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The forced resonant axisymmetric vibrations and self-heating of a closed spherical shell, an infinitely

long cylindrical shell, and a ring with piezoelectric sensor and actuator are studied. The effect of the

temperature dependence of the complex characteristics of the passive material on the vibration

amplitude and self-heating temperature is analyzed. The possibility of active damping of these vibrations

with piezoelectric sensor and actuator is shown
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Introduction. Thin-walled structural elements such as rings, spherical and cylindrical shells made of elastic and

viscoelastic materials often undergo vibrations under harmonic loads. The vibrations of such elements can be damped with

piezoelectric components acting as sensors and actuators, which is an active-damping method [9–13]. Harmonic loading causes

self-heating of the material because of hysteresis losses, which should be taken into account in dynamic analysis of inelastic

elements [3, 4].

The thermomechanical behavior of layered inelastic elements with piezoelectric layers under monoharmonic

electromechanical loading was modeled in [2, 4, etc.]. Analytic and numerical results on the monoharmonic vibrations and

self-heating of sandwich plates and cylindrical shells with piezolayers acting as sensors and actuators are reported in [5, 7, 8,

etc.]. Mathematically, the vibrations of such objects are damped by using feedback to change the stiffness of the system.

We will solve the problem of damping the forced radial vibrations and self-heating of a thin-walled closed spherical

shell, a thin-walled infinitely long cylindrical (plane strain) shell, and a ring (plane stress state) made of a passive (no

piezoelectric effect) viscoelastic material with piezoelectric layers one of which is a sensor, and the other is an actuator. Damping

is performed using one of the feedback mechanisms affecting the stiffness, dissipative, or inertial characteristics of the objects.

The dependence of the viscoelastic properties of the passive material on the self-heating temperature is taken into account.

1. Problem Formulation and Solution. Consider a closed spherical shell, an infinitely long cylindrical shell, and a

ring, each having three layers. Let the origin of coordinates z � 0be on the mid-surface of the middle viscoelastic layer of radius

R and thickness h
0
. The inner ( / )z h� �

0
2 and outer ( / )z h�

0
2 layers of thicknesses h

1
and h

2
, respectively, are made of elastic

piezoceramics and are polarized across the thickness. There are continuous infinitely thin electrodes between the passive and

piezoactive layers and on the outside surfaces of the piezolayers. The internal electrodes are kept at potentials
m

h�( / )� �

0
2 0

( , )m �1 2 . Let the layer of thickness h
1
be a sensor, and the layer of thickness h

2
be an actuator.

The shells are under centrally symmetric surface pressure q q t
z

� cos � harmonically varying with time t with constant

amplitude q and nearly resonant frequency � . Moreover, a voltage
2

0 2

2

0
2 2� �( / ) ( / )h h h V	 � �

a
of frequency equal to that

of the mechanical load is applied to the actuator to balance it. Then a voltage
1

0 1

1

0
2 2� �( / ) ( / )� � � � �h h h V

s
of unknown

amplitude is induced across the open-circuited electrodes of the sensor and the electric boundary condition
1

0D ds
z
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satisfied (
1
D

z
is the normal component of electric-flux density). Also, the shells transfer heat by convection to the environment

of temperature T
0
.

Due to the chosen geometrical and loading conditions, the Kirchhoff–Love hypotheses of the membrane theory of

shells can be used to describe the electromechanical behavior of the whole sandwich and the electric-flux density in the

piezolayers can be considered constant across the thickness (D
z

� const) [4]. The viscoelastic behavior of the passive layer is

described using the concept of temperature-dependent complex moduli [4]. Assuming that self-heating is a steady-state process,

the self-heating temperature can be considered constant throughout the thickness of the whole sandwich.

Using the membrane theory of shells and the above assumptions, the equation of the harmonic vibrations of the objects

can be written for amplitude variables as

� � �




N R w q� �

*

~2
, (1)

where� � � �

*
� 	 	

1 1 2 2 0 0
h h h ,

~
( )q R h h h q� 	 	

0 1 2
,�

1
,�

2
, and�

0
are the specific densities of the piezoelectric and passive

materials. N N iN

 
 


� � 	 �� and w w iw� � 	 �� are the complex circumferential force and radial deflection.

The constitutive equations for the piezoceramic layers polarized along the z-axis are
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m m E
c s
11 1 11

� � / ,
m

E

m E m E
s s� � �

12 11
/ ,

m m m E
b d s
31 2 31 11

� � / ,
m m T m m E

d s
~
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33 33 3 31
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11
� � . (2)

Hereafter � � 2, � � �

1 2
1 1� � �/ ( )

m

E
, � �

3 2
2� for the spherical shell; � �1, � �

1

2
1 1� �/ ( )

m

E
,

� � � �

2 3 2
1 1 2� � �/ ( )

m

E
for the cylindrical shell; � �� �

m
1 for the ring;

m E m E m m T
s s d
11 12 31 33
, , , � are the elastic

compliances, piezoelectric modulus, and permittivity of the piezoceramics;
m

z
E is the normal component of electric-field

strength.

For the viscoelastic passive layer h
0
, the first and third equations in (2) hold, where

m
c c E T
11

0

11 1
� � � ( ),

m
b
31

0� ;

E E iE� � 	 �� is the temperature-dependent complex modulus of viscoelasticity;
m

E
� �� � const is Poisson’s ratio.

With the goal of assessing the maximum effect of thermomechanical coupling, we will determine the steady-state

self-heating temperature by solving the equation

� 	 �� �2

2

0
1

2

2
� 
 ��

�




s

R

E w( )| | , (3)

where | | ( ) ,
/

w w w T T� � 	 �� � �

2 2 1 2

0

 ; �

s
is the heat-transfer coefficient to the environment.

Integrating Eqs. (2) over the thickness of the sandwich, we derive an expression for the circumferential force:

N D

w

R

b V b V D c h c h c h
N N


� � 	 � 	 	

1

31

2

31

1

11 1

2

11 2

0

11 0s a
( ). (4)

The electric-flux density in the piezoelectric sensor is defined by the formula

1 1

31

1

33

1

D b

w

R

V

h
z

� 	� �

~ s
. (5)

Subjecting expression (5) to the electric boundary condition on the electroded surfaces of the sensor, we determine the

voltage amplitude

V

b h

R

w
s

� ��

�

1

31 1

1

33

~
. (6)
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For the active damping of the mechanical vibrations of the shell elements with piezoactive sensor and actuator, we use

feedback mechanisms mathematically implemented as a linear relationship between the actuator voltage V
a
and the sensor

voltageV
s
and its first or second derivative with respect to time [4]:

V G V
a a s

� � , V i G V
a as s

� � � , V G V
a as s

� �

2
, (7)

whereG G G
a as as
, , are parameters controlling the stiffness, dissipative, and inertial characteristics of the system, respectively;

the sign “–” indicates that the actuator voltageV
a
is antiphase to the mechanical load.

Substituting expression (4) into the vibration equation (1) and taking (6) and (7) into account, we get

| |
~
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/
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where

� � 	 �� �

0 1
� 
m E ( ), �� � �� 	� � 
 � �( ( ) )m E G

1 1as
,

�

0

0

1

2

1
� 	 � 	� � � � � �( ) ( )

*
D G R G

N a as
, D c h c h R

N

0 1

11 1

2

11 2 2
� 	 	( ) / � ,

m h R
1 1 0

� � / , � �

2

1

31

2

1

1

33
� b h R/ (

~
), � � �

1

2

31 2

1

31 1

1

33
� b b h R/ (

~
).

Combining relations (3) and (8) leads to a transcendental equation for the unknown temperature 
, given �E ( )
 and ��E ( )
 .

Let the temperature approximation of the components of the complex viscoelastic modulus be linear:

� � � 	 �E E E( )
 


0 1
, �� � �� 	 ��E E E( )
 


0 1
. (9)

Then the deflection amplitude (8) can be calculated by the formula
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~
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/
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A cubic equation for determining the self-heating temperature follows from Eqs. (3), (9), and (10):
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where

n
0 1

2

2

2
� 	� � , n d d

1 1 1 2 2
2� 	( )� � , n d d

2 1

2

2

2
� 	 , d m E

1 2 1 1,
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1
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� �
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2 1 0 1
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s
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For the temperature-independent components of the complexmodulus, the deflection amplitude and self-heating can be

found from (8) and (3) where it is necessary to set � � �E E( )


0
and �� � ��E E( )


0
. The isothermal resonant frequency can be

determined from the condition � �� 0.

2. Analysis of the Calculated Results. Let us consider, as a numerical example, a ring with R �0.1 m, h
0

�0.004 m,

h h
1 2

5
05 10� � �

�

. m damped using the feedback mechanism controlling the dissipative properties of the system (G
a

� 0,

G
as

� 0,G
as

� 0). The passive layer is made of polymer [6] with the following coefficients of temperature approximation (9):

� � �E
0

10
0216594 10. Pa, � � � �E

1

8
0236994 10. Pa/°C,

�� � �E
0

9
0199358 10. Pa, �� � � �E

1

7
0190904 10. Pa/°C,

�

0
� 929 kg/m

3
, � � 0.3636, T

0
� 20 °C, �

s
� 5 W/(m

2
�°C).

The piezoelectric actuator and sensor are bothmade of TsTStBS-2 piezoceramics [1] with the following characteristis:
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Figures 1 and 2 show the frequency dependence of the dimensionless deflection amplitude
~

| | /w w h� �10
3

0
and

self-heating temperature 
 of the ring forG
as

� (0, 0.1, 0.2, 2.0)�
�

10
2
(curves 1, 2, 3, 4, respectively) and

~
q �20 N. The dashed

lines correspond to the isothermal complex viscoelastic modulus, while the solid lines to the temperature-dependent modulus.

The temperature dependence makes the isothermal frequency characteristics softly nonlinear. Increasing the controlG
as
offsets

the nonlinearity of both frequency characteristics and decreases the deflection and self-heating temperature up to the total

absence of vibrations and heating.

There are harmonic loading and heat-transfer conditions under which the self-heating temperature of viscoelastic

elements with passive and piezoactive components can reach the critical level 


cr
at which the system undergoes thermal failure

because of the softening of the passive material or the depolarization of the piezoelectric material (Curie point). Figure 3 shows

the dependence of the self-heating temperature 
of the undamped ring (G
as

� 0) with temperature independent properties of the

passive material on the mechanical load
~
q for � �15,800 sec

–1
and �

s
� 2, 5, 15, 25 W(m

2
�°C) (curves 1, 2, 3, 4, respectively).

The asterisk (*) on the ordinate axis indicates the temperature 


cr
�100 °C at which the polymer starts softening and which is

lower than the Curie point of the piezoceramics. This temperature corresponds to the critical load amplitude
~
q
cr

on the abscissa

axis. The dependence of
~
q
cr
on the heat-transfer coefficient�

s
is shown in Fig. 4. It can be seen that the critical load

~
q
cr
is zero if

the system is perfectly thermally insulated (�
s

� 0) and gradually increases tending to a constant level with increase in the

heat-transfer coefficient.
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Note that using the other feedback mechanisms defined by (7) for the active damping of the shell elements leads to

qualitatively similar results.

Conclusions. The problem of the forced resonant radial vibrations and self-heating of viscoelastic elements (a closed

spherical shell, an infinitely long cylindrical shell, and a ring) with a piezoelectric sensor and an actuator and passive layers with

temperature-dependent properties has been formulated and solved. For the active damping of the mechanical vibrations of these

elements, feedback mechanisms controlling the stiffness, dissipative, and inertial characteristics have been used. It has been

shown that increasing the control parameter leads to a decrease in the amplitude of vibrations up to full damping. The effect of

the temperature dependence of the viscoelastic properties of the material on the amplitude- and temperature–frequency

characteristics and the heat-transfer coefficient has been analyzed. The critical amplitude of mechanical harmonic loading at

which the self-heating temperature reaches a critical level and thermal failure occurs has been determined.
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