elastic layer along its free boundary tends to the Rayleigh-wave velocity c
R
(c

R
�

0.923008) from above. The velocities of all the high-order modes tend to the shear-wave velocity c
s
in the elastic body, and, as

mentioned above, these modes are localized in the elastic layer.
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Thus, in this hydroelastic system, not only the first mode, but also modes 2–12 resulting from the interaction between

the elastic and liquid layers do not penetrate into the elastic body and propagate in the fluid near the interface. This explains the

weak effect of the elastic layer and its prestresses on the phase velocities and dispersion of these modes. All the other high-order

modes propagate in the elastic layer. In this case, both elastic and liquid layers transfer the energy of normal waves.

The liquid layer gives rise to new normal waves with zero cutoff frequencies. The fluid changes the critical frequencies

and the configuration of the dispersion curves and shifts them to the long-wave part of the spectrum. The fluid affects the

distribution of the modes between the media. The localization of the low-order modes in the liquid layer–elastic layer system

depends on the mechanical parameters of the hydroelastic system. The basic criterion of distribution of the normal low-order

waves between the media is the ratio between the acoustic velocity in the fluid and the velocity of the quasi-Rayleigh wave

propagating in the elastic layer near its free surface.

2.3. Wave Processes in Hydroelastic Waveguides with Cylindrical Interfaces between Elastic and Compressible

Viscous LiquidMedia. The interest to such hydroelastic waveguides is due to their wide use. In this connection, it is necessary to

theoretically study the effect of such factors as the geometry, curvature, and wall thickness of the hollow cylinder, prestresses,

the presence of fluid and its properties, and the type of symmetry of motions on the parameters of wave processes. The

three-dimensional linearized theory of aerohydroelasticity of prestressed bodies and compressible viscous fluid can be used for

this purpose.

The linearized theory of aerohydroelasticity for prestressed bodies developed in [55–66, 69–79, 168–171] to solve

spatial dynamic problems of the propagation of small perturbations in prestrained compressible and incompressible hollow

cylinders containing a compressible viscous fluid at rest has been further developed in [5–8, 10, 26, 27, 29, 31, 32, 35, 62, 63, 66,

71, 72, 75, 82, 99, 155, 171].

For this problem with the dynamic and kinematic boundary conditions
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the following dispersion equations were derived for compressible [8, 29, 71, 72, 75] and incompressible [26, 27, 71, 72, 75, 79]

materials, respectively:

det | | ( , , , , , , , , , )| |
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These dispersion equations are themost general and can be reduced, bymaking additional assumptions, to equations for

special cases of wave processes and simpler models of elastic bodies and fluids, some of which were earlier used by other

researchers.

2.3.1. Special Cases.

2.3.1.1. Waves in an Isotropic Shell Filled with a Compressible Viscous Fluid (Kirchhoff–Love Model). A special case

of the general problem is the propagation of normal waves in an isotropic cylindrical shell filled with a compressible viscous

fluid. Such a problem was solved in [66, 71, 72, 75, 99] using the two-dimensional Kirchhoff–Love shell model. The following

dispersion equation was derived:

det | | | |!
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� 0 (l m, ,�1 3), (2.5)
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where�and E are Poisson’s ratio and Young’s modulus of the material the shell is made of; R and h are the radius of curvature of

the midsurface and the thickness of the shell.

The dispersion equation (2.5) describes the propagation of nonaxisymmetric waves in a circular cylindrical shell filled

with a compressible viscous fluid at rest. Special cases can be derived from this equation some of which have been examined

earlier and some have not.

By passing to the limit in the dispersion equations, the following special cases were obtained and analyzed in [66, 71,

72, 75, 99]: incompressible viscous fluid, compressible ideal fluid, incompressible ideal fluid, torsional oscillations,

axisymmetric waves.

It was shown that if the viscosity of the fluid is low (7 � �� ::
*
/ ( )R

2
1), the phase velocity and damping factor of

torsional waves can be expressed analytically up to 7: c R h
1 0

1 2 26 �� � 7 � �/ ( ( ) / ( )), 2

7��

�

� �6
0

2 2

R

h

/ .

Note that in studying torsional waves in systems elastic bodies interacting with a viscous fluid, the results do not depend

on whether the fluid is compressible or incompressible because torsional waves do not compress the viscous fluid and the

parameters characterizing its compressibility do not appear in the equations.

The axisymmetric problem was addressed in [160] where only the long-wave approximation was discussed in detail.

2.3.1.2. Waves in anOrthotropic Shell Filled with a Compressible Viscous Fluid (TimoshenkoModel).A special case of

the general problem is the propagation of normal waves in an orthotropic cylindrical shell filled with a compressible viscous

fluid. Such a problem was solved in [31, 35, 71, 72, 75, 82, 99, 153] using the two-dimensional Timoshenko shell model (with

shear strains allowed for).
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The following dispersion equation was derived:
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n n
� �/ ( )

12 12 21
1 � � , 7 � �

n n
E k G n� � � �/ ( ), ,

13 12 21
1 1 2,

b b b
12 1 21 2 12

� �� � , k h a
0

2� / ;�
ij
, E

i
, andG

ij
are Poisson’s ratios, Young’s moduli, and shear moduli of the shell material; a

and 2h is the mid-surface radius and the thickness of the shell; �k is the shear coefficient used in the Timoshenko theory of shells

[99].

Note that this dispersion equation is the most general and can be reduced, by making additional assumptions, to

equations for special cases of wave processes and simpler models of elastic bodies and fluids (incompressible viscous fluid, ideal

fluid, empty shell, torsional modes, axisymmetric and nonaxisymmetric waves, isotropic shell, Kirchhoff–Love model). These

special cases were obtained and examined in [71, 72, 75, 99] by passing to the limit, and the associated dispersion equations were

derived.

The general dispersion equation (2.6) was solved numerically for isotropic and orthotropic boron-fiber-reinforced

plastic shells filled with glycerin and water. The influence of the parameters and properties of shells (rotary inertia, shear strain,

orthotropy, Poisson’s ratio) and fluid (viscosity, compressibility, density) and the types of symmetry of motion (torsional,

axisymmetric, nonaxisymmetric) on the dispersion, phase velocities, and damping factors of longitudinal waves was studied.

Many numerical results were obtained and plotted in [35, 71, 72, 75, 82, 99, 153].

The results obtained with the former model, which neglects shear, are overestimated for the first mode, coincide for the

secondmode, and are absent for the third mode. This is consistent with the physics of the process because an increase in the shear

modulusG
13

is equivalent to an increase in the stiffness of the shell material, which leads to an increase in the velocities of the

waves. The third mode can only be described with the Timoshenko theory of shells. For more adequate qualitative and

quantitative study of wave processes in orthotropic and isotropic shells made of materials with low shear stiffness, it is necessary

to use models that allow for transverse-shear strains and rotary inertia.
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Figures 2.31 and 2.32 show how the shear strain and rotary inertia influence the dispersion curves of the orthotropic

shell–viscous fluid system. The former figure presents frequency–phase characteristics and the latter figure the frequency

dependence of the damping factors. The dash-and-dot line in Fig. 2.31 represents the sections of the dispersion curves that in the

absence of fluid merge into a third dispersion curve typical for empty shells. A numerical analysis of the effect of shear strain and

rotary inertia on the characteristics of the hydroelastic waveguide shows that if these factors are neglected, the dash-and-dot

sections of the dispersion curves will be absent in Fig. 2.31. The frequency–phase curves in this region will coincide with the

solid lines (the junction sections being dashed). Moreover, ifG
13

;<, then the phase velocities of the first mode and high-order

modes are higher than those in the system with shear strains (the dashed lines in Fig. 2.31 correspond to E G
1 13
/ � 2.6). For

example, decreasing E G
1 13
/ by 95% increases the phase velocities of the seventh and first modes at frequency � � 4 by 20 and

45%, respectively. This result, apparently, confirms that it is desirable to use the equations of motion based on the Timoshenko

hypothesis to study wave processes in shells made of a material with low shear stiffness and filled with a viscous fluid.

The fluid in the shell considerably affects the qualitative pattern of dispersion curves, no matter whether axisymmetric

or nonaxisymmetric (n =1) waves propagate in the shell–fluid system. Figure 2.33 shows graphs of c f� ( )� for a shell with a

fluid for n � 2 (the solid lines represent boron-fiber-reinforced plastic shell filled with glycerin). It can be seen that the viscous

fluid greatly increases the number of modes, the first 14 modes being shown in this figure.

Figure 2.34 shows (solid lines) the damping factors 2 versus frequency � for n � 2. For n � 2, unlike axisymmetric

waves, the damping factors of the first mode alone monotonically increase with frequency. For all the other modes, there are a

range of � in which 2 monotonically increases or a range in which 2 monotonically decreases.

Figures 2.33 and 2.34 show how Poisson’s ratio influences the behavior of the frequency–phase curves. The dashed

lines correspond to �
12

� 0.28 and �
21

� 0.1.

In the publications cited above, the effect of some other parameters of shells and fluid and the types of symmetry of

motion on the wave processes in hydroelastic systems was numerically analyzed as well, and the results were presented in the

form of graphs.

2.3.1.3. Waves in Prestrained Elastic Cylinders with a Compressible Ideal Fluid (Three-Dimensional Linearized

Theory). Another special case is a wave process in prestressed compressible and incompressible hollow cylinders filled with an

ideal fluid. Such a problemwas solved in [5–7, 10, 26, 29, 31, 71, 72, 75, 99, 155] using the three-dimensional linearized theory.

Dispersion equations were derived for compressible and incompressible hollow elastic cylinders subjected to large

(finite) prestrains and filled with a compressible ideal fluid.
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2.3.1.3.1. Compressible Elastic Bodies and Compressible Ideal Fluid. A wave process in prestressed compressible

hollow cylinders filled with a compressible ideal fluid was considered in [6, 7, 10, 29, 31, 71, 72, 75, 99, 155].Wave propagation

in either thin-walled (h h R� �/ 0.05) or thick-walled (h �0.75) hollow cylinders either containing or not a compressible ideal

fluid was studied. The cylinders were considered to be made of compressible elastic materials, such as steel, described by the

three-invariant Murnaghan potential function. It was shown that the fluid has a strong effect on the dispersion pattern, especially

in thin-walled hollow cylinders. Figures 2.35 and 2.36 show the dimensionless phase velocities c (c c c� /
s
, c

s

2
�� �/ is the

shear-wave velocity in the body without prestresses) versus the dimensionless frequency � (� �� R c/
s
) for thin-walled

cylinders of thickness h �0.05, Fig. 2.35 representing a hollow cylinder without fluid. Comparing Figs. 2.35 and 2.36 shows that

the fluid substantially increases the number of modes propagating in the hydroelastic system.

Unlike the fluid, the prestresses affect the phase velocities of the modes mainly at their critical frequency in both

thin-walled and thick-walled cylinders.

Figures 2.37 and 2.38 show the relative velocities c
7
of various modes versus the frequency � in precompressed (�

33

0
�

–0.004) thick-walled hollow cylinders of thickness h �0.75 filled with a fluid. It can be seen that, as in cylinders without fluid,

there are certain modes whose phase velocities do not depend on the prestresses.

The effect of the prestrains and fluid on the phenomenon of backward wave in a hollow compressible cylinder filled

with an ideal fluid at rest was studied in [7, 31, 71, 72, 75, 79].

A backward wave in an elastic body is known [31, 54, 71, 72, 75, 148] to be a wave whose group and phase velocities

are of opposite signs, like some modes existing in electromagnetic waveguides.

Note that Lamb was the first to predict such waves in some one-dimensional media [182]. Later, in studying waves in

lattices, Mandel’shtam [146] noticed frequency ranges in which modes have negative group velocity. This phenomenon in

elastic layers [198], plates and solid cylinders [186] was studied in detail. The propagation of normal waves with abnormal

dispersion in a cylinder with a fluid was discussed in [7, 31, 72, 75, 140].

In [54, 146, 182, 186, 198], this phenomenon was studied using the classical theory of elasticity and disregarding the

prestresses. However, quantitative data are necessary to continue the dispersion curves after the intersection of branches of

various families in studying frequency spectra and unsteady wave processes in various waveguides subject to prestrains.

The phenomenon of backward waves in hydroelastic waveguides was studied in [7, 31, 72, 75] taking into account the

presence of a fluid and prestresses.
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A numerical solution of a transcendental dispersion equation is presented in Figs. 2.39 and 2.40, which show � � f k( )

for a thick-walled hollow cylinder with dimensionless wall thickness h � 0.75 filled with a compressible ideal fluid.

From the graphs presented in the cited publications and in Figs. 2.39 and 2.40, it follows that the phenomenon of

backward wave (section BA of curve 3 in Fig. 2.39) is three-dimensional and exists only in thick-walled hollow cylinders either

containing a fluid or not. It was established that in thin-walled hollow cylinders filled with a fluid, waves propagate without

abnormal dispersion and the backward-wave phenomenon does not occur. It was shown (Fig. 2.40) that axial compression

(�
33

0
� –0.004) and fluid increase the phase velocity of the backward wave in a compressible elastic hollow cylinder made of

09G2S low-alloyed steel described by the three-invariant Murnaghan potential function.
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2.3.1.3.2. Incompressible Elastic Bodies and Compressible Ideal Fluid. The influence of large (finite) prestrains on the

phase velocities of axisymmetric longitudinal waves propagating in highly elastic rubber-like incompressible hollow cylinders

filled with a compressible ideal fluid at rest was analyzed in [5, 26, 27, 31, 71, 72].

Figure 2.41 shows c f� ( )�
3

for h h R� �/ 0.002 and � �� �R c/
s

0.01. Curve 1 (first mode) represents a hollow

cylinder without fluid, and curves 2 (second mode) and 3 (first mode) show how the prestrains influence the phase velocities of

waves in the shell–fluid system. These curves represent low-frequency waves propagating in a thin-walled shell containing a

fluid. Figure 2.42 corresponds to � �18and h �0.1. Such behavior of the low-order modes (curves 1 and 2 in Fig. 2.42) is due to

the increase in the compliance of the cylinder in compression (�
3

1: ) and the decrease in its compliance in tension (�
3

18 ). The

phase velocities of the third, fourth, and all the higher modes so behave because an increase in �
3
leads to a decrease in the cutoff

frequencies and to some decrease in the velocities of axisymmetric longitudinal waves. Further increase in the velocities is due to

the decrease in the compliance of the cylinder walls under tension.

From the curves presented in the cited publications and in Figs. 2.41 and 2.42, it follows that the prestrains have a strong

effect on the critical frequencies of modes and on the phase velocities of waves at these frequencies.

2.3.1.4. Waves in Prestrained Elastic Media with Cylindrical Cavities with a Compressible Viscous Fluid

(Three-Dimensional Linearized Theory). Special cases are also wave processes in prestrained compressible and incompressible

unbounded bodies with cylindrical cavities filled with a viscous compressible fluid at rest.

Biot was the first to address this problem in a simpler statement (within the framework of the classical theory of

elasticity and the hydrodynamics of ideal fluid) [159].

A three-dimensional problem was solved in [31, 72, 75] using the three-dimensional linearized theory and allowing for

the prestresses in the elastic body and the viscosity and compressibility of the fluid. The following dispersion equations for

compressible and incompressible materials were obtained:
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det | | ( , , , , , , , , , )| |
*

H c a s a R
lm ij ij ii
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0

0 0
0� ( , , )l m �1 6 , (2.7)
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*

H c a a R
lm ij ij i
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0 0

0� ( , , )l m �1 6 . (2.8)

These dispersion equations are the most general and can be reduced to characteristic equations for special cases of wave

processes and simpler models of elastic bodies and fluids, some of which were earlier used by other researchers. The dispersion

equations (2.7) and (2.8) were solved numerically for high-frequency waves.

Figures 2.43 and 2.44 show the effect of prestresses for fluids characterized by different compressibility and a

compressible elastic body described by the three-invariant Murnaghan potential function and prestretched along the axis oz of

the cylindrical cavity (� � �
33

0

33

0
� �/ 0.004).

Figure 2.43 shows the relative change in the phase velocities c
7
versus the dimensionless speed of sound a

0
in the fluid.

Curve 1 corresponds to the organic glass–water system, and curve 2 to the organic glass–glycerin system.

Figure 2.44 shows the relative change in the damping factors 2
7
[ ( ) / ]2 2 2 2

7 �
� � versus the dimensionless speed of

sound a
0
in the fluid. The left ordinate axis corresponds to the organic glass–water system (curve 1), and the right axis to the

organic glass–glycerin system (curve 2). It can be seen that the less compressible the fluid, the stronger the effect of the

prestresses. This is physically consistent. For glycerin, this effect is stronger than for water. Moreover, the fact that the curves

cross the abscissa axis (Fig. 2.44) indicates that in such hydroelastic waveguides, there are certain levels of the compressibility of

the fluid at which the damping factors of waves do not depend on the prestresses.

The calculated results demonstrate how the compressibility and viscosity of the fluid influence the phase velocities and

damping factors of high-frequency waves: the less compressible the fluid, the higher the phase velocity and the lower the

damping factors of high-frequency waves.

The dispersion equation (2.8) was solved numerically for a highly elastic rubber-like body described by the Treloar

potential function with E � 
25 10
6

. Pa,� �1200kg/m
3
and a fluid with�

0
1000� kg/m

3
, a

0
�1459.5 m/sec,�

*
�0.00002. The

calculated results are presented in Figs. 2.45 and 2.46. Figure 2.45 shows how the precompression influences the phase velocity c

of a high-frequency wave. For comparison, this figure represents a high-frequency quasi-Rayleigh wave c
R
for a cavity without

fluid.

The effect of large (finite) prestrains on the damping factors of high-frequency waves was analyzed as well. It follows

from Fig. 2.46 that the damping factor abruptly increases as compression tends to the level of surface instability.

Figure 2.45 shows that if the prestress is compressive and �
3
� 0.44, the phase velocities of high-frequency waves in

both purely elastic and hydroelastic waveguides tend to zero. This suggests that in highly elastic incompressible neo-hookean

bodies either interacting with a fluid or not and being in three-dimensional initial stress–strain state, surface instability occurs

under axial compression and �
3
�0.44. Moreover, comparing the plane and spatial cases shows that surface instability in spatial

waveguides occurs at lower initial uniaxial compressive strains (�
3
60.44) than in flat bodies (�

1
60.54). Note that �

1
and �

3

coincide with those earlier obtained in the theory of three-dimensional stability and correspond to the critical shortening [55, 56,

61, 69, 70]. Thus, the three-dimensional linearized theory of waves allows, in both plane and spatial cases, determining the
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critical compression parameters at which surface instability occurs in highly elastic incompressible elastic bodies and

hydroelastic systems.

2.3.1.5. Waves in a Prestressed Solid Cylinder in a Compressible Viscous Fluid (Three-Dimensional Linearized

Theory). An external wave problem was solved in [62, 63, 66, 72, 75] using general solutions of aerohydroelastic problems for

prestressed bodies and the three-dimensional linearized theory.

2.3.1.5.1. Torsional Waves in a Circular Cylinder in a Compressible Viscous Fluid (Three-Dimensional Linearized

Theory). The propagation of torsional modes in a solid circular cylinder in a compressible viscous fluid at rest was analyzed in

[62, 63, 66, 72, 75].

Defining solutions in the class of traveling waves > 0 �
1 0 1 3
� �AZ r i kz t( )exp[ ( )], ? + �� �BJ r i kz t

0 1 3
( )exp[ ( )],

where J
0
is the zero-order Bessel function of the first kind; H

0

1 2( , )
are the Hankel functions, Z r H r

0 1 0

1

1
( ) ( )

( )
0 0$ for Im0

1
08

and Z r H r
0 1 0

2

1
( ) ( )

( )
0 0$ for Im0

1
0: , and performing some transformations, we obtain the dispersion equation

! " �� " " ! � � � ! ! "
1 1 1 2 1 1 1 3

1

1

2

12 1 2 1 1 1
[ ( ) ( ) ( ) ( )]

*
i Z J J Z� �

�
0, (2.9)

where ! +
1 1
� R, " 0

1 1
� R.

Special cases following from the general problem statement were considered in [62, 63, 72, 75]. The following special

cases were detailed.

Cylinder in Vacuum. The dispersion equation for 7 ::1has the form

� � � ! !
3

1

1

2

12 1 2 1
0

�
�

* *
( )J . (2.10)

Denoting by !
m

the mth root of the equation J
m2

0( )! � and performing some transformations, we obtain the

following analytic expression for the phase velocity of the mth torsional mode in a cylinder in vacuum:

c c R R
m m

� �
� �

s
� � ! � � �( )

/2 2 2

1

4 1

12

1 2
.

Cylinder in Fluid (Approximate Solution). Expanding the Bessel functions of the first kind into the series

J
k n k

n

n
k

k

k

( ) ( / )
( )

!( )!

( / )
* * *

! ! !
1 1 1

2

0

2
1

2�

�

�
�

<

@ ,

we obtain the following analytic expressions for the phase velocity and damping factor:

c c
1 0 3 1

2
1 26 �

s
( ( / ) )� � 7� � , 2 7� �

��

�
1 3 1

2 0
26

c
s

. (2.11)

Cylinder in Fluid (More Rigorous Solution). Solution (2.11) was obtained by expanding the Bessel functions

appearing in (2.9) into series and retaining the first terms only. Only one value of velocity was obtained, though Eq. (2.9) allows
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determining the velocities of all modes, which can be seen from the example of a wave process in a cylinder in vacuum (2.10).

The following analytic expressions for the phase velocity and damping factor of the mth mode were derived in [63, 72, 75]:

c c D
J

J
D

m

m

m

6 �

�

�

�

�

�

�

�

�
s

1

2

0 3 1

2

1

2

7� � �

�

!

!

( )

( )

, 2

7�� � � !

!
m

m

mc

J

J
6

0 3 1

2

1

2
2

s

* ( )

( )

.

2.3.1.5.2. Longitudinal Waves in a Prestressed Solid Cylinder in an Ideal Fluid. The propagation of axisymmetric

longitudinal modes in a prestressed incompressible solid cylinder in a compressible ideal fluid was studied in [32, 75]. For a

cylinder loaded along the oz-axis, the following dispersion equation was derived:

det | | | |A �
ij

0 ( , , )i j �1 3 . (2.12)

Equation (2.12) was solved numerically for a highly elastic rubber-like incompressible material described by the

Treloar potential function. The dimensionless phase velocity c was plotted against the dimensionless frequency � for

precompressed (�
3
�0.8) and prestretched (�

3
�1.5) cylinders. The effect of large (finite) prerstrains on the phase velocities of

waves of various length was studied as well. It was shown that the phase velocities of waves frequency close to the critical

frequency increase in either compressed (�
3

1: ) or stretched (�
3

18 ) highly elastic cylinder. The phase velocities of modes

whose frequencies differ considerably from the critical frequency depend differently on the prestrain: their velocities decrease in

compression (�
3

1: ) and increase in tension (�
3

18 ). It was shown that the fluid decreases the phase velocities of the modes.

Studies of the propagation of various waves in prestrained elastic bodies without fluid performed using the linearized

theory are reviewed in [3, 59, 71, 72, 79].

Numerous results in other research areas covering a wide range of theoretical and experimental studies of the influence

of prestresses on the behavior of elastic bodies were analyzed and systemized in [3, 59, 168, 170, 173].

We have discussed only results on wave processes in hydroelastic systems. Those results are preferred that were

obtained using the three-dimensional linearized theory and taking into account the prestresses in elastic bodies and the viscosity

and compressibility of the fluid.

3. Acoustic Radiation Pressure on Solid Particles and Fluid Parcels.The study of themotion and interaction of solid

particles and liquid drops during the propagation of an acoustic wave is of theoretical and applied importance. Three cases were

examined: (i) a single particle in a fluid under acoustic pressure, (ii) interaction of two particles in a fluid in which a wave

propagates, (iii) motion of a great number of particles in an oscillating medium. In case (iii), multiphase approaches were used

[47]. Relevant studies, methods, and results are reviewed in [2, 40, 47, 147, 152, etc.].

Of certain technological interest is the study of the motion of solid particles and liquid drops under time-independent

radiation pressure [147, 152], which is also called acoustic radiation pressure. It is more difficult to determine the acoustic

radiation pressure if the obstacle is finite in size. Since the acoustic radiation pressure is determined by the acoustic field

resulting from the interference of the incident and diffracted waves, it depends on the shape of the obstacle. To determine the

wave reflected by the obstacle, it is necessary to solve the problem of the diffraction of an incident wave by an obstacle. To this

end, it is necessary to take into account the displacements of an oscillating particle, its shape and size compared with the

wavelength, the properties of the medium and the boundary of the space in which the wave propagates, and other factors. In this

connection, the following simplified assumptions were made to solve the problem: the fluid is not heat-conductive, the particle is

small compared with the wavelength and amplitude, the fluid is incompressible, etc.

These assumptions allow using various approaches to the study of the scattering of an incident acoustic wave by a

particle and the calculation of the hydrodynamic force acting on it [139]. The constant component of the hydrodynamic force

(radiation pressure) is calculated by averaging it over the wave period.

The results of one of the early studies on radiation force acting on a spherical particle in an ideal fluid were published in

[180] where formulas were derived for the radiation forces acting on a sphere in the field of standing and traveling plane acoustic

waves. It was established that the radiation force in the field of a standing acoustic wave has spatial periodicity with period equal

to half-wavelength and greater than that in the field of a traveling wave. The expression for radiation force was used to deduce the

equation for the drift of a small sphere in the field of a standing wave. Solving this equation made it possible to analyze the

behavior of a particle.
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To calculate the acoustic pressure up to second-order terms, the Bernoulli integral is used [1, 200]. The radiation force is

represented by the integral of the period-average sound pressure over the surface of a spherical particle.

In [144, 199], it was proposed to determine the radiation force as time-average momentum flux through the closed

surface of a particle. Selecting a surface surrounding a spherical particle and located at an arbitrarily long distance from its center

(the fluid being assumed ideal) made it possible to avoid solving the scattering problem by using asymptotic expressions for the

scattered wave. A similar approach to the calculation of the radiation force on a spherical particle in an ideal fluid was used in

[136, 154, 195, etc.]. A more general problem statement (the particle is compressible and the acoustic field is arbitrary) was

considered in [50, 184]. The potential of the wave scattered by a sphere was expanded into a multipole series with coefficients

determined by solving the problem of a potential flow of an incompressible fluid past a sphere.

The method of determining the radiation force as time-average impulse was generalized to a viscous fluid in [104, 199,

165]. Radiation force is equal to the integral of the period-average momentum flux density tensor taken over an arbitrary surface

around a particle. The average force was calculated in quadratic approximation for a fixed spherical solid particle small

compared with the wavelength. It was established that the viscosity of the fluid substantially increases the radiation pressure

force on a particle.

In [102], in calculating the radiation force acting on a fixed spherical particle, allowance was made for the acoustic flow

developing around a particle in acoustic fields of high intensity and affecting the magnitude of the radiation force. In this

connection, it was proposed to distinguish the concepts of time-average force and radiation force. Time-average force was

determined by finding the total momentum flux through a quite distant closed surface around a spherical particle. The quadratic

approximation was used and the radius of the particle was considered small compared with the wavelength.

We are aware of only one publication [141] that uses radiation forces to study the interaction of two particles that are

closely spaced and smaller than the wavelength in an ideal fluid. To determine the perturbation of fluid pressure, the Bernoulli

integral is used. It was assumed that the wave is scattered only once, and the wave field near the particle was represented as a

superposition of the primary wave scattered by only one of the particles and a wave scattered by the other particle. The problem

was reduced to finding this latter wave. The potential of the scattered wave field was expanded into a series of spherical wave

functions in which the first three terms are retained. The constant coefficients in the series were determined from the boundary

conditions on the spherical surfaces. The potentials on the spherical surfaces were expanded into Taylor series about their sphere

centers.

The great number of publications on the subject [44, 103, 138, 156–158, 167, 178, 185–190, 196, etc.] are indicative of

continued interest in it. Our goal is to review studies on radiation forces performed at the S. P. Timoshenko Institute of

Mechanics using the piecewise-homogeneous material model, exactly satisfying all boundary conditions, incorporating inertial

terms into the equations of motion of the medium, and assuming that the fluid is compressible and that the distances between and

the dimensions of objects in the fluid are commensurable with the wavelength.

3.1. Viscous Fluid. Problem Statement and Basic Equations.Here we will present the basic equations used to analyze

the acoustic radiation pressure acting on rigid and flexible particles in a compressible viscous fluid during the propagation of an

acoustic wave. The approach used is to filter out the time-independent (radiation) force acting on an object in a fluid by averaging

over time the resultant force exerted by the fluid on the object. In this connection, in calculating the stresses in a fluid, it is

necessary to keep the second-order terms with respect to the parameters of the acoustic field, which do not vanish after averaging

over time, i.e., to use the nonlinear relations of hydromechanics. In [85, 86, 108], it was proposed to determine the acoustic

pressure in a compressible viscous fluid up to terms of the second order with respect to the Mach number from the velocity-field

potential found from equations derived, to the same accuracy, from the nonlinear relations of hydrodynamics. The nonlinear

relations for wave motions of the fluid were simplified by assuming that perturbations weakly decay at distances of the order of

wavelength and that the dissipative coefficients are of the order of amplitudes of relative perturbations in pressure and density

[150]. The resulting second-order formula for the pressure perturbations in a compressible viscous fluid caused by an acoustic

wave is as follows [85]:

p
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where �
0
is the density of the fluid in equilibrium; �

*
and �

*
are the dynamic and kinematic viscosity coefficients; a

0
is the

adiabatic speed of sound, and the second-order equation for the potential � is
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Equation (3.2) coincides with Eq. (1.13) in the linearized theory of compressible viscous fluid. A solid body in a fluid

through which an acoustic wave propagates causes an additional reflected wave field. It has potential and vortical components in

a viscous fluid. The stress in the fluid is determined by the wave field resulting from the interference of the incident wave and the

unknown scattered waves. The potentials of these waves are determined by solving the problem of scattering the incident wave

by a body (particle). Since the potential � of the incident wave satisfies the linear equation (3.2), the potentials of the scattered

waves can be found by solving the linear diffraction problem using the linearized theory of compressible viscous fluid [171]. In

this theory, the potentials�and�describing themotion of the fluid are the solutions of Eqs. (1.13) and (1.14). The potentials are

used to calculate the velocity field v (1.10) and the stress tensor field
�

� (1.8).

Mathematically, the scattering problem is to solve Eqs. (1.13) and (1.14) satisfying the boundary conditions on the

surface S of the object in the fluid

V v
S
� (3.3)

and the conditions at infinity. To calculate the velocityV
S
of particles of the surface S of an object in a fluid, the equations of its

motion (1.17) are derived using the center-of-mass theorem and the theorem of moments about the moving center. According to

the linearized theory [64, 67, 75, 76], the pressure in the fluid in this case is calculated by formula (1.11), and the force acting on

the object in the fluid is equal to the surface integral of internal product of the stress tensor (1.8) and the unit normal vector N to

the surface S of the object:

F N� 

��

�� dS

S

. (3.4)

The first stage of the solution of the problem is to determine the velocity potentials using the linearized theory of

compressible viscous fluid. The second stage is to calculate, up to second-order terms, the force (3.4) acting on the object in the

fluid. The pressure p in the expression for the stress tensor ��(1.8) is now calculated by formula (3.1). The time-independent force

F (radiation force) is determined by averaging it over period of the acoustic field.

In calculating the average force on a free object, it is necessary to take into account its displacements in oscillating fluid

because if the position of the object in space changes, there appear terms in (3.1) that have the same order as that of the second,

third, and fourth terms. This is because the partial derivative of the scalar potential�with respect to time should be evaluated in

the fixed coordinate system in which the motion of the object is considered in determining the potential of the velocity field. In

the coordinate system fixed (because of the necessity to satisfy the boundary conditions) to the moving object, this derivative

should be evaluated by the following formula [108]:

�

�

� � 
	

� �

�

t

d

dt
S

V . (3.5)

The final stage is to analyze the motion of the object in the fluid under a constant (radiation) force.

In [118], it was established the problem of the small harmonic oscillations of a compressible viscous fluid described by

the linearized theory is analogous to the problem of the stationary harmonic vibrations of a linear viscoelastic solid [42] (see [68]

for another interesting analogy). Based on this analogy, the problem of the scattering of an incident wave in a compressible

viscous fluid can be formulated as the problem of the scattering of an isothermal wave in a linear viscoelastic body. This

circumstance made it possible to determine the velocity-field potentials in a compressible viscous fluid by using the approaches

developed in solid mechanics [84] for solving problems of the scattering of elastic waves by multiply connected bodies.

Mathematically, the scattering problem is reduced to the solution of the equations

�L L� �!
2

0, �X X� �"
2

0, (3.6)

satisfying the boundary conditions

u U� (3.7)
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and the conditions at infinity. The vector u of the displacement field in the body satisfies the equation

u X�	 �	 �L , 	 
 �X 0, (3.8)

and U is the displacement vector of particles of the surface S of the body (the object in the fluid). In (3.6), ! and " are complex

wave numbers,

4 5! � � � � � � !� � 8
0

2
2 0/ ( ) ( ) , Im

* *
i i , " � � � ��

0
/ ( )

*
i , Im"

2
08 ,

where � �
*
( )i and � �

*
( )i are complex moduli [42, 142].

In solving scattering problems, the components of the stress tensor are defined by

�  � � 7 � � 7
ij k ij nn k ij k

x t i x t i x t( , ) ( ) ( , ) ( ) ( , )
* *

� � 2 , (3.9)

which are used to deduce the equations of motion of the body in the viscoelastic medium:

m N dS
ij j

S

��U �
��

� . (3.10)

The following formulas allow passing to velocity-field potentials in a compressible viscous fluid:

� �

�

�

L

t
, � �

�

�

X

t
. (3.11)

The proposed approaches were used to solve specific problems [94, 95].

3.2. Radiation Force on a Single Object in a Viscous Fluid. Radiation forces acting on single objects in the field of a

plane acoustic wave were mainly studied:

4 5�
0 3
� �A i x texp ( )% � , (3.12)

that propagates along the ox
3
-axis of the chosen coordinate system ox x x

1 2 3
. These objects in a viscous fluid are a cylinder and a

sphere, which are cylindrically and spherically isotropic, respectively, and a spherical drop with properties different from those

of the surrounding fluid. In the case of a cylinder, the wave propagates at a right angle to its axis. In determining the velocity-field

potentials, the problem of the scattering of the incident wave by a free object in a fluid was solved using either the linearized

theory of compressible viscous fluid [87, 108, 109, 115, 175] or the theory of linear viscoelasticity [118, 121, 125]. To describe

the damping of the wave, a complex wave number % � �k ik
1
was introduced.

The case of a free spherical particle was examined in [87, 108, 109, 175]. The potentials of the waves reflected by the

sphere, which are the solutions of the equations of motion of the viscous fluid, are expanded into generalized Fourier series of

spherical wave functions. The coefficients of the series were determined from an infinite system of linear algebraic equations

obtained by satisfying the boundary conditions on the surface of the free sphere. The radiation force was calculated using either

the long-wave approximation [87, 108, 109, 175] or rigorous solutions [125] found on a computer. In the long-wave

approximation (! � ::ka 1), asymptotic representations of spherical functions of small argument were used, and the fluid was

assumed to have low viscosity (7 � � �� ::[ / ( )]
*

a
2

0
1). As a result, the following formula for the radiation force acting on a

sphere of radius awas derived:

B C � B C � 
F F f
w id

7 D� 0 !2 2
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3
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( )

0

0 0

0

�
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13 14 1

2

2

2
, (3.13)

where the first term stands for the radiation force acting on the sphere in an ideal fluid [180]:
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� �
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. (3.14)
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The second term in (3.13) represents the effect of viscosity on the radiation force. In deriving expression (3.13), only the

first term was retained in the series expansion in powers of 7; therefore, the effect of viscosity on the average force was

characterized by0. The parameter0 has critical value0
cr

�5/11 at which viscosity maximally reduces the radiation force (Fig.

3.1). There are values of0 at which viscosity does not affect this force.

How an acoustic wave acts on a sphere in propanol (�
0
� 785.4 kg/m

3
, a

0
� 1247 m/sec) is shown in Fig. 3.2 for

1 0� ��
*

(curve 1) and 2� ��
*

0.004 kg/(m
sec) (curve 2) and in Fig. 3.3 for �
*
� 0.0046 kg/(m
sec) (curve 1) and �

*
�

0.00239 kg/(m
sec) (curve 2). The energy flux density I � 175.5 W/m
2
, which corresponds to moderate radiated power. The

viscosity substantially increases the radiation force. Unlike the case of ideal fluid [180], the direction of its action on the sphere in

a viscous fluid depends on the parameter0 � ��
0
/ and can either coincide with the wave propagation direction (0 �1.2) or be

opposite to it (0 � 0.8). A similar phenomenon is observed when a sound beam is incident on the interface between two fluids.

The direction of deflection of the interface caused by the radiation force does not depend on the beam propagation direction and

is always toward the fluid, which has lower acoustic energy density [48].

The effect of the radiation force on a spherical drop of ideal fluid in a compressible viscous fluid was analyzed in [96].

The liquid drop with properties different from those of the surrounding viscous fluid causes an additional (reflected) wave field

that has potential and vortical components. To determine the velocity potentials of the additional wave field, it is proposed, as a

first stage, to solve the linear problem of the scattering of wave (3.12) by the liquid sphere.

In the axisymmetric case, the velocity potentials of the potential (�
d
) and vortical (E

d
) components of the additional

wave field satisfy Eqs. (1.13) and (1.14). The velocity potential � in the drop satisfies the following equation (acoustic

approximation):

��

�

�

�

�

�

1
0

0

2

2

2
a t

. (3.15)

The incident wave causes periodic compression and expansion of the liquid sphere. In formulating the boundary

conditions on the spherical surface, we assume that the amplitude of the surface of the drop is very low; therefore, it may be

assumed that the drop radius a �const (which is justified for a liquid sphere). We will neglect the effect of surface tension on the

liquid sphere. Then the boundary conditions on the liquid sphere surface can be formulated as follows. The normal velocity and

the normal stresses of the liquid are continuous and the tangential stresses are zero on the spherical surface. The velocity

potentials of the scattered waves satisfy the Sommerfeld radiation conditions. The wave perturbations of the fluid inside the drop

are bounded.

The velocity potentials in the surrounding viscous fluid,�
d
,E

d
, and in the ideal fluid of the drop, �, are determined by

solving a multiply connected problem for Eqs. (1.13), (1.14), (3.15) satisfying the boundary conditions on the surface of the

liquid sphere, at infinity, and at the center of the sphere. The solutions of the equations were found as generalized Fourier series

of spherical wave functions by the variable separation method in a spherical coordinate system. The coefficients of the series

were determined by the reduction method from an infinite system of algebraic equations derived by satisfying the boundary

conditions.
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At the second and third stages of problem solving, the case of a fluid of low viscosity was considered. The radiation

force was calculated by averaging, over the period of the incident wave, the hydrodynamic force

F ds a d
x

S

rr r
3

3

2

0

2� 
 
 � �
�� �

e n� ( cos sin )sin� D � 9 � 9 9 9
9

D

, (3.16)

exerted by the surrounding viscous fluid on the spherical drop of an ideal fluid and acting along the ox
3
-axis. In (3.16), n is the

unit normal to the surface S of the liquid sphere. The component �
9 r

of the stress tensor �� (3.16) is zero on the surface of the

liquid sphere. The pressure p in (1.8) should be determined from (3.1) up to second-order terms.

The effect of radiation (average) force on a free solid cylinder was studied in [115, 121, 176]. The potentials of the

waves reflected by the cylinder, which are the solutions of the equations of motion of the viscous fluid, are expanded into

generalized Fourier series of cylindrical wave functions. The coefficients of the series were determined from an infinite system

of linear algebraic equations obtained by satisfying the boundary conditions on the surface of the cylinder. The problem was

solved using either the long-wave approximation for a low-viscosity fluid [115] or rigorous solutions [121] found with the help

of a computer. Asymptotic representations of cylindrical functions for small values of the argument were used in the former case.

The radiation force acting on a cylinder with length equal to its radius is expressed as

B C � B C �F F A
w id

7D� ? 0 !
0

2 32

4

( ) , ? 0

0 0

0

( )

( )

�

� �

�

1 8 7

1

2

2
, (3.17)

where B CF
id

is the radiation force acting on the cylinder in an ideal fluid. The function ? 0( ) characterizes the effect of the

parameter0on the average force. Its graph is shown in Fig. 3.4. As for the sphere, with increase in0, the viscosity increases the

average force for a cylinder that is lighter than the fluid. For a cylinder that is heavier than the fluid, there exists a critical value of

0 equal to its critical value0
cr

for the sphere. In the long-wave approximation, viscosity at0 �1.0 does not affect the radiation

force acting on the sphere or the cylinder in an ideal fluid.

The numerical results on the radiation force exerted by an incident wave with energy flux density I �175.5 W/m
2
on a

cylinder in propanol are presented in Fig. 3.5 for�
*
�0 (curve 1) and�

*
�0.0046 kg/(m
sec) (curve 2) and in Fig. 3.6 for�

*
�

0.0046 kg/(m
sec) (curve 1) and �
*
� 0.00239 kg/(m
sec) (curve 2). It can be seen that the effect of viscosity on the radiation

(time-average) force is similar to that in the case of sphere.

3.3. Radiation Force on a Two Objects in a Viscous Fluid. When an acoustic wave propagates through a fluid

containing several solid objects, their flow fields distort each other because of the interference of the incident and reflected

waves. Therefore, the forces exerted by the fluid on the objects, as well as their constant components (radiation forces) are

different. The radiation forces cause the free objects to displace (drift) relative to each other, and the distance between them

changes. If objects are arranged arbitrarily in a fluid, the interaction of two objects is of fundamental importance. Let these

objects be two spherical and two cylindrical particles.
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The effect of a plane acoustic wave (3.12) on two spherical solid particles was studied in [127]. The wave propagates

along a line coming through the centers of free spherically isotropic particles Nos. 1 and 2. At the first stage, the velocity

potentials of the reflected waves were found by solving the problem of the scattering of the incident wave by two spherical

particles using the theory of linear viscoelasticity [42, 142]. The equations of motion were solved by the variable separation

method in a spherical coordinate system. A local spherical coordinate system was fixed to each particle. The velocity potentials

of the reflected waves, which are the solutions of Eqs. (3.6) in the respective local coordinate systems, were expanded into

generalized Fourier series of spherical wave functions. The coefficients of the series were determined from an infinite system of

linear algebraic equations obtained by satisfying the boundary conditions on the surfaces of the particles by the reduction

method. To derive expressions of the potentials in each of the local spherical coordinate systems, the summation theorems for

spherical wave functions were used. The boundary conditions were the equality of the displacements of particles of the medium

and particles of the surface of the solid sphere on this surface. Since the wave field is symmetric about the axis coming through

the centers of the spheres, the forces acting on them are parallel to this axis. The displacements of the spheres were determined by

integrating their equations of motion (1.17). The radiation forces were calculated by averaging over time the forces acting on the

spherical particles and determined up to the second order.

Systems of two spheres of equal and different radii arranged differently relative to the wave propagation direction were

studied.

Figures 3.7–3.9 show how spheres of radius a �0.001 m interact in an acoustic field in propanol through which a wave

with energy flux density I � 175.5 W/m
2
(measured at a point located on the line of sphere centers and equidistant from them)

propagates. Curves 1 and 2 in Figs. 3.7 and 3.8 characterize the action of the time-average force on spheres 1 and 2, respectively.
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Curve 3 represents a single sphere. The dynamic viscosity coefficient �
*
� 0.0046 kg/(m
sec). With variation in 0, the

time-average force acting on each of the spheres changes in both magnitude and direction. In the frequency range being

considered, the average forces increase with frequency. At0 �1.2, the effect of the second sphere on the first one (the deviation

of curve 1 from curve 3) is stronger than the effect of the first sphere on the second one (the deviation of curve 2 from curve 3). At

0 � 0.8, the average forces change their direction. Sphere 1 repulses sphere 2 at0 � 1.2 and attracts sphere 2 at0 � 0.8.

Figure 3.9 shows the effect of the time-average force on sphere 2 depending on frequency, dynamic viscosity

coefficient �
*
, and parameter 0 � ��

0
/ for �

*
� 0.0046 kg/(m
sec) (curves 1) and �

*
� 0.00239 kg/(m
sec) (curves 2). The

higher the viscosity of the fluid, the stronger the average force exerted by the acoustic wave, the direction of the force depending

on0. For0 �1.2 and0 �1.1, the average force is parallel to the wave propagation direction. For0 �0.9 and0 �0.8, the average

force is opposite to the wave vector.

The effect of a plane acoustic wave (3.12) on two free parallel cylindrically isotropic circular cylinders 1 and 2 was

studied in [89, 122, 126]. The cylinders were considered to be arranged in line parallel to the wave propagation direction. The

cylinders were either of equal or different radii and were differently arranged relative to the wave vector. The potentials of

scattered waves were determined using the linearized theory of compressible viscous fluid [89] or the theory of linear

viscoelasticity [122, 126]. The problems posed were solved numerically.

At the first stage, the potentials of scattered waves were determined using the variable separation method in cylindrical

coordinate systems. A local cylindrical coordinate system was fixed to each cylinder. The velocity potentials of the reflected

waves, which are the solutions of the equations of motion of the medium in the respective local coordinate systems, were

expanded into generalized Fourier series of cylindrical wave functions. The constant coefficients of the series were determined

from infinite systems of algebraic equations obtained by satisfying the boundary conditions on the surfaces of the cylinders by

the reduction method. To derive expressions of the potentials in each of the local cylindrical coordinate systems, the summation

theorems for cylindrical wave functions were used. The boundary conditions were the equality of the displacements of particles

of the medium and particles of the cylinder surface on this surface. The displacements of the cylinders in the medium were

determined by integrating their equations of motion (1.17). The radiation forces were calculated by averaging over time the

forces acting on the cylinders and determined up to the second order.

Systems of two cylindrical particles of equal and different radii arranged differently relative to the wave propagation

direction were studied.

Figures 3.10 and 3.11 illustrate how cylinders of length equal to their radius a � 0.001 m interact depending on the

frequency � and parameter0under radiation forces in propanol through which a wave with energy flux density I �175.5 W/m
2

propagates (measured in the midsurface of the system of cylinders perpendicular to the plane of their axes). Curves 1 and 2

correspond to cylinders 1 and 2, and curve 3 to a single cylinder. In all cases, �
*
� 0.0046 kg/(m
sec). In the frequency range

represented in Fig. 3.10, the effect of the first cylinder on the second one (the deviation of curve 2 from curve 3) is stronger than

the effect of the second cylinder on the first one (the deviation of curve 1 from curve 3). As the parameter0 is changed (0 �1.2 in

Fig. 3.11), the interaction behavior of the cylinders changes substantially. The cylinders go away from each other at0 �0.8 (Fig.
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3.10) and approach each other at0 �1.2 (Fig. 3.11). The first cylinder repulses the second one in the former case and attracts the

second cylinder in the latter case.With variation in0, the average force acting on the first cylinder changes in bothmagnitude and

direction.

Figure 3.12 shows how the viscosity of the fluid affects the average force for�
*
�0.0046 kg/(m
sec) (curves 1 and 2)

and �
*
� 0.00239 kg/(m
sec) (curves �1 and �2 ). The curve number corresponds to the cylinder number. It can be seen that the

higher the viscosity of the fluid, the stronger the time-average (radiation) force exerted by the acoustic wave.

3.4. Ideal Fluid. Basic Equations and Problem Statement. The method proposed in [85, 86, 108] to determine the

average forces in a compressible viscous fluid can be applied to the equations for an ideal fluid after passing to the limit

( ,
* *
� �; ;0 0) [88, 110–114, 116, 119, 120, 123, 124, etc.]. After passing to the limit, formula (3.1) takes the form

p
t a t

� �

�

�

�

�

�

�

�

�

�

�

� � 	�

�

�
0

0

0

2

2

0

2

2

1

2

� �

�( ) , (3.18)

which corresponds to the formula obtained earlier, with the same accuracy, for the perturbations of pressure in an ideal fluid in

[180].

At the first stage, the scattering problem is formulated in acoustic approximation in which the potentials � of the

incident and scattered waves are the solutions of the equation

��

�

�

�

�

�

1
0

0

2

2

2
a t

. (3.19)

Formula (3.4) for the hydrodynamic force becomes

F N� �
�
p dS

S

, (3.20)

where the pressure p in the acoustic wave is calculated by the following formula in determining the displacement of the object:

p
t

� �

�

�

�
0

�

. (3.21)

To formulate the boundary conditions on the surface of the free object, the velocities of particles of its surface are

determined by solving the equation of motion of the object in a fluid under force (3.20):

m p dS

S

�V N� �
�

, (3.22)
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wheremis the mass of the object;V is the velocity of the object; p is the pressure in the fluid (3.21);N is the unit normal vector to

the surface S of the object.

At the second stage, the hydrodynamic force (3.20) is calculated up to the second order (3.18). At the third stage, the

constant component of the hydrodynamic force (radiation force) is determined by averaging (3.20) over time.

3.5. Radiation Force on a Single Object in an Ideal Fluid.Objects in a fluid that were examined are a circular cylinder,

a sphere, and a spherical drop. The radiation force exerted by an acoustic wave on a free circular cylinder was studied in [112]:

4 5�
0 3
� �A i kx texp ( )� . (3.23)

It is perpendicular to the cylinder axis. The potential of the wave reflected by the cylinder, which is the solution of Eq.

(3.19), is expanded into a generalized Fourier series of cylindrical wave functions. The coefficients of the series were determined

from an infinite system of linear algebraic equations obtained by satisfying the boundary conditions on the surface of the free

cylinder. The system of algebraic equations is regular and has a unique solution, which can be found numerically, by the

reduction method. The radiation force was calculated by averaging expressions (3.20) over time, provided that the pressure p is

defined by (3.18), where � is the total potential of the incident and scattered waves. The radiation force per unit length of the

cylinder is expressed as
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, (3.24)

where a is the radius of the cylinder;0 � ��
0
/ is the ratio of the density of the fluid to the density of the cylinder; k is the wave

number of the incident wave; A is its amplitude. Expression (3.24) is based on the assumption that the body is cylindrically

isotropic. Using the asymptotic representations of cylindrical functions of a small argument in the long-wave

approximation (! � ::ka 1), formula (3.24) was transformed to

B C � 


� �

�

�F
A

a
O

2 2

0

2

2

5 7

8

4 1

1

D � 0

0

! !

( )

( )

( ), (3.25)

whence it follows that the radiation force is strongly dependent on the parameter0. For small values of !, the radiation force is

minimum when0 �3.0. Figure 3.13 shows graphs of " � B C 

�

F A/
2 3
10 versus ! plotted using formula (3.24) for a cylinder in

water (�
0

3
10� kg/m

3
). The radiation force acting on the cylinder increases with the frequency and strongly depends on the

parameter0. At ! � 0.2, the radiation force can be calculated with adequate accuracy by formula (3.25).

A free cylinder in the field of a plane standing acoustic wave with the following potential was studied in [116]:

�
0

1

2

� � � � � � �A i k l x t i k l x texp{ [ ( ) ]} exp{ [ ( ) ]}� � . (3.26)
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The origin of the coordinate system oxyz is on the cylinder axis at a distance l from the chosen fixed reference plane. The

radiation force per unit length of a cylindrically isotropic cylinder is defined by the expression

B C �

�

�

�F A
a

kl O
2

0

3 53

4 1

2D�

0

0

! !

( )

sin( ) ( ), (3.27)

which was derived in long-wave approximation in [40]. The radiation force (3.27) has spatial period equal to half-wavelength

and acts on the lighter cylinder (0 8 3) toward the nodes of the velocity field and on the denser cylinder (0 : 3) toward the

antinodes of the velocity field. In (3.27), l is the distance from the fixed reference plane.

The equation of motion of the cylinder under the radiation force (3.27) is reduced to the nonlinear oscillator equation

�� sin9 9� �n
2

0, 9 D� �2kl, n A k
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( )

. (3.28)

It is significant that the radius of the cylinder does not influence the oscillatory process. For the denser cylinder n
2

08 ,

the positions of stable equilibrium in its time-average motion are the antinodes of the velocity field. The period of oscillation of

the cylinder about them is
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For the lighter cylinder n
2

0: , the positions of stable equilibrium in its time-average motion are the nodes of the

velocity field. The period of oscillation of the cylinder about them is

T
v

K�

�

�




�

�

�

�

�

2 2 1

3
0

2
1 2~

( )

( )

( )

/

�

D

0

0 0

% . (3.30)

In (3.29) and (3.30),
~
� is the wavelength; v

0
is the amplitude of the velocity field; K ( )% is a complete elliptic integral of

the first kind; % � sin ( )kx
0
; x

0
is the maximum distance of the cylinder from a node or an antinode of the velocity field

(amplitude in its time-average oscillative motion). The period T of oscillation (3.29) has a minimum.

The acoustic radiation pressure on a small scatterer moving in a homogeneous isotropic field was studied in [105]. The

problem of determining the radiation force acting on a solid sphere in a fluid flow was formulated in [128]. It was assumed that

the compressible ideal fluid is barotropic with pressure function P
0
. The flow is along the îA

3
-axis of a fixed Cartesian

coordinate system oA A A
1 2 3

, and V
<
,�

<
, and p

<
are, respectively, the velocity, density, and pressure of the fluid at infinity. In

the fluid, there is a spherical particle of radius R that also moves along the oA
3
-axis with velocity U. The sphere makes the flow

nonuniform. If a coordinate system o x x x
1 1 2 3

(the axes oA
3
and o x

1 3
coinciding) is fixed to the sphere, then the parameters of the

nonuniform flow (velocity u, density �� , and pressure �p ) in the moving coordinate system are determined in solving the problem

of a stationary flowwith velocity u V U
<

� � at infinity past a sphere. The quantities �p and �� are related by the Tait equation.

When an acoustic wave propagates, the quantities u, �� , and �p are subject to small increments v,�, and p, respectively,

which characterize the oscillations of fluid parcels about the stable state of the perturbed flow. If themotion of the fluid caused by

the acoustic field is also potential

v �	�, (3.31)

the potential � of the acoustic field in the flow past the moving solid sphere is described by the equation

d

dt

a P
d

dt
c

2

2

2

0

2
0

�

�� �

�

� � 	 
	 � 
	 �( ) ( ln )u , (3.32)

where a is the local velocity of small perturbations relative to the fluid flow. For a stationary barotropic flow, we have
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To determine the pressure p up to the second order, we have the equation
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where the terms vanishing after averaging over time have been omitted. If there is no flow and the sphere is fixed (u � � �0
0

, p p ,

� �� �
0
), formula (3.34) transforms into (3.18).

The parameters of the perturbed flow appearing in Eqs. (3.32) and (3.34) are determined by solving the problem of a

potential fluid flow with velocity u
<
at infinity past a sphere. The potentials of both incident�

0
and reflected (from the sphere)

waves must satisfy Eq. (3.32). The potential �
d
of the reflected wave is determined by solving the problem of the scattering of

the incident wave by a sphere, provided that the velocity v
r
on its surfaces and the potential�

d
at infinity are equal to zero. The

radiation pressure force on the sphere is filtered out by averaging the hydrodynamic force (3.20) over time, provided that the

pressure p is defined by formula (3.34) where the potential � � �� �
0 d

results from the interference of the incident and

scattered waves.

In [130, 131], the approach developed for solid particles was used to study the effect of acoustic radiation on a spherical

drop of radius a different in mechanical characteristics from the surrounding fluid in which the acoustic wave (3.23) propagates.

It is assumed that both fluids are ideal. At the first stage, the problem of the diffraction of wave (3.23) by a spherical drop is

formulated. The potentials�
d
and �

d
of the wave reflected from the drop and the wave inside the drop are the solutions of Eq.

(3.19) found by the variable separation method in the spherical coordinate system fixed to the drop. They are represented by

generalized Fourier series of spherical wave functions. The coefficients of the series are determined by the reduction method

from an infinite system of linear algebraic equations obtained by satisfying the boundary conditions on the surface of the drop:

continuity of the normal velocity and pressure on the surface. The case where the radius of the sphere is small compared with the

length of the acoustic wave was analyzed in detail. Asymptotic representations of the functions j w
n
( ) and h w

n
( )with a small

argument were used. At the third stage, an expression for the radiation force exerted by the acoustic wave on the liquid sphere is

derived:

B C �

�

� � � �F A k O
x

2

27

1

2

10 4 1
2

0

6 8
D�

0

0 0 ! ![ ( ) ( )] ( )
*

, (3.35)

where B CF
x

is the projection of the radiation force onto the wave vector k (parallel to the ox-axis); �
0
is the density of the

surrounding fluid in equilibrium;0 � ��
0 0
/ ; �

0
is the density of the drop; ! � ::ka 1; k

*
( ) / ( )� � �3 3

2
% % % %! ; % and % are

the adiabatic bulk moduli of the surrounding fluid and the drop, respectively.

In [96], numerical results for the following two cases were analyzed in detail: (i) the density of the ethyl-spirit drop is

lower than the density of the surrounding water (0 81); (ii) the density of the water drop is higher than the density of the

surrounding ethyl spirit (0 :1). Figures 3.14 and 3.15 show the radiation force acting on the drop versus the parameter ka (curves

1–1). Curve 2 represents a solid spherical particle. The value ka � 3% %/ corresponds to the pulsation resonance of the spherical

liquid drop. The expression for radiation force (3.35) has been derived assuming that ka is different from 3% %/ . In this case, the

drop mainly oscillates rather than pulsates. An analysis of the figures reveals the following qualitative phenomena:

(i) when the parameter ka reaches the resonant value, the radiation force acting on the drop reverses its direction (curves

1–1 in Figs. 3.14 and 3.15);

(ii) the direction of the radiation force on the drop depends on0 � ��
0 0
/ .

The effect of the radiation force on a spherical drop has the following features.

1. As the value of ka tends to the pulsation resonance (ka �1.21 in the former case (Fig. 3.14) and ka �2.48 in the latter

case (Fig. 3.15)), the radiation force increases (curves 1–1 in Figs. 3.14 and 3.15).
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2. If the mechanical properties of the drop are similar to those of the surrounding fluid (0 � �1 0,
*

k ), the radiation force

is zero.

3. The direction of the radiation force acting on a solid spherical particle does not depend on0 and coincides with the

direction of propagation of the acoustic wave (curve 2 in Figs. 3.14 and 3.15). It monotonically increases with the frequency of

the wave.

The effect of the radiation force on a solid spherical particle fixed on the axis of a cylindrical cavity filled with a

compressible ideal fluid was studied in [134, 202]. A plane acoustic wave described by the following potential function was

considered to propagate along the cavity:

4 5�
0
� �A i kz texp ( )� . (3.36)

This potential function satisfies the linear wave equation (3.19). The îz-axis of a rectangular coordinate systemwith the

origin at the center of the sphere is aligned with the axis of the cylindrical cavity.

The approach applied above to a free particle was used. Thewave field in the cylindrical cavity is formed by the incident

wave (3.36) and the waves reflected from the sphere,�
sph

, and the cavity,�
cyl

. At the first stage, the method proposed in [181]

was used to solve the linear multiply connected problem of the scattering of wave (3.36) by the sphere and the cylindrical cavity.

The problem was solved by the variable separation method in a spherical coordinate system. The potential �
sph

of the wave

scattered by the sphere is expanded into a generalized Fourier series of spherical wave functions:

�
sph

( , ) ( ) (cos )
( )

r A h r P
n n

n

n
9 � 9�

�

<

@
1

0

, (3.37)

and the potential of the wave reflected by the cylindrical cavity is represented by the integral

Ô z B J e d
i z

cyl
( , ) ( ) ( )� + � + � +

+
� �

�<

<

� 0

2 2
, (3.38)

where J x
0
( ) is the cylindrical Bessel function of zero order; � is the angular frequency; � is the radial coordinate of the

cylindrical coordinate system; B( )+ is unknown density; + is the separation constant. In expressions (3.37) and (3.38), the factor

exp( )�i t� is omitted, and the quantities are dimensionless.

To satisfy the boundary conditions on the cylindrical and spherical surfaces, the spherical wave functions in the

expressions for the potentials of the waves were expanded into series of cylindrical functions and vice versa [181]. The

coefficients of the series were determined by the reduction method from an infinite system of algebraic equations derived by

satisfying the boundary conditions. The potentials found at the first stage were used to determine the pressure in the fluid up to

the second order (3.18) and the hydrodynamic force (3.20) acting on the spherical particle. Its constant component (radiation

force) was found by averaging over time.
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The effect of the radiation force on a solid spherical particle in a circular cylinder filled with a fluid was analyzed

numerically, using dimensionless quantities. The scaling parameters were the parameters of the compressible fluid (water):

speed of sound a
0

1500� m/sec, density 2 � 1000 kg/m
3
. The plane acoustic wave (3.36) was assumed to have energy flux

density I �175.5W/m
2
, which corresponds to moderate radiative power at which the wavelength

~
� �0.038 m and the velocity of

fluid parcels is 0.015 m/sec. Figures 3.16–3.19 show the variation in the dimensionless radiation force calculated at the second

stage of problem solving. The solid and dashed lines represent the dependence on the dimensionless frequency ��
0 0
/ a (�

0
is

the radius of the cylindrical cavity) of the radiation force (at dimensionless pressure p a/ ( )2
0

2
) acting on the spherical particle in

the cylindrical cavity and in an unbounded fluid, respectively. The figures indicate that the radiation force varies

nonmonotonically with the frequency. The radiation force changes abruptly at certain frequencies � (� �; ;4 7, ), which is

observed for all sizes of the spherical particle.

The following features in the effect of the radiation force on the spherical particle revealed by an analysis of the figures

are noteworthy:

(i) if a particle in an unbounded fluid is subject to radiation force that acts in the direction of wave propagation and

monotonically increases with frequency, then the frequency dependence of this force acting on the particle in the cylindrical

cavity becomes very complicated because of the complication of the diffraction field inside the cylinder;

(ii) depending on the frequency, the radiation force acting on the particle in the cavity (unlike the unbounded fluid) is

directed either along wave propagation or in the opposite direction;

(iii) at some frequencies, the radiation force displays nearly resonant behavior: there are peaks on the curves at these

frequencies. It is obvious that the resonant frequencies are the natural frequencies of the mechanical system consisting of a rigid

cylinder filled with a fluid and a solid spherical particle inside it [181].

The problem of the effect of the radiation force on a spherical drop in a cylindrical cavity filled with a fluid with

dissimilar mechanical properties was solved [135]. Unlike the case of a solid spherical particle, the boundary conditions on the

surface of the spherical drop are the continuity of the normal velocities of fluid parcels in the drop and surrounding fluid, and the

continuity of the pressure in the fluids. The potential �
1
( , )r 9 that describes the wave motion in the drop is expressed as
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�
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@ , (3.39)

where0 � c c
0 1
/ is the ratio of the speed of sound in the surrounding fluid to the speed of sound in the drop. Expression (3.39) is

dimensionless. The problem was solved using the approach applied to a solid spherical particle in a cylindrical cavity filled with

a fluid [202].

3.6. Radiation Force on Two Objects in an Ideal Fluid. When there are many particles in a fluid, it is a challenge to

analyze their interaction caused by the radiation force exerted by an acoustic wave. If the particles are randomly arranged in the

fluid and the average distance between the nearest particles is large compared with the size of the particles, then the most

important interaction is between two particles appeared close to each other. Groups of three andmore closely spaced particles are

less frequent. In this connection, studying the interaction of two particles in a large volume of fluid is of fundamental importance.

Therefore, there are many theoretical and experimental studies on the interaction of two particles in the field of an acoustic wave.

In these studies, particles were assumed small compared with the amplitude of oscillation of the medium and the wave length.

Therefore, it is assumed that the flow of incompressible fluid past the particles is unidirectional and steady-state

(quasistationary), which gives rise to hydrodynamic forces. These forces explain the interaction of the particles. These are

Bernoulli forces if the Reynolds number is great. If the Reynolds number is small, Stokes and Oseen forces are considered, and

the equations of motion of the fluid include no or some of the inertial terms. In [139], the interaction of particles in an acoustic

field of low frequency is attributed to Bjerknes forces acting between particles oscillating with different velocities in an

incompressible ideal fluid.

In the sited publications, systems of two free spherical bodies and of two free cylindrical bodies were considered. Their

interaction caused by radiation forces was studied. To solve the problems posed, the approach outlined above was used. At the

first stage of problem solving, the potentials of the waves scattered by the objects were determined using the linear theory of

wave propagation (3.19). To determine the velocity potentials, the superposition principle was used. The scattering problemwas

solved by the variable separation method in a cylindrical (spherical) coordinate system [149]. A local cylindrical (spherical)

coordinate system in which the velocity potentials of waves are represented by generalized Fourier series of cylindrical

(spherical) wave functions was fixed to each object. The coefficients of the series were determined from infinite systems of linear

algebraic equations obtained by satisfying the boundary conditions on the surface of each object. The velocities of surface

particles of the objects were determined by solving the equations of their motion (3.22) under forces (3.20) where the pressure is

defined by (3.21). To formulate the boundary conditions for each object in the local coordinate system, the summation theorems

for the corresponding wave functions were used [84, 149]. The resulting systems of equations are regular and, thus, have a

unique solution, which can be found numerically, by the reduction method. The prescribed accuracy is achieved by increasing

the number of equations. Such an approach was used to solve many problems of the interaction of objects with a fluid [166, 174,

181]. The potentials of the waves found at the first stage were used to determine the pressure in the fluid up to the second order

(3.18), to calculate, at the second stage, the forces (3.20) acting on the bodies in the fluid and, at the third stage, their constant

components (radiation forces), and to study the motion of the bodies under the radiation forces.

The effect of radiation forces on two free spherically isotropic solid spheres was studied in [88, 110, 111, 117, 123,

129].

Wave (3.23) propagates along the line of the centers of the spheres (the wave vector is assumed directed from sphere 1

to sphere 2) that can be differently arranged relative to each other and have equal [88, 110, 117] or different [123] radii. Since the

wave field is symmetric, the radiation forces acting on the spheres are parallel to the line of their centers. Closed-form

expressions for these forces were derived for the case ! � ::ka 1, kl 881(l is the distance between the centers of the spheres of

radius a) using asymptotic representations of spherical functions of small and large arguments:

B C �

� �

�

F A
( )

( )
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2 2
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2

2
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! , (3.40)
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9 2

2
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where0 � ��
0
/

s
; �

0
is the density of the fluid; �

s
is the density of the sth sphere (s = 1, 2).
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If kl;<, then formulas (3.40) and (3.41) coincide with formula (3.14) for a single sphere derived in [180]. The second

term in (3.41) represents the time-averaged force exerted by the second sphere on the first one due to the wave reflected by the

second sphere. The first sphere does not affect the second sphere because in the long-wave approximation, the energy scattered

by the sphere is directed toward the incident wave. If the second term in (3.41) is positive (negative), then the second sphere

attracts (repulses) the first one.

Figure 3.20 shows graphs of f F F� B C � B C 
( )
( ) ( )1 2 4

10 N versus0 for two identical spheres of radius a in water (ka �

0.1, kl �10 (curve 1) and ka �0.112, kl �11.2 (curve 2)) through which a plane wave of unit amplitude (3.23) propagates. As the

frequency or the density of the spheres changes, their interaction behavior changes substantially.

Figures 3.21–3.24 show the radiation forces for a system of two spheres in propanol (for�
*
� 0) numerically calculated

without constraints on the wavelength and the radii of and the distance between the spheres. The incident wave has amplitude

A � 

�

0918 10
4

. m
2
/sec. The force F

ij
{i j, ,�1 2} exerted by the ith sphere on the jth sphere was determined as the difference of

the radiation force acting in the acoustic field on the jth sphere in a system of two spheres and the radiation force acting in the

acoustic field on the single jth sphere. Interacting, the spheres either approach each other or move apart (Figs. 3.21 and 3.22).

Figure 3.23 shows B C � B C � B C�F F F
( ) ( )1 2

versus ka
1
for a systems of two spheres of radii a

1
and a

2
(a a a

1 2 1
08, .� (curve 1);

a
1
, a a

2 1
� (curve 2); a a a

1 2 1
12, .� (curve 3)) for l a� 4

1
. The forces of interaction are strongly dependent on the size of the

spheres and on their position relative to the wave propagation direction.
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Figure 3.24 shows the radiation force versus the distance between the centers of the spherical particles. Curves 1 and 2

represent the first and second spheres, respectively. Curve 3 represents a single sphere. It can be seen that the acoustic field has

zones of attraction and repulsion of the particles and stable and unstable interfaces between these zones.

The propagation of a plane wave at a right angle to the line of the centers of two spheres of equal radii a spaced by a

distance lwas studied in [111, 129]. The problem was solved in long-wave approximation (ka ::1) for spheres spaced far apart

(kl 881). Expressions for the radiation forces were derived in closed form. Their projections onto the line between the centers of

the spheres are expressed as

B C �F A
kl

kl

( ) sin( )1 2

0

62

9

D� ! , B C � �B CF F
( ) ( )2 1

. (3.42)

The radiation forces (3.42) do not depend on the parameter0 � ��
0
/ . This is because the displacements of the spheres

along the center-to-center line are negligible. The radiation forces decrease with increase in the distance between the spheres.

They are zero at distances multiple of the half-wavelength. The behavior of the radiation forces suggests the existence of zones in

the wave field in which the spheres are attracted or repulsed in the direction perpendicular to the wave vector. At the boundaries

of the zones, the spheres form a stable or unstable pair. The motion of the spheres under radiation forces (3.42) was studied in

[129]. Figure 3.25 shows a phase portrait of a specific system of two spherical particles. Depending on the distance of the spheres

to the stable equilibrium position, they are either move apart in opposite directions (phase paths 1 and 2) or oscillate about the

equilibrium positions (phase paths 4). The zones of oscillation and divergence are separated by separatrix 3.

The effect of radiation forces on a system of two parallel cylindrically isotropic circular cylinders separated by a

distance l and located along the propagation of a plane acoustic wave (3.23) was studied in [113, 119, 124]. An approach similar

to that applied to the case of two spherical bodies was used. A system of two free solid cylinders of equal radii a and systems of

two cylinders of different radii differently arranged relative to each other were considered. The cases of variable distance l

between the cylinders at constant frequency and fixed distance l between them at variable frequency were examined.

Closed-form expressions for the radiation forces were derived for the case of ka ::1 and kl 881 using asymptotic

representations of cylindrical functions of small and large arguments:

B C � B C �F F f
( )1

, f

kl

A
kl kl�

�
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2 2

2 3 2

0 5
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D
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, (3.44)

where B CF is the radiation force acting on a single cylinder (3.25). The forces of interaction are represented by the second terms.

Figure 3.26 shows how the second cylinder acts on the first cylinder in water in which a wave of unit amplitude
~
� � 0.1 m

propagates provided that a /
~
� � 0.016. The force is oscillating and strongly dependent on the parameter 0, frequency, and

distance l between the cylinders. It changes in both magnitude and direction with variation in frequency (wavelength).
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Figures 3.27–3.29 show the radiation forces for cylinders in propanol (for �
*
� 0) numerically calculated without

constraints on the ratios of the wavelength to the radii of the cylinders and to the distance between them. The acoustic wave has

amplitude A � 

�

09 10
4

. m
2
/sec (Figs. 3.27 and 3.28) or energy flux density I � 175.5 W/m

2
and frequency (Fig. 3.29).

Curves 1 and 2 correspond to the first and second cylinders of equal radii, and curve 3 to a single cylinder. The second

cylinder attracts the first one. The force of attraction depends on the distance l between the cylinders. Figure 3.28 shows more

complex interaction of two systems of parallel cylinders of different radii (a
1
and a

2
). Curve 1 corresponds to the first cylinder of

system 1 (ka
1
�1.0, ka

2
�1.3), and curve 2 to the second cylinder of system 2 (ka

1
�1.3, ka

2
�1.0). Curve 3 represents a single

cylinder (ka �1.0). The interaction of the cylinders has a strong effect on the radiation forces acting on each of the cylinders (the

deviation of curves 1 and 2 from curve 3). The cylinders of different radii complicate the way the radiation forces depend on the

distance: the cylinders can not only approach, but also move apart. As the frequency changes, the cylinders either rapidly or

slowly approach each other (Fig. 3.29). This tendency is characterized by the deviation of curves 1 and 2, which represent the

first and second cylinders, respectively. Curve 3 represents a single cylinder. The deviation of curves 1 and 2 from curve 3

indicates how the cylinders interact. The higher the frequency, the stronger the interaction of the cylinders.

The propagation of a plane acoustic wave at a right angle to the plane of the axial lines of two free parallel cylinders of

equal radii a spaced by a distance lwas studied in [113]. An approach similar to that applied to the case of two spheres was used.

The following expressions for the radiation forces were derived in long-wave approximation for cylinders spaced far apart:
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where B CF
x

s( )
( , )s �1 2 is the projection of the radiation force acting on the sth cylinder onto the îx-axis (the îx-axis is located in

the plane of the cylinder axes and is perpendicular to the axis of cylinder 2); B CF
y

s( )
is the projection of the radiation force onto the

îy-axis parallel to the wave vector. In (3.46), B CF is the radiation force acting on a single cylinder in the same conditions (3.25).

It follows from (3.45)–(3.47) that the cylinders do not interact when they are far from each other (kl;<) and when the

wavelength
~
�and distance lbetween the cylinder axes are related by 2 3 4l n/

~
/� � � . If 2 1 4l n/

~
/� � � , then the interaction of the

cylinders is the most intensive. In this case, the radiation forces draw the cylinders together when n is even and diverge them

when n is odd. It was assumed that n is large. As with two spheres, the forces of interaction do not depend on the parameter

0 � ��
0
/ .

The methods proposed to solve problems of the effect of radiation forces in an acoustic field on a system of two objects

were also used to solve the problem of the effect of radiation force on a body near a flat liquid surface [92, 93]. The effect of the

radiation force caused by an acoustic wave (3.36) propagating at a right angle to a flat wall on a free spherical particle of radius a

located at a distance l from the wall was studied in [132, 133, 177]. The wave field results from the interference of the incident

wave and the waves reflected from the wall and scattered by the sphere. In determining the potentials of the acoustic field at the

first stage, boundary conditions on the surface of the sphere and on the flat liquid surface are formulated. To solve the linear

problem of the scattering of the acoustic wave by the spherical particle and the reflection of the wave scattered by the sphere from

the flat liquid surface, the method of virtual images was used. This problem was reduced to the problem of the scattering of the

wave by two spherical particles solved by determining the potentials of the reflected waves in a spherical coordinate system. The

potentials of the waves were represented by generalized Fourier series of spherical wave functions with unknown constant

coefficients. The case where ! � ::ka 1 and " � 88kl 1was examined. In this case, the infinite system of linear algebraic

equations for the unknown coefficients obtained by satisfying the boundary conditions was solved using asymptotic

representations of spherical functions and their derivatives of small and large arguments. At the second stage, certain potentials

of the acoustic field are used to calculate the acoustic pressure in the fluid and the hydrodynamic force acting on the sphere. Its

constant term (the radiation force obtained by averaging the hydrodynamic force over time) is given by

B C � �

�

�

�F A O
z
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2

2
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3 5
D�

0

0

"! !sin ( ). (3.48)

The motion of a spherical particle, which is at the point z at time t, under the radiation force (3.48) was studied. The

equation of its motion is

( ) sin( )m m
d z

dt

A z� � � �

�

�

2

2

2

0

38
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1

2

2D�

0

0

! % , (3.49)

wherem R� 4 3
3

1
/ D � is the mass of the spherical particle; � �m R2 3

3

0
/ D � is its added mass;0 � ��

0 1
/ . It was established that

the radiation force (3.49) does not act on the spherical particle suspended in the fluid ( )0 �1 . The radiation force is also zero at

certain distances z
n
from the flat boundary (equilibrium positions). The stable equilibrium positions for 0 :1 are unstable

equilibrium positions for0 81. The particles oscillate about the stable equilibrium positions. Heavy particles (0 :1) have longer

period T of oscillation than light particles (0 81), their amplitudes being equal.

The effect of the radiation force on a solid cylinder located in parallel to and at a distance  from a flat wall was studied in

[97, 83]. The problem was solved using the approach applied to a solid spherical particle near flat liquid boundary. It was

assumed that a plane acoustic wave is incident at an arbitrary angle 9on the wall. To solve the linear problem of the scattering of

the acoustic wave by the solid cylinder and the reflection of the wave scattered by the cylinder from the flat liquid surface, the
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method of virtual images was used. This problem was reduced to the problem of the scattering of the wave by two cylindrical

bodies solved by determining the potentials of the reflected waves in a cylindrical coordinate system. The potentials of the waves

were represented by generalized Fourier series of cylindrical wave functions with unknown constant coefficients. The

long-wave case where ! � ::ka 1and "  � 88k 1was examined. Expressions for the projections of the radiation force onto an

axis perpendicular to and an axis parallel to the flat boundary were derived in [97]. The component of the radiation force

perpendicular to the flat boundary

B C �

�

� � �F A
a

k O
x

2 0

1

2 1 3 2

D�

0

 9 0 9 9

( )

sin( cos )[( )cos cos ] ((ka ) )
5

(3.50)

causes the cylinder to undergo motion described by a nonlinear oscillator equation. Its period of oscillations increases with the

angle of incidence 9and strongly depends on the parameter0, wavelength, and the velocity amplitude of fluid parcels. In [83], the

problem was solved numerically for a cylinder of radius a �0.005 m in propanol through which a wave with energy flux density

I �175.5 W/m
2
propagates. The components of the force  are most strongly dependent on the distance from the cylinder to the

liquid boundary and the angle of incidence 9 of the acoustic wave. Figure 3.30 shows how the component of the radiation force

perpendicular to the boundary depends on these parameters. This dependence is complex for small values of  .

Conclusions. In the publications reviewed, mathematical models and methods to study the dynamics of elastic bodies,

solid particles, and fluid parcels in a viscous fluid were developed based on the linearized theories of a compressible viscous

fluid and prestressed elastic bodies.

The basic results of these studies are the following.

1. Linearized equations for a compressible viscous fluid either at rest or undergoing nonstationary small harmonic

motions (oscillations) were derived.

2. The general solutions of the three-dimensional equations of the linearized theory for a compressible viscous liquid

were expressed in terms of scalar and vector potentials. The equations from which these potentials are derived were presented as

well.

3. Representations of the general solutions in rectangular, circular cylindrical, and spherical coordinate systems were

obtained, which made it possible to analyze the dynamic interaction of liquid and elastic bodies of such shapes with a

compressible viscous fluid.

4. It was shown that by passing to the limit, these general solutions can be reduced to general solutions for simpler fluid

models (incompressible viscous fluid; compressible or incompressible ideal fluid).

5. A problem statement was formulated and a method was proposed for studying the motion of solid bodies in a

compressible fluid under the action of acoustic waves, the propagation of perturbations in elastic cylindrical shells filled with a

compressible viscous fluid, and wave processes in prestressed elastic bodies interacting with a compressible viscous fluid.

6. A problem statement was formulated and the basic classes of elastokinetic problems for Rayleigh, Stoneley, Lamb

waves and quasisurface, longitudinal, and torsional modes propagating in various hydroelastic systems (liquid and elastic

half-spaces, a liquid layer and an elastic half-space, an elastic layer and a liquid half-space, elastic and liquid layers, a shell and a
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hollow cylinder containing a fluid, an infinite body with a cylindrical cavity filled with a compressible viscous fluid, a solid

cylinder in a fluid) were solved taking into account prestresses and the viscosity and compressibility of the fluid.

7. Dispersion equations in a general form invariant to the elastic potential function and valid for arbitrary compressible

and incompressible materials were derived using general solutions of linearized problems of aerohydroelasticity for bodies with

homogeneous prestrains and a compressible viscous fluid at rest. The basic classes of problems were solved numerically which

made it possible to discover new properties, laws, and mechanical effects caused by the interaction of prestresses and dynamic

stresses and the interaction of an elastic body and a viscous fluid.

The basic results are the following:

(a) in hydroelastic waveguides consisting of elastic bodies and a compressible viscous fluid, unlike ideal systems,

damped waves propagate, these waves in a hydroelastic system with a compressible ideal fluid tending to become normal as the

coefficient of viscosity tends to zero;

(b) the propagation of torsional modes in shell-like hydroelastic waveguides can only be studied using viscous fluid

models, the viscous fluid having a strong effect on the wave process and generating damped waves;

(c) the viscosity of the fluid and the prestresses have a strong effect on the critical frequencies of waves and the phase

velocities of modes at these frequencies;

(d) with increase in the compressibility of the fluid interacting with compressible elastic bodies, the number of

propagating modes increases and their phase velocities and damping factors change substantially. Using an incompressible fluid

model can lead to rather inaccurate quantitative and qualitative results;

(e) there are certain lengths of normal waves at which the prestresses do not affect their phase velocities and damping

factors;

(f) there are certain numbers and frequencies of modes at which the viscosity of the fluid does not affect their phase

velocities;

(g) the presence of a liquid layer gives rise to new quasi-Lampwaves with zero cutoff frequencies. The fluid changes the

critical frequencies and the configuration of the dispersion curves and shifts them to the long-wave part of the spectrum;

(h) the localization of the low-order modes in the liquid layer–elastic layer system depends on the mechanical

parameters of the hydroelastic system. The basic criterion of distribution of the normal low-order waves between themedia is the

ratio between the acoustic velocity in the fluid and the velocity of the quasi-Rayleigh wave propagating in the elastic layer near

its free surface;

(i) the effect of the viscosity of the fluid is due to its interaction with the displacements occurring in the hydroelastic

system during the propagation of waves. At those points of the modes where the shear displacements at the interface between the

media are predominant, the effect of viscosity is the strongest and the damping factors and relative changes in the velocities are

maximum;

(j) the effect of the viscosity of the liquid layer on the phase velocities and damping factors of all (except for the first)

quasi-Lamb modes weakens with increase in the thickness of the elastic layer in the short-wave part of the spectrum of the

hydroelastic waveguide;

(k) the three-dimensional linearized theory of waves allows, in both plane and spatial cases, determining the critical

compression parameters at which surface instability occurs in highly elastic incompressible elastic bodies and hydroelastic

systems.

8. The quantitative and qualitative data obtained made it possible to determine the errors introduced by simplified

theories and simplified models of elastic and liquid media and the limits of applicability of results obtained with approximate

applied two-dimensional theories, the linear classical theory of elasticity, and incompressible viscous or ideal fluid models.

9. The interaction of an acoustic wave with objects in a compressible (viscous or ideal) fluid bymeans of radiation (time

average) forces was studied, including:

(a) statement of general problems to be solved to find the time-average force and the force of interaction between

objects (without constraints on the wavelength and the size of the objects) and development of methods to solve them;

(b) solution of some classes of problems for solid and flexible particles of specific shape (a spherical particle, a

cylindrical particle, two spherical particles, two cylindrical particles) in a fluid through which a plane acoustic wave propagates

in various directions;

(c) analysis of newmechanical effects due to the interaction of objects in an acoustic field and the viscosity of the fluid.
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10. A method to calculate the stresses in an acoustic wave in a compressible viscous fluid was developed based on a

simplified system of nonlinear hydroelastic equations that include both nonlinear and dissipative terms. An expression for the

stresses in a compressible viscous fluid up to second-order terms with respect to the Mach number was derived from the

potentials of the velocity field of the fluid determined with the same accuracy from the linearized hydroelastic equations. The

radiation (the constant component of the hydrodynamic force) force acting on the body is the period-average surface integral of

internal product of the stress tensor in the fluid and the unit normal vector to the surface of the elastic body.

11. An analogy was established between a compressible viscous fluid whose flow is described by the system of

linearized hydroelastic equations and a linear viscoelastic body that behaves as a Voigt body upon change in volume and as a

Newton body upon change in shape. This analogy allowed reducing the problem of the small harmonic oscillations of a

compressible viscous fluid to the problem of the stationary harmonic vibrations of a viscoelastic body. This made it possible to

reduce the problem of the scattering of an acoustic wave by free solid particles in a compressible viscous fluid, which is solved to

determine the velocity potentials of the fluid, to the problem of diffraction of an isothermal harmonic expansion wave by

perfectly rigid bodies in a viscoelastic medium, which is solved using methods used in solid mechanics to solve problems of the

diffraction of elastic waves in multiply connected domains.

12. The approach developed in the reviewed studies allows studying the behavior of systems of solid particles in a

compressible viscous fluid without constraints on the ratio of the wavelength to the size of and the distances between the

particles.

13. Passing to the limit in the expressions for viscous fluid as the coefficients of viscosity tend to zeromade it possible to

apply the approach to the case of a compressible ideal fluid.

14. Analytic closed-form solutions were found for a solid particle much smaller than the length of the acoustic wave.

Such a solution was also obtained for a system of two solid particles in an ideal fluid in the case where they are smaller than the

wavelength, which, in turn, is shorter than the distance between the particles. Comparing the results obtained numerically and by

approximate formulas allowed identifying the ranges of the parameters of the fluid, solid particles, and acoustic wave in which

the approximate formulas can be used to calculate the time-average forces with adequate accuracy.

15. The effect of the time-average forces acting on single solid particles and systems of two particles in either ideal or

viscous fluid through which an acoustic wave propagates was analyzed numerically and with approximate formulas. New

mechanical effects were discovered, of which the most important are the following:

(a) the time-average force acting on a solid particle in a fluid is strongly dependent on the ratio of the density of the fluid

to the density of the particle and increases with frequency;

(b) at the same frequency, the time-average force acting on a solid particle in a compressible viscous fluid is strongly

dependent on the dynamic coefficient of viscosity. The higher the viscosity of the fluid, the stronger the time-average force

exerted by the acoustic wave. This force is several orders of magnitude higher than the radiation force acting on the particle in an

ideal fluid;

(c) unlike ideal fluid, the direction of the time-average force acting on the particle in a compressible viscous fluid

depends on the ratio of the density of the fluid to the density of the particle;

(d) free particles located in a fluid along the propagation direction of the acoustic wave are under time-average forces

which change in both magnitude and direction with the distance between the particles, the frequency being constant. In this

connection, there are zones of attraction in the acoustic field in which the time-average force draws the particles together and

zones of repulsion in which particles go away from each other. At the interfaces between these zones, the pair of particles is either

stable or unstable;

(e) a system of two free particles perpendicular to the wave propagation direction in a fluid is subject to the time-average

force acting both in parallel to the wave propagation direction and in perpendicular direction. The forces that are perpendicular to

the wave propagation direction decrease with increase in the distance between the particles. They are not monotonic functions of

the distance, but change in bothmagnitude and direction. As a result, the zones of attraction and repulsion of the particles occur;

(f) the direction of the radiation force acting on a liquid drop depends on the ratio of the density of the drop to the density

of the surrounding fluid. The radiation force increases as the frequency of the acoustic wave tends to the resonant frequency of

pulsations of the drop and changes its direction at the resonant frequency;

(g) depending on the frequency, the radiation force acting on the particle in the cavity (unlike the unbounded fluid) is

directed either alongwave propagation or in the opposite direction. At some frequencies, the radiation force changes resonantly.
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In the reviewed studies, the general problem of the action of the time-average force on solid particles was formulated

and a method to solve it was developed, which makes it possible to analyze the behavior of particles in an acoustic field

irrespective of the ratio of the wavelength to the size of and the distance between the particles. In this connection, the results

obtained can be used to validate results produced by using simplified approaches.

Note that we have reviewed only some results on the dynamics of elastic bodies, solid particles, and fluid parcels in a

compressible viscous fluid. Those results were preferred that were obtained using the three-dimensional linearized theory and

taking into account the prestresses in elastic bodies and the viscosity and compressibility of the fluid. The results obtained at the

S. P. Timoshenko Institute of Mechanics in recent years have been discussed in more detail.
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