
ANALYSIS OF THE STRESS–STRAIN STATE OF INHOMOGENEOUS HOLLOW

CYLINDERS

A. Ya. Grigorenko and S. N. Yaremchenko

The stress–strain state of an inhomogeneous hollow cylinder with different boundary conditions at the

ends is analyzed using the three-dimensional theory of elasticity. Spline collocation is used to reduce the

two-dimensional boundary-value problem to a boundary-value problem for a system of ordinary

differential equations of high order with respect to the radial coordinate, which is solved with the stable

discrete-orthogonalization method. The results obtained using the spline-collocation, Fourier-series,

and finite-element methods are compared
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Introduction. The strict requirements to strength analysis, the tendency to detailing the real properties of structural

materials, and the consideration of three-dimensional effects in thick-walled structural members necessitate studying hollow

cylindrical structures in three dimensions. The stress–strain analysis of thick-walled structures based on the three-dimensional

theory of elasticity involves severe difficulties associated with the complexity of the starting systems of partial differential

equations and the necessity to satisfy boundary conditions on the surface of an elastic body.

These difficulties are even more severe when designing cylindrical elements made of anisotropic and inhomogeneous

materials, such as functionally graded materials (FGM) with variable elastic characteristics.

Modern technologies make it possible to produce structures with required smoothly varying elastic moduli. The

physical and mechanical properties of FGMs based on various compositions are addressed in [3, 11–13]. Of great practical

interest and importance for fundamental research is the analysis of the stress–strain state of various structural members made of

FGMs, including finite-length cylinders. In view of the above, it is necessary to determine the dynamic characteristics of such

structural members in three dimensions. Due to great computational difficulties, there are only few publications on the

three-dimensional stress–strain state of elastic bodies made of FGMs [4, 10, 14].

Along with such universal methods as finite-difference, finite-element, and other discrete methods used to solve

boundary-value problems of mechanics and mathematical physics, there are methods that reduce the original problem to a

system of ordinary differential equations using analytical approximation of the solution. Reducing multidimensional problems

to one-dimensional ones and using the stable numerical discrete-orthogonalization method, we obtain the required results with

high accuracy [6, 9].

The spline-approximation method was used in [5, 6, 8] to analyze the stress–strain state of shells and thick plates. The

main advantages of splines are stability against local perturbations (i.e., the local behavior of a spline near a point does not

influence its overall behavior, in contrast to, for example, polynomial approximation), good convergence, and simple and

convenient computer implementation.

Here we will analyze the axisymmetric stress state of hollow cylinders that can be described by a two-dimensional

boundary-value problem [7]. We will assume that the elastic modulus can vary in the radial direction. Therefore, spline
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approximation will be performed along the length of the cylinder. Doing so leads to a one-dimensional boundary-value problem

in the radial direction. We will compare the results obtained by the above method with those obtained by the finite-element

method and (for some problems) the Fourier-series method.

1. Problem Formulation. Basic Equations. Consider a hollow orthotropic cylinder with inner radius R H� , outer

radius R H� (R is the midsurface radius, 2H is the cylinder thickness), and length L described in cylindrical coordinates r, �, z

(Fig. 1). The axisymmetric stress–strain state of the cylinder is described by the kinematic equations
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where � �

ij ij
r z� ( , ) are the elements of the stiffness matrix, which are differentiable continuous functions of the coordinates r
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where u r z
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( , ) are the projections of the displacement vector onto the r- and z-axes; e
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stresses.
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 and E are Poisson’s ratio and Young’s modulus.

The boundary conditions on the inside (r R H� � ) and outside (r R H� � ) surfaces of the cylinder are

�

r
R H z q( , )� �

1
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R H z q( , )� �

2
, �

rz
R H z( , )� � 0. (5)

The following boundary conditions can be specified at the cylinder ends z � 0and z L� :
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r
� 0 (hinging) (6)

(ii) u
z
� 0,

�
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u

z

r
0 (symmetry) (7)

(iii) u
r
� 0, u

z
� 0 (clamping). (8)

The governing equations for displacements take the form
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Transforming Eq. (9), we get
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where the coefficients a a r z
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The boundary conditions are
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2. Procedure for Solution of Boundary-Value Problems. The boundary-value problem (10) with the appropriate

boundary conditions can be solved by the spline-collocation method. To this end, we represent the unknown functions u r z
r
( , )

and u r z
z
( , ) as
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System (11) includes no higher than 2nd-order derivatives of the unknown functions with respect to z; therefore, it is

sufficient to use cubic splines.
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The boundary conditions for this system are given by

B Y R H b
1 1
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2 2
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where B
1
and B

2
are 2 1 4 1( ) ( )N N� � � -matrices; b

1
and b

2
are the respective vectors.

The boundary-value problem (17), (18) is solved by the discrete-orthogonalization method. With the boundary

conditions (6), the problem can be solved by expanding the unknown functions into Fourier series:
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Substituting expressions (19) into Eqs. (10) and the boundary conditions (12), (13), we obtain a sequence of

one-dimensional boundary-value problems for the unknown functions u r
rm

( ) and u r
zm

( ), which are solved by the

discrete-orthogonalization method.

In the case of clamped boundary conditions, the finite-element method (FEM) can be used [1]. If pressure (5) acts on the

inside and outside surfaces of the cylinder, the strain energy is expressed as
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Using the boundary conditions (6)–(8) for displacements and expressing stresses and strains in terms of the

displacements from (1), (2), and (4), we get
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We will use four-node finite elements [1]. The use of second-order polynomials, i.e., eight-node finite elements, to

approximate the solution of a thermoviscoelastic problem was detailed in [2]. Calculations show that four terms in the series are

sufficient to solve the problem. The integration is carried out using three-point Gaussian quadratures for one-dimensional

integrals and nine-point quadratures for double integrals. The resulting systems of linear algebraic equations can be solved by

Gaussian elimination.

3. Analysis of the Numerical Results. Let us use the above approach to determine the stress–strain state of hollow

cylinders with the following parameters: length L � 5, inner radius R H� � 3, outer radius R H� � 5, Poisson’s ratio 
 � 0.4,

elastic modulus E r ar br c( ) � � �

2
. Consider the following cases:

(i) increasing Young’s modulus (E R H E( ) /� �11 15
0

, E R E( ) �
0
, E R H E( ) /� � 81 50

0
, a � 0.1767, b � –0.97, c �

2.053);

(ii) decreasing Young’s modulus (E R H E( ) /� � 81 50
0

, E R E( ) �
0
, E R H E( ) /� �11 15

0
, a � 0.1767, b � –1.857, c �

5.6);

(iii) thickness-average Young’s modulus (E E�10589
0

. ).
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Let normal uniform pressure q act on the inside surface of the shell. Then q q
1
� � and q

2
0� in the boundary conditions

(5). Let us compare the results obtained for the boundary conditions (6) and Young’s modulus (i) using the Fourier-series,

finite-element, and spline-collocation methods. Let M = 55 in the Fourier series (19). The interval of integration is partitioned

into 200 subintervals (doubling them does not improve the result). Since the problem is symmetric, it can be solved on the

interval [ , / ]0 2L when using the spline-collocation and finite-element methods. Therefore, for the spline-collocation method,

conditions (6) are used at z � 0and conditions (7) at z L� / 2, and the interval of integration is partitioned into 400 subintervals.

For the FEM, the domain is partitioned into 0.1�0.1 finite elements with u
r
� 0at the nodal points for which z � 0and u

z
� 0at

the nodal points for which z L� / 2. Tables 1 and 2 collect the values of the displacements � /u u E q
z z
�

0
for z � 0 and

� /u u E q
r r
�

0
for z L� / 2for different problem-solving methods and the following values of the parameter N in (14): 39, 49, 59

(i.e., 40, 50, 60 collocation points, respectively).

It can be seen that the results obtained by the different methods differ insignificantly. The greater the number of

collocation points, the less the difference.

The solution of the problem for the same shell with clamped ends under the same loading. Figures 2 and 3 show the

distribution of the displacement �u
z
in the section z �1 and the distribution of the displacement �u

r
in the section z L� / 2,

respectively. The numbers near the curves correspond to the cases of elastic moduli, the solid lines to the spline-collocation

method, and the triangles to the FEM (the size of finite elements is the same as in the case of hinged support).

As can be seen, the curves for cases (i) and (ii) differ insignificantly, while the curve for case (iii) is between them. The

values of �u
z
obtained with the finite-element and spline-collocation methods are in good agreement, whereas the difference

between the values of �u
r
is greater.

Let now pressure be applied to the outside surface of the cylinder and its ends be clamped. Then q q
2
� � and q

1
0� in

the boundary conditions (5).

Figures 4 and 5 show the distribution of the displacement �u
z
in the section z �1and the distribution of the displacement

�u
r
in the section z L� / 2, respectively. The notation here is the same as in the previous example. As in the previous case, the

displacement �u
z
is weakly dependent on the elastic modulus, while the dependence of �u

r
on the elastic modulus is stronger.
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TABLE 1

r

Spline -collocation

FEM Fourier series

N = 39 N = 49 N = 59

3 3.188 3.172 3.161 3.044 3.081

4 0.6129 0.6095 0.6073 0.5958 0.5966

5 –1.337 –1.336 –1.335 –1.329 –1.331

TABLE 2

r

Spline -collocation

FEM Fourier series

N = 39 N = 49 N = 59

3 5.612 5.606 5.602 5.578 5.58

4 4.89 4.882 4.877 4.85 4.853

5 4.054 4.047 4.042 4.017 4.02



The difference between the results obtained with the finite-element method (with 0.1�0.1 finite elements) and the

spline-collocation method is greater in this case. The results obtained using 0.05�0.05 finite elements are shown by triangles.

Conclusions. The problems of the axisymmetric deformation of inhomogeneous hollow cylinders under internal and

external loading have been solved using the spline-collocation, Fourier-series, and finite-element methods. The results obtained

by these methods have been compared. The distribution of displacements depending on the elastic modulus, type of loading, and

boundary conditions at the ends of the cylinder has been plotted. The numerical results obtained have been analyzed.
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