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The problem of the forced vibrations of a discretely reinforced cylindrical shell on an elastic foundation

under distributed impulsive loading is stated. The dynamic behavior of the inhomogeneous cylindrical

shell is analyzed using the Timoshenko-type theory of shells. The problem is solved with the

finite-difference method. Numerical results are analyzed
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Introduction. The interaction of elastic structures with the environment is studied using two basic approaches to the

formulation and solution of associated problems [1, 5]: (i) use of the three-dimensional equations of continuum mechanics and

(ii) use of some integral kinematic and mechanical parameters to describe the effect on an elastic structure (Winkler, Pasternak,

etc. foundations) [1, 3]. The use of the former approach involves some algorithmic and computational difficulties [1–3, 5]. The

latter approach is to model the effect of the environment by an elastic foundation, which simplifies the formulation and solution

of original problems. The dynamic behavior of a reinforced shell on an elastic foundation can be studied by solving two

problems: (a) influence of the elastic foundation on plates and shells without reinforcement [4, 6, 10–12, 15–18, 21, 22] and (b)

influence of reinforcement on the inhomogeneous structure [3, 7–9, 14, 17]. The influence of both elastic medium and

reinforcement on the stress–strain state of inhomogeneous structures is addressed in [2, 3, 13, 16, 19, 20].

Here we will solve the problem of the forced vibrations of a discretely reinforced cylindrical shell on a Pasternak elastic

two-parameter foundation under a distributed impulsive load. The dynamic behavior of the reinforced inhomogeneous shell will

be analyzed using a geometrically linear theory of shells and rods and the Timoshenko hypotheses. The problem posed will be

solved with the finite-difference method [3]. Numerical results will be obtained depending on the geometrical and mechanical

parameters of the structure and the elastic foundation.

1. Problem Formulation. Consider an inhomogeneous elastic structure with discrete inclusions that is a shell

reinforced with stringers and rings. Let us determine the stress–strain state of the shell and ribs using a geometrically linear

theory of shells and rods and the Timoshenko hypotheses [3]. The strain state of the mid-surface of the shell is determined from

the components of the generalized displacement vectorU u u u
T

� ( , , , , )
1 2 3 1 2

� � . The strain state at the center of gravity of the

cross section of a rib aligned with the x-axis is determined by the generalized displacement vector

U u u u
i i i i i i

T
� ( , , , , )

1 2 3 1 2
� � , and the rib aligned with the y-axis by the vectorU u u u

j j j j j j

T
� ( , , , , )

1 2 3 1 2
� � . We also

assume that the discrete ribs are perfectly bonded to the shell.

We will use a general coordinate system to describe the mid-surface of the shell with thickness h, the coordinate z

increasing along the outward normal to the initial surface.

The interface conditions relate the components of the displacement vector of the cross-sectional center of gravity of the

ith rib aligned with the x-axis and the components of the generalized displacement vector of the mid-surface [3]:
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where h
ic
is the distance from the initial mid-surface to the line of the cross-sectional center of gravity of the ith rib.

The interface conditions between the jth rib aligned with the y-axis and the shell are similar.

To derive the equations of the vibrations of the discretely reinforced structure, we will use the Hamilton–Ostrogradskii

variational principle:
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T A dt

t

t

1

2

0, (1.2)

where� is the potential energy of the system, including the elastic foundation; T is the kinetic energy of the system; A is the work

done by external forces.

The potential energy is expressed as
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,

where�
0
,�

i
, and�

j
are the potential energies of the shell, ith rib, and jth rib, respectively;�

foun
is the potential energy of the

elastic foundation (Pasternak’s model).

The expressions for �Ï and �T are the following:
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where S S S
i j

, , are, respectively, the domains of integration over the mid-surface of the shell and the cross-sections of the ith

and jth ribs; � � �, ,
i j

are the densities of the materials of the shell and the ribs; C
1
is the modulus of subgrade reaction

characterizing the resistance of the elastic foundation to tension/compression along the z-axis;C
2
is the modulus of subgrade

reaction characterizing the resistance of the elastic foundation to transverse shear.

To derive the equations of the vibrations of the reinforced cylindrical shell on an elastic foundation, we will use the

interface conditions (1.1) and the integral shell–rib interface conditions, according to [3].

Performing standard transformations of functional (1.2) and taking into account the integral stresses of the shell and

ribs, we obtain three groups of equations:

the equations of the vibrations of the cylindrical shell
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the equations of the vibrations of the ith rib along the line of its cross-sectional center of gravity
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the equations of the vibrations of the jth rib along the line of its cross-sectional center of gravity
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where the quantities in square brackets represent the forces/moments acting on the ith (or jth) rib aligned with theOX-axis (or the

ÎY-axis): [ ] , [ ]$ $ $ $ $ $
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The forces/moments and the strains of the shell in (1.4) are related by
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is the integral shear coefficient in the Timoshenko-type theory of plates and shells.

The strains and the components of the generalized displacement vector are related by
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The forces/moments and the strains of the ith rib aligned with the OX-axis are related by
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The forces/moments and the strains of the jth rib aligned with the OY-axis are related by
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The vibration equations (1.4)–(1.12) are supplemented with appropriate boundary and initial conditions.

If one of the ends (x � 0or x L� ) is clamped, we have
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The difference mesh is such that the points of discontinuity coincide with the integer nodes. Using the auxiliary

difference meshes and the integro-interpolation method, we set up the difference equations in the domain *
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After standard transformations in (2.1), we obtain difference equations that approximate the original equations (1.4) in

the smooth domain:
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where difference derivatives are denoted as in [3].

Thus, in the difference equations, the components of the generalized displacement vector are referred to the integer

nodes of the difference mesh, while the forces/moments to the difference mesh with fractional indices ( , )
/

x y
k i#1 2

or

( , )
/

x y
k i#1 2

. To match the forces/moments in (2.2), we integrate Eqs. (1.7) over the domains
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In the domain*
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, we have
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After standard transformations in (2.3) and (2.4), we obtain the following difference equations that relate the

forces/moments and the strains:

T B
k l k l

n

k l

n

11 1 2 11 11 1 2 21 22 1 2# # #

� �

/ , / , / ,
( )
 % 
 , S B

k l k l

n

# #

�

1 2 12 12 1 2/ , / ,

 , T T

k l k l

n

13 1 2 13 1 2# #

�

/ , / ,
,

T B
k l k l

n

13 1 2 13 13 1 2# #

�

/ , / ,

 , M D

k l k l

n

k l

n

11 1 2 11 11 1 2 21 22 1 2# # #

� �

/ , / , / ,
( )& % & , H D

k l k l

n

# #

�

1 2 13 12 1 2/ , / ,
& , (2.5)

T B
k l k l

n

k l

n

22 1 2 22 22 1 2 12 11 1 2, / , / , /
( )

# # #

� �
 % 
 , T T
k l k l

n

23 1 2 23 1 2, / , /# #

� , T B
k l k l

n

23 1 2 13 13 1 2, / , /# #

� 
 ,

M D
k l k l

n

k l

n

22 1 2 22 22 1 2 12 11 1 2, / , / , /
( )

# # #

� �& % & , H D
k l k l

n

, / , /# #

�

1 2 12 12 1 2
& , (2.6)

where the quantities with indices ( / , )k l�1 2 and ( , / )k l �1 2 are obtained by integrating Eqs. (1.7) over the domains

{ , }
/ /

x x x y y y
k k l l1 1 1 2 1 2

( ( ( (

� 	 �
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x x x y y y
k k l l	 � �

( ( ( (

1 2 1 2 1
for t t t

n n	 �

( (

1 2 1 2/ /
.

To match the strains in (2.5) and (2.6), we integrate Eqs. (1.8) over the domains *
2
and *

3
, respectively, for

t t t
n n	 �

( (

1 2 1 2/ /
. In the domain*

2
, we have
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…

The relations for the domain*
3
are similar.

After standard transformations in (2.7), we obtain the following difference equations relating the strains and the

components of the generalized displacement vector:
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…

Since the lines of discontinuities pass through the integer points of the difference mesh, the difference algorithm for the

ith rib is constructed as follows: like the difference mesh for the smooth domain, we introduce difference meshes in the domains
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Integrating the vibration equations (1.5) over the domain*
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Standard transformations in (2.9) yield the following difference equations for Eqs. (1.5):
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To match the difference forces/moments, we integrate Eqs. (1.9) over, respectively, the domains *
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and *
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Standard transformations in (2.11) yield
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The difference algorithm for the jth rib is constructed in a similar way [3].

3. Numerical Example. Let us analyze the dynamic behavior of a rib-reinforced cylindrical shell on a Winkler

foundation (C
2

0� in Eqs. (1.4)) under an internal distributed impulsive load. The ends x = 0 and x = L of the shell are clamped.

The rings are located in the sections x Li
i
� 025. ( , )i �1 3 . The stringers are located in the sections y R j j

j
� 	 �) ( ) / ( , )1 2 1 4 (the

shell is reinforced with three rings and four stringers). The distributed impulsive load P s s t
3 1 2
( , , ) is defined by

P s s t A
t

T
t t T

3 1 2
( , , ) sin [ ( ) ( )]� , 	 	

)

. . ,
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where A and T are the amplitude and period. It is assumed that E A
1

4
7 10/ � , , T R c� 25. / , c E� 	{ / [ ( )]}

/

1 1 2

1 2
1� % % .

The geometrical and mechanical parameters of the shell: E E
1 2

10
7 10� � , Pa, % %

1 2
� � 0.3, R h/ �10, L R/ � 4. For

the ribs, we have E E E
i j
� � , F F a h

i j j j
� � , a a h

i j
� � , h h h

i j
� � 2 . The following values of the Winkler coefficient are

used:

(i) C
1

9
1 10� , N/m

3
,

(ii) C
1

9
2 10� , N/m

3
,

(iii) C
1

9
3 10� , N/m

3
.

The simulation period is 0 40/ (t T.

Figures 1 and 2 show the variation in the deflection u
3
along the length of the structure. Figure 1 shows the deflection u

3

as a function of the coordinate x in the section y R� ) / 4 (between ribs) at the instant t T� 85. (at which u
3
becomes maximum for

a caseC
1

9
1 10� , N/m

3
) forC

1

9
1 10� ,[( ); (2 10

9
, ); (3 10

9
, )] N/m

3
(curves 1–3).

Figure 2 shows the same curves for the section y = 0.

Figures 3–6 show the strain 

22

and stress �
22

as functions of the coordinate x in the sections y � 0(on a rib; Figs. 3 and

5) and y R� ) / 4 (between ribs; Figs. 4 and 6) at the instant t T� 85. forC
1

0�{ ; 1 10
9

, ; 2 10
9

, ; 3 10
9

, } N/m
3
(curves 1–4).

The effect of the ribs with respect to the coordinate xcan be seen visually. The strain 

22

and stress �
22

undergo spatial

discontinuities where the rings are located. These dependences are more pronounced between ribs. The elastic foundation with
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the given coefficientsC
1
causes minor changes in the stress–strain state of the inhomogeneous shell (the maximum difference is

14–16% for the strain 


22
and 25% for the stress �

22
).

The figures allow us to analyze the stress–strain state of an inhomogeneous elastic structure depending on its

mechanical and geometrical parameters of the elastic foundation.

Conclusions.We have formulated the problem of the forced vibrations of a discretely reinforced cylindrical shell on an

elastic foundation under a distributed load. The dynamic behavior of the inhomogeneous cylindrical shell has been analyzed

using the Timoshenko-type theory of shells and rods. The problem posed has been solved with the finite-difference method.

Numerical results have been presented and analyzed.
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