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Results obtained using the three-dimensional linearized theory of stability of deformable bodies

(TLTSDB) and the new so-called finite-fiber model for fibrous and laminated composites are reviewed

and comparedwith the results previously obtained using thewell-known infinite-fibermodel. The article

consists of two parts.

The first part is a short historical sketch of experimental and theoretical studies into the following two

problems: (i) microbuckling of composites and (ii) failure or fracture of composites whenmicrobuckling

is the initial stage of the process. The applicability of the infinite-an d finite-fiber models to various

composites is confirmed by analyzing experimental results obtained by various authors.

The second part is a brief review of theoretical results obtained using the TLTSDB and the finite-fiber

model for fibrous and laminated composites. The buckling problem is solved for the following cases: one

and two short fibers, a periodic row of short fibers, and short fibers near a free boundary. The influence

ofmechanical and geometric parameters of the composite components on the critical strain and buckling

of reinforcement is analyzed. The results for the finite-fiber model were obtained by solving a plane

problem and considering the prospects for solving spatial problems, which is very important
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Introduction. The literature on the mechanics of composites and fracture mechanics currently recognizes the paper

[39] published in 1960 to be the first to describe the phenomenon of microbuckling of fibers as a type of fracture of a

unidirectional composite under compression. Thus, the microbuckling of a composite under compression is the initial stage

(start) of fracture. In subsequent years, the phenomenon of microbuckling in laminated and fibrous composites compressed

along the reinforcement was addressed in numerous studies.

For the purpose of theoretical studies, a number of models of various level of accuracy and consistency based on the

general infinite-fiber model were proposed. This model deals with a periodic (along the reinforcement axis) buckling mode,

which makes it possible to study materials with unbounded matrix reinforced with infinitely long fibers and, thus, to neglect the

effect of the boundary conditions at the ends of fibers. This model was validated for a number of composites and, naturally, it is

applicable to relatively long fibers. The infinite-fiber model is discussed in more detail in Sec. 1. It should be noted that this

model was applied in almost all studies on microbuckling in composites, beginning with the paper [41] published in 1965.

The infinite-fiber model is inapplicable to relatively short (along the reinforcement axis) fibers because the buckling

modes are affected by the ends of the fibers. In this case, it is necessary to apply the finite-fiber model and to consider specific
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boundary conditions at the fiber ends. Naturally, this model does not assume periodicity (along the reinforcement axis) of the

buckling mode and it is determined by solving the appropriate strictly formulated problem and taking into account the boundary

conditions at the fiber ends. The finite-fiber model was applied to solve a plane problem in the papers [9, 52] published in 2000.

Later, this approach was used to study microbuckling in composites in the following cases: one fiber, two fibers, a periodic row

of fibers, and fibers near the boundary of the material. Results obtained using the finite-fiber model are detailed in Sec. 2.

A few words about the terminology. In this paper, we will use the terms “infinite-fiber model” and “finite-fiber model”

with reference to both unidirectional fibrous composites and laminated composites. For the latter, it would be appropriate to use

the terms “infinite-ply model” and “finite-plymodel.” To cover both unidirectional fibrous and laminated composite, it would be

correct to use the terms “infinite-reinforcement model” and “finite-reinforcement model.” We believe, however, that the

terminology “infinite-fiber model” and “finite-fiber model” is more informative for experts in composite materials.

In this paper, we will discuss not only microbuckling in, but also fracture of unidirectional fibrous and laminated

composites under compression. In this connection, we will give some remarks on the terminology used in the fracture mechanics

of materials and structural members. By fracture is usually meant the propagation of one or several cracks; hence, fracture

mechanics studies the fracture of materials and structural members in which one or several cracks propagate. By failure is meant

the loss of load-carrying capacity by amaterial or a structural member that is mainlymanifested not only as propagation of one or

several cracks, but also as other mechanisms. This situation is studied by failure mechanics. By damage is meant the

accumulation of dispersed growing or incipient cracks or other defects. Damagemechanics studies the laws (kinetics) of damage

accumulation based on continuum models and a specially chosen damage indicator. This classification is certainly a matter of

convention; yet, it is quite useful and informative for the analysis of various results in fracture mechanics, in the broad sense of

this term.

Typical failure mechanisms in the internal structure of a composite under various loads are described in [8, Vol. 1, p. 46,

Fig. 0.1], where further references are given. Typical failure mechanisms in the internal structure of unidirectional composites

under various loads are schematized in [8, Vol. 1, p. 47, Fig. 0.2].

Images of typical failure mechanisms in composites compressed along the reinforcement (fibers) can be found in [8];

the same images are shown here, in Sec. 1.When a composite is compressed along the reinforcement, fracture is localized within

narrow zones that can be modeled by cracks. In these zones, fibers collapse and break. Thus, in this situation, several failure

mechanisms interact. Therefore, it may be stated that we deal with the phenomenon of “failure” studied by failuremechanics. For

the sake of completeness, however, onemay use both terms in this way: “failure or fracture” and “failure or fracturemechanics.”

This completes the Introduction. Thus, the present paper consists of Introduction, Section 1, and Section 2.

In Section 1, we will analyze typical experiments on microbuckling in composites compressed along the reinforcement

(fibers) and subsequent fracture initiated by the microbuckling. Also, we will briefly analyze approaches, problem formulations,

models, problem-solving methods, and specific results obtained using the infinite-fiber model.

Section 2 briefly discusses theoretical results on stability in the internal structure of composites compressed along the

reinforcement obtained by solving a plane problem using the finite-fiber model and the three-dimensional linearized theory of

stability of deformable bodies (TLTSDB).

1. Analysis of Experimental and Theoretical Results. We will analyze experimental results on microbuckling in

compressed composites followed by their fracture and theoretical results obtained using the infinite-fiber model.

1.1. Analysis of Experimental Results. Let us analyze experimental studies of the phenomena of microbuckling in

compressed composites and experimental results on the fracture behavior of compressed composites.

1.1.1. Experimental Results on Microbuckling in Compressed Composites. It should be noted that microbuckling is not

observed in homogeneous materials. It is only typical for composites (as for structurally inhomogeneous materials whose

internal structure is described at different scales during analysis). The structural homogeneity or inhomogeneity of a material is

mainly determined by the scale of the processes, which, in turn, is determined by the variability of fields of mechanical variables

(stresses, strains, etc.) with the space variables.

In analyzing experimental results on microbuckling in composites, it is necessary to take into account the following. It

is very difficult to experimentally observe (record) pure microbuckling in composites compressed along reinforcements (fibers,

filler) because insignificant or significant fracture also occurs at the very beginning of microbuckling. In this connection, the

existence of microbuckling in a compressed composite is usually proved by conducting special experiments.

Fibers (reinforcement) are placed in epoxy (or other) resin that is allowed to polymerize at certain temperature; after

that the resin cools down to certain temperature and sets. In almost all cases, compression occurs as the matrix (resin, binder)

2



shrinks upon setting or as the composite cools down. Since the thermal-expansion coefficient of the fibers and matrix, which are

coupled, are different, the fibers are subject to compressive loads.

These experiments were conducted at various centers of science at various times. The results of such experiments have

been published.

These experimental results were, apparently, reported for the first time in [26] in Russian (in 1967) and in [67] in

English (in 1965). In this connection, we will discuss the results from [26, 67]. For example, Fig. 1.1 [26, Fig. 3.20] shows a

photoelastic pattern for three E-glass fibers (diameters 0.13, 0.09, 0.013 mm) in an epoxy resin matrix polymerized at a

temperature of 120°Ñ. The photoelastic pattern is periodic (with a great number of periods), which is indicative of a sinusoidal

(along the fibers) buckling mode. Later, related experimental results were obtained at many centers of science, using also other

resin (matrix) curing methods.

We will now discuss, as an example, experimental results for thermochemically setting resin (matrix) in which glass

fibers and strands floated before curing. These results for 0.01 mm glass fibers were published in [41] in 1982. Figure 1.2 [41]

shows (50x magnification) results for separate fibers and a fiber strand after thermochemical curing of resin (matrix). It can be

seen that the entire strand and individual fibers take on a well-defined periodic sinusoidal (along the fibers) shape after curing of

the resin (matrix).

It should be noted that Figs. 1.1 and 1.2 (published in the second half of the 20th century) represent themicrobuckling of

composites reinforced with glass fibers 0.13, 0.09, 0.013, and 0.01 mm in diameter. Related experimental studies for composites

reinforced with fibers made of other materials and compressed after shrinkage of resin (matrix) due to its curing or cooling have

also been conducted now (in the beginning of the 21st century).

An example of experimental results for carbon fibers in a polymer matrix (epoxy resin) is the paper [60] published in

2004. Figure 1.3 [60] shows a periodic sinusoidal buckling mode with a great number of periods. The buckling mode in Fig. 1.3

(the scale in �m is indicated in the lower left corner) was recorded in [60] at the 68th second of cooling of the polymermatrix.

Along with the results for glass and carbon fibers in Figs. 1.1–1.3, experimental results on microbuckling in various

composites have been published recently.

Thus, the above and related experimental results for quite long fibers in a matrix (binder) confirm that the phenomenon

of microbuckling can occur in composites. The buckling modes in Figs. 1.1–1.3 are periodic (along the fibers) sinusoidal and

have a great number of periods. In this connection, the boundary conditions at the ends of reinforcements (fibers) cannot strongly

affect buckling modes and critical loads and strains. The above experimental results validate the long-fiber model.

As repeatedly mentioned above, the infinite-long model is, obviously, applicable to relatively long fibers

(reinforcements). It may be a priori expected that the microbuckling modes in a composite reinforced with relatively short fibers

is considerably different from the buckling modes in Figs. 1.1–1.3 corresponding to the infinite-fiber model. Let us consider, as

an example, the experimental results on the stability of relatively short carbon nanofibers in a polymermatrix published in [69] in

2004. Figure 1.4 [69] shows buckling modes of two short carbon nanofibers, the scale in nm being indicated in the lower left

corner of the figure. The buckling modes in Fig. 1.4 have nothing in common with those in Figs. 1.1–1.3. The buckling modes in

Figs. 1.1–1.3 are sinusoidal (along the fibers) and have a great number of periods, while the buckling modes of short nanofibers

in Fig. 1.4 can be approximated by sinusoids with one half-period. In this case, the critical loads and strains are strongly

dependent on the boundary conditions at the ends of fibers.

Thus, the experimental results in Fig. 1.4 may be considered to validate the finite-fiber model.

We may now conclude that the infinite-fiber and finite-fiber models are experimentally validated, but they are

applicable to different types to composites. For example, the infinite-fiber model is applicable to composites with relatively long
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fibers, while the finite-fiber model is applicable to composites with relatively short fibers. Note that the conclusions drawn from

Figs. 1.1–1.4 apply only to the phenomenon of microbuckling in composites.

Remark 1.1. The experimental studies represented in Fig. 1.1–1.4 were specially set up (i.e., are model experiments) to

prove the existence of the microbuckling phenomenon in composites. Taking a close look at Fig. 1.1–1.4, we can observe

microbuckling in pure form, i.e., without signs of failure, because no separation of the fibers from the matrix can be seen. This

situation appears quite important and should be given appropriate attention in analyzing the experimental results on the fracture

of compressed composites in the next section.

Remark 1.2. Here we address various processes in mainly unidirectional composites compressed mainly, along the

fibers, i.e., in the direction of preferential reinforcement. In continuum approximation, these composites, as well as cross-ply

composites, are modeled by orthotropic homogeneous materials. Thus, we will use the orthotropic model to study compression

along the axes of symmetry of materials. A similar situation occurs under loading of other types, as in compressed zones of

various bent structural members and in other cases. When various structural members (rods, plates, and shells) are compressed

along the axes of (geometrical and material) symmetry, the basic mechanism of structural failure is buckling.

In studying compression of composites along the fibers or, in the more general case, in the direction of preferential

reinforcement, it may be a priori expected that fracture of composites (as well as structural failure of structural members under

similar loading) starts with microbuckling. The above situation may be considered as the basic concept that should be taken into

account in analyzing experimental results on the fracture of composites compressed along the axes of symmetry. This is

discussed in the next section.

1.1.2. Experimental Results on the Fracture of Compressed Composites. Here we will analyze experimental results on

compressed composites after fracture. These results are images of an already destroyed material that, naturally, do not show the

initial stage (start) of fracture. Hence, no experimental studies have yet been made of the entire fracture process under

compression, from microbuckling (initial stage (start) of fracture) in the composite to the fragmentation of the composite (final

stage of fracture). Such studies have not also beenmade ofmost fracture processes in other materials under other types of loads.

Thus, we will analyze the fracture behavior of compressed composites using scaled-up images of an already destroyed

composite. The experimental studies to be discussed are focused on composites the compressed along the axes of material

symmetry (along fibers in unidirectional composites, in the direction of preferential reinforcement in cross-ply composites, and

in the perpendicular direction to the plane of preferential reinforcement in cross-ply composites). We will analyze specific

features of fracture behavior under loading of the type being considered.

It should be noted these specific features are observed in compression not only in the direction of preferential

reinforcement, but also in the perpendicular direction. The above situation can be illustrated by results from the paper [1]

published in 1968, such as Fig. 1.5 reprinted in the book [21, p. 110]. In [1], a glass-fiber laminate uniaxially compressed in the
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perpendicular direction to the reinforcement plane was considered. Figure 1.5 shows that fracture occurred in planes

perpendicular to the load direction, causing the material to fragment. Fracture of such composites along planes almost

perpendicular to the uniaxial compressive load is a specific feature.

Results on the fracture behavior of unidirectional fiberglass-reinforced plastic specimens compressed along the fibers

are presented in [57] published in 1969. These results were obtained at the Institute of Mechanics of the Academy of Sciences of

the USSR (currently the S. P. Timoshenko Institute of Mechanics). Cylindrical specimens 10 mm in diameter and 45 mm in

height and 15�15�70mmprismatic specimens (Fig. 1.6) were cut out from glass-fiber-reinforced plastic plates made bywinding

over a metal mandrel followed by hardening under a press at a specific pressure of 1 MPa. NS-55/6 alkali-free glass fibers with

wax emulsion as a sizer were used as reinforcements (filler), and EFB-4 epoxy-phenolic binder was used as a matrix. The

fraction of the matrix by weight was 26.6%, the degree of polymerization being 89.9%. The techniques of making and testing the

specimens are detailed in [8, Vol. 1, pp. 189–191; 57].

It should only be noted that the crushing of the ends of compressed specimens was avoided by putting metal rings on the

specimens at their ends and filling them with cold-setting epoxy resin. As a result, the specimen length not covered by the rings

was 1.5 to 2 of the linear dimension of the cross-section. Figures 1.7 and 1.8 show the fracture behavior of specimens of circular

and square cross-sections, respectively. After fracture, the specimens were easily split into the two fragments shown in the

figures. Note that fracture commonly occurred near the metal rings, which is possibly due to the initial local fracture caused by

cutting extreme fibers.

The fracture (Fig. 1.6) of unidirectional fiberglass-reinforced plastic specimens compressed along the fibers propagates

along planes almost perpendicular to the fibers and to the line of action of the compressive load.

Thus, the fracture of unidirectional fiberglass-reinforced plastic compressed along the fibers and compressed

glass-fiber laminate compressed in the perpendicular direction to the reinforcement planes propagates along planes almost

perpendicular to the line of action of the uniaxial compressive load. This situation is a specific feature of the type of fracture

under consideration. Note that in both cases (Figs. 1.5–1.8), the specimens are compressed along the axes of material symmetry.

Additional considerations on the fracture process can be found in [8, Vol. 1, p. 191].
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Note that the experimental results in Figs. 1.5–1.8 represent fiberglass-reinforced plastics with polymer matrix. Related

experimental studies were also conducted for other composites.

The paper [71] published in 1985 reports experimental results for a composite with an aluminummatrix reinforced with

and compressed along unidirectional sapphire fibers. Figure 1.9 [71] shows a scaled-up image of fracture in the metal-matrix

composite (sapphire fibers + aluminum) uniaxially compressed along unidirectional sapphire fibers. The fracture is localized in a

relatively narrow zone. A plane drawn through the middle of the fracture zone in Fig. 1.9 is almost perpendicular to the line

action of the compressive load.

Thus, when both fiberglass-reinforced plastics with polymer matrix (Figs. 1.6–1.8) and metal-matrix composites (Fig.

1.9) are compressed along reinforcement, fracture occurs or propagates almost transversely to the line of action of the

compressive load, which is a specific feature of this type of fracture. However, fracture of this type does not occupy the entire

volume of the material instantaneously though it begins with microbuckling in the composite. It is quite natural that this type of

fracture may arise near any microinhomogeneity (discontinuity) and then proceed as describe above. In this connection, it is of

interest to study the propagation of fractures near a macroinhomogeneity in a composite compressed along the fibers.

The paper [72] published in 1991 reports experimental results (Figs. 1.10–1.13) on the propagation of fractures from a

circular hole in a composite plate compressed along the reinforcement.

Figure 1.12 shows a designmodel and the axes of coordinates (compression is along the vertical axisOy). The plates are

composite laminates, each ply being a unidirectional fibrous material (epoxy resin matrix reinforced with carbon fibers). The

plies were laid up (along the Oz-axis in Fig. 1.12) so that the Ox- and Oy-axes (Fig. 1.12) were the axes of material symmetry

(cross-ply laminate).

Hence, this composite can be approximated by an orthotropic material compressed along theOy-axis, theOx-,Oy- and

Oz-axes (Fig. 1.12) being the axes of material symmetry. In the cross-ply laminates, the unidirectional fibers within most plies

are aligned with theOy-axis (Fig. 1.12). In this connection, the laminated plates can be considered to be mainly reinforced along

the Oy-axis along which they are compressed.

In these experiments, fracture began at two points (indicated by “�” in Fig. 1.12) on the edge of the hole, i.e., the points

at which the concentration of compressive macrostresses is maximum (stresses predicted by the orthotropic model). The fracture

was further developed as two almost straight cracks filled with destroyed material, originated at points (indicated by “�” in Fig.

1.12) on the edge of the hole, and propagating almost transversely to the line of action of the compressive load. The behavior of

cracks (fracture) is demonstrated by the electron microscope images in Figs. 1.10, 1.11, and 1.13 [72], where the scale in �m is

indicated in the right lower corner. Figures 1.10, 1.11, and 1.13 show fracture propagating from the right point “�” in Fig. 1.12.

For example, Fig. 1.10 shows a crack propagating from the hole almost transversely to the line of action of the compressive load.

Figure 1.11 shows (at 20� magnification) the damaged portion of the material in an extending narrow band, which can be

modeled by a filled crack. In Figs. 1.10 and 1.11, the compressive load is on the order of 95% of the ultimate load for the plate

with a hole. Figure 1.13 shows the structure of the damaged portion of the material on the edge of the hole throughout the

thickness (along the Oz-axis in Fig. 1.12) of the plate. The following types of fracture can clearly be seen: breaking of fibers,

bending of broken fibers toward the hole, delamination of the laminated material. In Fig. 1.13, the compressive load is on the

order of 80–85% of the ultimate load for the plate with a hole.

6

Fig. 1.9



It should be noted that in analyzing fracture in the internal structure of composites (as in Figs. 1.6–1.12 and 1.13), many

authors mention only microbuckling and delamination. Actually, as can be seen from Fig. 1.11, there are much more failure

mechanisms in the microstructure of a compressed composite such as breaking of a fiber within a crack, bending of a broken

fiber, breaking of a fiber outside the crack, separation of a fiber from the matrix, fracture of the matrix, etc. These and similar

failure mechanisms in the microstructure of a composite compressed along the axes of material symmetry manifest themselves

only at subsequent stages of fracture, while the initial stage (start) of fracture is, apparently, microbuckling in the composite.

Fracture can, naturally, start near local inhomogeneities (such as cuts of fibers caused by the metal rings in Figs.

1.6–1.8) in the internal structure of the composite and near macroinhomogeneities (near the hole in Figs. 1.10–1.13). The local

fracture in Figs. 1.5–1.13 then propagates along planes and surfaces that are almost perpendicular to the line of action of the

compressive load. As repeatedly mentioned, this is a specific feature of the type of fracture under consideration.

The experimental results represented in Figs. 1.5–1.13 and related ones were published in 1968–1991. Such

experimental studies are also conducted in the 21st century. Let us discuss, as an example, the experimental results published in

[74] in 2004. These are results of experiments on a composite laminate consisting of 628 plies and subjected to compression

along them. The number of plies is so great that wemay assume that this material consists of an “infinite” number of plies. In this

connection, the results in [74] may be considered to represent phenomena that occur in the internal structure of a composite

laminate and do not depend on the boundary conditions for the whole laminate. It is, however, hardly possible to neglect the

effect of boundary conditions, especially at the edges of the laminate, on all phenomena. Since the laminate was compressed

along plies in [74], it may be assumed that the compression is along the axes of orthotropic symmetry (continuum

approximation). Figure 1.14 [74, p. 1074, Fig. 2] shows the shapes taken by plies under compressive loads. The figure

demonstrates narrow bands of destroyed material (shown by slanting solid lines in Fig. 1.14) that are periodic along the
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horizontal axis. The experimental results represented in Fig. 1.14 will be discussed in the second part of the first section in

analyzing so-called kinking, the term used in the English-language literature on the fracture mechanics of compressed

composites.

1.1.3. Experimental Results for Nanocomposites under Compression. The active development of nanotechnologies in

the last decades of the 20th century and in the beginning of the 21st century promoted the development of the mechanics of

nanocomposites because the application of nanotubes in structural materials appeared to be clearly understood for

nanocomposites only. Some idea of the development of nanocomposite mechanics can be gained from [12]. It should be noted

that mainly polymer-matrix nanocomposites have currently been addressed. Due to the development of nanocomposite

mechanics, the question has arisen of whether microbuckling can occur in nanocomposites, as in conventional composites (Sec.

1.1.1), which is also answered by conducting special experiments.

The buckling of a straight multiwall carbon nanotube (MWCNT) in a polymer matrix was observed in the paper [73]

published in 2004. Figure 1.15 [73] shows multiple (multiwave) buckling of an MWCNT in a polymer matrix, the scale being

indicated in the left lower corner of the figure. These buckling modes may be considered to be very complex and cannot be

interpreted in a simple way. An examination of Fig. 1.15 does not reveal the separation of individual MWCNTs from the matrix.

In this connection, we may conclude that the experimental results from [73] represented in Fig. 1.15 confirm the existence of the

phenomenon of microbuckling in nanocomposites with polymer matrix. Note that this phenomenon was detected in [73] in pure

form, as in Sec. 1.1.1 for conventional composites.

A somewhat different situation with the buckling of MWCNTs in a polymer matrix was observed in the experimental

study [64] published in 1998. Note that in [64], as in Sec. 1.1.1, the composite was compressed due to the shrinkage of the

polymer matrix. The results from [64] are represented by the TEM images in Figs. 1.16 and 1.17 for individual MWCNTs after

shrinkage of the epoxy-resin matrix.

In these figures, the scale in nm is indicated in the upper left corner, and the shapes taken by individual MWCNTs after

the shrinkage of the polymer matrix are schematized in the right lower corner. Figure 1.16 shows (in the left lower corner) a

flexural buckling mode of an MWCNT, while Fig. 1.17 shows (in the right upper corner) a loop buckling mode of an MWCNT.

In [64], these mode shapes are assumed to result from buckling and collapse. A close examination of Figs. 1.16 and 1.17 reveals

that the nanotubes separate from thematrix where they bend and fold. This conclusion follows from the fact that the places where

deformed parts of the nanotubes were earlier are shown as lighter background under each “bulge” (the left lower and right upper

corners of Figs. 1.16 and 1.17).

Thus, the experimental results (Figs. 1.16 and 1.17) from [64] represent local fracture initiated by buckling. Hence, the

experimental results from [64] represent the fracture of nanocomposites under compression (related results for conventional

composites are discussed in Sec. 1.1.2). However, the experimental results from [64] do not confirm that the microbuckling

phenomenon can occur in nanocomposites. Experimental results confirming that microbuckling can occur in conventional

composites are discussed in Sec. 1.1.1. The above features of the experimental results from [64] were specified in [47] where it

was pointed out that this situation had not been reflected in the subsequent reviews by the other authors. The results in Figs. 1.16

and 1.17 were also analyzed in [8].
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In summary, the discussion of the experimental results from [64] should be supplemented with the following physical

considerations on loop buckling shown in Fig. 1.17. Apparently, loop buckling cannot occur without fracture. This is because

loop buckling of an MWCNT without fracture (separation of the nanotube from the matrix) would result in the ambiguity of

displacements of the matrix.

1.1.4. General Characteristic of the Experimental Results. Here we will briefly characterize the areas and results of

experimental studies on the microbuckling phenomenon that initiates failure or fracture of composites compressed along the

axes of material symmetry.

The areas and results of experimental studies to be discussed may be divided into three groups.

First Group. The first group includes results that confirm the existence of the microbuckling phenomenon in

composites compressed along the axes of material symmetry. To confirm that microbuckling can occur in its pure form (without

fracture) in composites with various reinforcements (fibers), special experiments are usually conducted in which fibers are

compressed due to the shrinkage of the polymer matrix. This type of loading was used in all studies of which we are aware. The

experimental results discussed in Secs. 1.1.1 and 1.1.3 can be assigned to the first group. The above-mentioned results may be

considered to confirm that the microbuckling phenomenon can occur in composites with various reinforcements, including

nanocomposites, compressed along the reinforcement (fibers) for both infinite-fiber and finite-fiber models. Microbuckling in

compressed composites is obviously the most likely fracture initiation mechanism similar to that in structural members (rods,

plates, or shells) compressed along the axes of geometrical and material symmetry.

Second Group. This group includes experimental results on the fracture of composites compressed along the axes of

symmetry and modeled by orthotropic materials, much attention being given to fracture behavior. The experimental results for

composites with polymer or metal matrix discussed in Sec. 1.1.2 can be assigned to the second group. It should be noted that the

results on fracture behavior shown in Figs. 1.5–1.13 are surely not exhaustive. Section 1.1.2 exemplifies experimental results of

the second group of which we are aware. It follows from Figs. 1.5–1.11 and 1.13 that a typical feature of the fracture of

composites modeled by orthotropic materials (continuum approximation) and compressed along the axes of material symmetry

is the propagation of fracture within narrow bands that are almost perpendicular to the line of action of the compressive load.

This is typical for composites with either polymer or metal matrix.

Third Group. This group includes experimental results on the fracture of composites modeled by orthotropic materials

and compressed along the axes of material symmetry, including experimental values of ultimate strength and ultimate strain. It

would be natural to compare the above experimental data with the theoretical results (theoretical ultimate strength and

theoretical ultimate strain).
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Remark 1.3. There are quite many approaches to and theories for studying the microbuckling phenomenon in

composites and, hence, analyzing the mechanism of fracture under compression. Quite approximate approaches and theories

based on approximate and not always logical assumptions and hypotheses have become popular because making minor changes

to these assumptions and hypotheses results in “new” approaches and theories, which is, in some cases, a pleasant situation for

some authors. In this connection, we will not compare the experimental results with theoretical results obtained using such

approximate approaches and theories, which seems to be what must be done in analyzing experimental results from the third

group. In Sec. 1.2, however, experimental results on the fracture of composites compressed were compared with theoretical

results using the most rigorous and consistent theory [7, 8] based on the TLTSDB [4–6, 43] (see [8] for more details).

In summary to Sec. 1.1 where experimental results in a certain field of the fracture mechanics of composites are

analyzed, it should be pointed out that these results prove that microbuckling in composites is possible and demonstrate a

specific feature in the fracture behavior of compressed composites for which microbuckling is the initial stage (start) of fracture.

The above experimental results prove the relevance of the problems being considered and the necessity of theoretical studies

involving the development of approaches, models, and methods and the obtaining of results for certain composites. Theoretical

and experimental results are usually analyzed in reviews such as [45, 61, 62] published in the last two years.

1.2. Analysis of Theoretical Results. Here we will briefly discuss the basic concept defining the areas of theoretical

studies. Also, we will briefly analyze theoretical results (approaches, models, methods, and specific results) for fibrous and

laminated composites under compression obtained using the infinite-fiber model.

1.2.1. Formulation of the Basic Concept. The basic concept underlying the theoretical studies discussed below will be

formulated based on the analysis of experimental results from Sec. 1.1.

Thus, we will consider composites modeled, in continuum approximation, by orthotropic materials and subjected to

uniaxial, biaxial, or triaxial compression along the axes of material symmetry.

These materials include unidirectional fibrous composites compressed along the reinforcement (fibers) (Fig. 1.18).

These materials also include composites reinforced with fibers laid in two perpendicular directions. Such a composite can be

obtained by additionally reinforcing the material in Fig. 1.18 with unidirectional fibers along the horizontal axis.

These materials include laminated composites consisting of plies of dissimilar materials alternating along theOx
2
-axis

(Fig. 1.19 where compression along the plies is shown). The plies of the composite laminate schematized in Fig. 1.19 can be

made of different materials and these materials can be isotropic. Moreover, these laminated composites include cross-ply

fiber-reinforced materials (Fig. 1.19). Note that the range of methods of producing laminated composites that can be modeled, in

continuum approximation, by an orthotropic material can be extended considerably.

Figures 1.18 and 1.19 exemplify such composites.

Thus, the basic concept defining areas of theoretical studies can be formulated as follows.
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Basic Concept. The initial stage (start) of fracture of composites modeled, in continuum approximation, by orthotropic

materials and compressed along the axes of material symmetry is microbuckling. The propagation of fracture, which originates

near macro- and microinhomogeneities, is determined by the behavior of perturbations in the theory of stability used (either

relatively approximate or rather rigorous). The theoretical ultimate compressive strength and theoretical ultimate compressive

strain are critical load and critical strain predicted by the theory of stability.

The basic concept in the fracture mechanics of compressed composites is similar to the situation in the mechanics of

structural members (rods, plates and shells) where buckling is the initial stage of structural failure of structural members

compressed along their axes of symmetry.

It makes sense to define the notion of microbuckling used in the basic concept. This notion can be rigorously and

consistently formulated based on the piecewise-homogeneousmodel of a composite, following, for example, themonographs [8,

Vol. 1, pp. 293–295]. In this case, by microbuckling is meant buckling in a composite that occurs at certain ratios between the

stiffness characteristics and concentrations of the reinforcement and the matrix, which allowing determining the critical load and

buckling mode irrespective of the type of structural member and the type of its boundary conditions.

We can now formulate the existence condition for the microbuckling phenomenon in a structural member made of a

certain composite. Let us introduce the following notation: p
cr
is the critical load causingmicrobuckling in the composite; p

cr

sm
is

the critical load causing buckling of the structural member; L is the typical (minimum) size of the structural member; l
cr
is the

microbuckling half-wavelength in the composite. With this notation, the microbuckling conditions are expressed as

p p
cr cr

sm
� , l L

cr
�� . (1.1)

Thus, if the compressive load is continuously increased, microbuckling in the composite of which the structural

member is made of occurs if (i) the critical load causing microbuckling in the composite is lower than the critical load causing

buckling of the structural member and (ii) the microbuckling wavelength in the composite is much shorter than the typical

(minimum) size of the structural member.

To determine the microbuckling load and mode shapes, the second inequality in (1.1) is usually analyzed for a

composite of specific structure and infinite size to obtain the relationship between the load parameter p and wave number �:

p p� ( )� , � 	�
h

l
, (1.2)

where h is the typical geometrical parameter of the composite (h is the minimum thickness of plies in a composite laminate (Fig.

1.19)); h ~ R is the fiber radius in a unidirectional fibrous composite (Fig. 1.18)); l is the microbuckling half-wavelength (along

plies and fibers) in the composite.

We may now conclude that microbuckling in a composite cannot occur for arbitrary relationship (1.2). As an

illustration, the curves A and B in Fig. 1.20 represent two types of relationship (1.2).
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Since the curve A has a well-defined minimum, the value of p
cr
can be found byminimizing the first expression in (1.2),

and the expression p p
cr cr

� ( )� holds. Thus, if (1.1) is represented by the curve A in Fig. 1.20, we can determine the critical

load p
cr
and the buckling mode corresponding to the wave number� 	

cr cr
�



hl

1
. Note that for the curve A, the following relations

hold:

�
cr

� 0, l
cr

� �. (1.3)

With (1.3) and (1.2) represented by the curve A in Fig. 1.20, conditions (1.1) are used for structural members in which

microbuckling occurs in the composite they are made of.

The curve B in Fig. 1.20 is a monotonic curve; hence, by minimizing expression (1.2) we get the formula � �p p
cr

( )0 ,

and

�
cr

� 0, l
cr

� �. (1.4)

From expressions (1.4) it follows that if (1.2) is represented by the curve B in Fig. 1.20, it is impossible to determine the

microbuckling mode of the composite. Thus, if (1.2) is represented by the curve B in Fig. 1.20, then microbuckling does not

occur in the composite. According to the second expression in (1.4), when (1.2) is represented by the curve B in Fig. 1.20, the

second condition in (1.1) is satisfied for no structural member; hence, only the whole structural member can buckle.

Thus, microbuckling in the composite does not occur if the dependence of the load parameter p on the wave number �

(the first expression in (1.2)) is represented by the curve B in Fig. 1.20. When (1.2) is represented by the curve A in Fig. 1.20 and

�
cr

is slightly different from zero, microbuckling in structural members does not occur too because of the second condition in

(1.1) since l
cr


�. This should be taken into account in analyzing this phenomenon in specific composites.

The basic concept outlined here (Sec. 1.2.1) and the approaches based on it will be used in Secs. 1.2.2–1.2.4 in

analyzing the theoretical results on periodic (along reinforcement (fibers, plies) buckling modes obtained using the infinite-fiber

model.

Currently, there are two approaches to studying the stability of composites and the fracture of composites under

compression.

One approach is approximate and is based on various approximate design models and assumptions. The paper [16]

published in Russian in 1967 is considered to be the first to use this approach. Later, this approach was further developed. Major

publications on this approach are cited in [8].

The other approach, which is rigorous and consistent, is based on the three-dimensional linearized theory of stability of

deformable bodies (TLTSDB) outlined in [4–6, 43]. This approach was for the first time proposed in the papers [2, 3, 30]

published in 1969. Later, this approach was further developed. Major publications on this approach are cited in [8].

It should be noted that the second approach based on [2, 30] is the most rigorous, consistent, and accurate in solid

mechanics.

1.2.2. Analysis of Theoretical Results. First (Approximate) Approach. Models and specific results obtained using the

first approach are based on the basic concept outlined in Sec. 1.2.1.

1.2.2.1. Generalities. A typical feature of the first approach is the use of various approximate assumptions in studying

microbuckling in composites, which is the initial stage (start) of fracture of composites under compression. A great many results

on the mechanics of composites and fracture mechanics have been obtained using the first approach. In this connection, our goal

here is not to review and analyze all such.

The objective of the present section (Sec. 1.2.2) is to classify results obtained with the first approach, to formulate the

basic assumptions typical for the first approach, and to review the first publications on the first approach and the results they

report.

The assumptions widely used by the first approach can be divided into four groups.

1. To analyze the stability of reinforcement (fibers, plies), wide use is made of applied one- and two-dimensional

theories of stability of thin-walled systems (rods, plates) based on the Bernoulli hypotheses, Kirchhoff–Love hypotheses, etc.

Such theories are known to be applicable only to the description of relatively long-wave buckling modes.

2. As a rule, the fact that the matrix (binder) also takes up a compressive load is ignored. This assumption can be made

because the reinforcement is much stiffer than the matrix. Thus, the matrix can be considered unloaded.
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3. The interaction between the matrix (binder) and the reinforcement (fibers, plies) is described approximately. To

describe the interaction between the matrix and a fiber, the matrix is frequently modeled by a coaxial cylinder (a part of the

matrix). A one-dimensional model of the matrix can be used as well.

4. The interface conditions between the reinforcement and the matrix are satisfied approximately, frequently without

any explanation.

If one of these assumptions is made, other assumptions are introduced automatically. To illustrate this situation, we will

consider the following example. For example, if it is assumed that compression of a composite does not affect the matrix and

induces stresses in the reinforcement (second group of assumptions), then it is also assumed that the interface conditions between

the matrix and the reinforcement (fourth group of assumptions) are satisfied approximately. The matter is that the initial

assumption automatically means that the matrix and reinforcement can freely slip relative to each other along the fibers in the

subcritical state (before buckling) and are perfectly bonded during buckling. Certainly, the assumptions of the four groups and

other assumptions used by the first approach can be further analyzed, but such an analysis is not intended here. Moreover, in Sec.

1.2.3, we will analyze the second approach that does not use the above assumptions.

1.2.2.2. Analysis of the First Publication [26, 67]. As an example, we will analyze the results obtained using the first

approach in [26], which is the first study based on this approach. It was published in Russian in 1967 and is the translation of the

paper [67] published in 1965. Figure 1.21 presents the basic results from [26, Figs. 3.22–3.24]. It should be noted that all results

in [26] were obtained on the assumption of plane strain in the plane xy in Fig. 1.21 (Fig. 3.22 in [26]), i.e., all results from [26]

represent, strictly speaking, a composite laminate with plies infinite along the Oz-axis (perpendicular to the plane of Fig. 1.21).

Hence, in [26] a unidirectional fibrous material is modeled by a plane that passes along the fibers (plane problem). Thus, the

basic assumption in [26] can be formulated as follows.

Basic Assumption [26]. Microbuckling in a unidirectional fibrous composite can be studied by formulating a plane

problem for a composite laminate.

Thus, a unidirectional fibrous composite was modeled by a composite laminate in [26], but the basic assumption was

not formulated and no comments were made. In what follows, we will briefly discuss the basic results from [26] for a composite

laminate, using the standard terminology and making no mention of the modeling.

In [26], specific results were obtained for the following periodic (along the Ox-axis) buckling modes using the

infinite-fiber model: (i) tension mode (neighboring plies of the reinforcement buckle in antiphase; Fig. 1.21, [26, Fig. 3.22a]);
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(ii) shear mode (all plies of the reinforcement and matrix buckle in the same flexural mode; Fig. 1.21, [26, Fig. 3.22b]). Also

following assumptions are made in [26]:

– the reinforcement is described using an applied one-dimensional theory of stability of thin rods based on the Bernoulli

hypotheses;

– the matrix does not take up a compressive load (in Fig. 1.21, only the reinforcement is loaded, and the load is indicated

by arrows);

– the interaction between the matrix and the reinforcement is described using a one-dimensional model of the matrix;

– the interface conditions between the reinforcement and the matrix are approximately satisfied in the same sense as in

the fourth group of assumptions.

Figure 1.21 shows the dependence of the theoretical ultimate compressive strength [26, Fig. 3.23] and the theoretical

ultimate compressive strain in % [26, Fig. 3.24] on the volume fraction (concentration) �
F
of fibers in the composite.

The results from [26, 67] are well-known and generally recognized in the world’s scientific literature on the mechanics

of composites and fracture mechanics. For example, these results were included in the first part of the first volume of the

seven-volume treatise on fracture [25]. Moreover, these results were included in the eight-volume treatise on composites [19]

(the paper [20] on metal-matrix composites in the first volume and the paper [28] on materials with metal and polymer matrices

in the fifth volume).

It should be noted that numerous studies based on the first approach are referred in [7, 8, 20, 27, 28]. Among such

publications, the first ones were [70] published in English in 1966 and [68] published in English in 1967.

Thus, the theoretical studies [26, 67] and their quantitative results obtained using the first approach and being,

apparently, the first in this field are universally recognized and included in all well-known reviews. What has been briefly

outlined above (Sec. 1.2.2.2) is called the Dow–Gruntfest–Rosen–Schuerch theory (the names of the authors of [39, 67, 70]); this

terms was used, for example, in [29] with reference to [27].

1.2.2.3. Comparative Analysis (Validation) of the Results from [26, 67]. Despite the popularity and recognition of the

Dow–Gruntfest–Rosen–Schuerch theory and the corresponding quantitative results presented in Fig. 1.21, it should be pointed

out that this theory and results are based rather approximate assumptions formulated in Sec. 1.2.2.1 for the first approach (as

termed in the final part of Sec. 1.2.1 and in the monographs [7, 8] and concretized in Sec. 1.2.2.2 for [26, 67]). Note that the

approximate assumptions discussed above were made in [26, 67] in setting up design models. In this connection, to validate the

results (Fig. 1.21) from [26, 67], it is necessary to compare them with results obtained using more rigorous and well-founded

assumptions.

As repeatedly mentioned, the second approach (as termed in the final part of Sec. 1.2.1 and in the monographs [7, 8])

based on the TLTSDB [6, 43] is the most rigorous, consistent, and accurate in solid mechanics. It is natural that the second

approach does not use approximate assumptions typical for the first approach. Thus, to validate the results (Fig. 1.21) from [26,

67], it is expedient to compare them with results obtained using the second approach.

The results of the Dow–Gruntfest–Rosen–Schuerch theory (Fig. 1.21; [26, 67]) obtained using the first approach and

the results obtained using the second approach were compared in [7, pp. 206–214] and then this comparative analysis was

partially reproduced in [8, Vol. 1, pp. 187–189]. Note that different notation for the same parameters was used in [26] and in [7,

8]: Young’s modulus, shear modulus, and volume fractions of the reinforcement and matrix were denoted, respectively, by E
F

and E
M
,G

F
andG

M
,�

F
and�

M
in [26] and by E

r
and E

m
,G

r
andG

m
, S

r
and S

m
in [7, 8]. Thus, the correspondence between

the notation is as follows:

E E E E
F r M m
~ , ~ ,

G G G G
F r M m
~ , ~ ,

� �
F r M m
~ , ~S S . (1.5)

In view of (1.5), all details on the comparative analysis can be found in [7, 8].

Wewill now briefly discuss the qualitative contradictions and quantitative differences between the results (Fig. 1.21) of

the Dow–Gruntfest–Rosen–Schuerch theory obtained using the first approach and the results [7, 8] obtained using the second

approach, which does not use approximate assumptions typical for the first approach.

Qualitative Contradictions. We will restrict ourselves to two.
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1. The theory [26, 67] does not permit the occurrence of microbuckling in shear mode for any composite (for any ratios

betweenmaterial and geometrical characteristics). This conclusion follows (according to the approaches outlined near Fig. 1.20)

from the expression [6, p. 96; B. 26], which suggests that the function p p� ( )� (1.2) is monotonic, as the curve B in Fig. 1.20.

This conclusion was formulated in more detail in [7, pp. 207–209].

The second approach allows proving that microbuckling in shear mode can occur depending on the ratio between the

material and geometrical characteristics of the composite. In particular, this shear buckling occurs when the concentration of

reinforcement is low, which is noted in [7, p. 209].

Thus, we have formulated the first qualitative contradiction of the theory [26, 67].

2. When the concentration of reinforcement is high, the theory [26, 67] leads to physically an incorrect result for the

shear mode. For example, from [26, p. 82, (3.29)] it follows that the theoretical ultimate compressive strength
� as v
F

1or,

which is equivalent, v
m


 0.

The second approach allows proving that the theoretical ultimate compressive strength tends to a finite value [8, Vol. 1,

pp. 189, 271–295].

Thus, we have formulated the second qualitative contradiction of the theory [26, 67].

Quantitative Differences. We will restrict ourselves to two.

1. The results of the theory [26, 67] and the results of the second approach differ considerably at low and high

concentrations (volume fractions) of the reinforcement (filler, fibers). This conclusion was formulated in [7, p. 210].

2. The results of the theory [26, 67] and the results of the second approach can differ by a factor of three and more at low

concentrations of the reinforcement. This conclusion was formulated in [7, p. 211].

This is the quantitative error of the theory [26, 67].

Conclusions.We can now formulate the following conclusions on the Dow–Gruntfest–Rosen–Schuerch theory and its

results [26, 67].

1. This theory and its quantitative results [26, 67] have significant qualitative contradictions and quantitative errors

compared to the theory and the results obtained with accuracy typical for solid mechanics (the second approach, as termed in [7,

8] and in the final part of Sec. 1.2.1).

2. Conclusion 1 does not allow considering the Dow–Gruntfest–Rosen–Schuerch theory and its quantitative results [16,

41] reliable.

3. To validate specific results obtained using the Dow–Gruntfest–Rosen–Schuerch theory, it is necessary to conduct

additional studies.

4. Conclusions 1–3 equally apply to other theories and results obtained with the first approach because it is based on

approximate assumptions 1–4 (Sec. 1.2.2.1), which are the approximate assumptions of the Dow–Gruntfest–Rosen–Schuerch

theory (Sec. 1.2.2.2).

Remark 1.4. Certainly, the Dow–Gruntfest–Rosen–Schuerch theory and its quantitative results [26, Figs. 3.23 and

3.24], as well as other theories and their results obtained with the first approach, could be validated by comparing with

experimental data. We believe, however, that the above approach is difficult to implement and is not rational because of the

following: (i) it is very difficult to conduct a special experiment representing, for example, the situation in [26, Fig. 3.22] and (ii)

in developing theories using the first approach (such as the theory [26, 67]), numerous approximate theoretical assumptions are

made to set up design models. In this connection, the priority task is to validate these approximate theoretical assumptions for

theories constructed with accuracy typical for solid mechanics.

1.2.3. Analysis of Theoretical Results. Second (Rigorous and Consistent) Approach. Models and specific results

obtained using the second approach are based on the basic concept outlined in Sec. 1.2.1. Unlike the first approach (Sec. 1.2.2),

the second approach does not use various approximate assumptions briefly described in Sec. 1.2.2.1.

1.2.3.1. General Description. A typical feature of the second approach is the use of the TLTSDB [4–6, 43] to study

microbuckling as the initial stage (start) of fracture of composites under compression. In this case, the theory of large (finite)

subcritical deformations and the first and second theories of small subcritical deformations [6, 43] are used. The basic results

corresponding to the second approach were reported in [4, 5, 7, 8] where [5] is devoted solely to the theory of large (finite)

subcritical deformations.

As repeatedly mentioned, the second approach was for the first time proposed in the papers [2, 3, 30] published in 1969.

The results that had been obtained with the second approach before 2008 are reported in the two-volume monograph [8] where

the list of references includes main publications on the second approach. The second approach was used to develop the
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continuum theory of the fracture of composites based on a homogeneous material model with effective characteristics and the

three-dimensional theory of stability of fibrous and laminated composites under compression based on a

piecewise-homogeneous material model with exact interface conditions. The second approach based on the

piecewise-homogeneous material model first addressed in [2, 30] is the most rigorous, consistent, and accurate in solid

mechanics. In this connection, results obtained with the second approach can be used to validate results obtained with the first

approach, which was done, as an example, in Sec. 1.2.2.3.

It should be noted that internal fracture can be studied using either the second or the first approach. Moreover, the

second approach can be used (in addition to the first approach) to study near-surface fracture initiated by near-surface

microbuckling under compression along the reinforcements and end crushing initiated by near-surface microbuckling near the

loaded ends.

The second approach was also used to study the behavior of elastic and elastoplastic, compressible and incompressible,

isotropic, transversely isotropic, and orthotropic materials under compression along the axes of material symmetry. General

results were obtained using elastic models for hyperelastic materials with arbitrary elastic potential and using elastoplastic

models for materials with general constitutive equations. Specific results were obtained using elastic and elastoplastic models for

materials with elementary constitutive equations.

For elastoplastic models (of matrix and reinforcement), use is made of the generalized concept of increasing load

outlined in, for example, the monographs [6, 43]. In this connection, buckling problems are formulated in a general form for

elastic and elastoplastic models.

The second approach is used to study microbuckling in composites under an external “dead” load, which is typical for

all publications on fracture mechanics. For the second approach based on elastic and elastoplastic models (including the

generalized concept of increasing load), it was strictly proved that the sufficient conditions for the applicability of the static

method of stability analysis [6, 43] are satisfied; therefore, the buckling problems are reduced to eigenvalue problems, i.e., the

Euler method is used. This proof is also valid in the cases of near-surface instability under compression along reinforcements and

near-surface instability near loaded ends. Thus, using the second approach is fully consistent with the standard and rigorous

method of studying buckling by analyzing the behavior of small perturbations in linearized three-dimensional dynamics.

Results of the second approach are intended for composites with polymer and metal matrix. For polymer-matrix

composites, brittle fracture is analyzed by modeling the matrix by an elastic body, which is typical for composites at moderate

temperatures and under relatively short-term load because the viscosity effects can be neglected in this case. For metal-matrix

composites, ductile fracture is analyzed (using the generalized concept of increasing load) considering the stage of loading in

which the entire matrix deforms plastically.

Remark 1.5.When the second approach is used to study microbuckling and near-surface buckling in a composite, it is

assumed that the reinforcement and the matrix deform by equal amount along the line of compression (along the fibers in Fig.

1.18 for an unidirectional fibrous composite and along the plies (along theOx
1
-axis) in Fig. 1.19 for a laminated composite). The

above is, apparently, the only condition that allows analyzing phenomena inside a composite. In experiments, such conditions

are provided by compressing the composite with quite hard disks along the horizontal axis in Fig. 1.19 with minimum friction

along the vertical axis in Fig. 1.19. In theoretical studies, the displacements of the reinforcement and the matrix along the

Ox
1
-axis are assumed equal, and the shear stresses along the Ox

2
-axis are assumed zero.

This completes the rather brief description of the second approach in the mechanics of the fracture of composites

compressed along the axes of material symmetry and modeled by an orthotropic material (continuum approximation). Such an

approach is used to study microbuckling in a composite as the beginning (start) of the internal fracture of the whole and to study

near-surface instability of a composite (compressed along the reinforcement, including compression at the ends) as the

beginning (start) of the near-surface fracture of the composite.

We will now briefly discuss the developed methods and the results obtained using the homogeneous material model

with effective characteristics (continuum theory) and the piecewise-homogeneousmaterial model (most accurate formulation).

1.2.3.2. Continuum Fracture Theory. Let us briefly discuss the continuum theory of the fracture of compressed

composites based on a continuum model with effective characteristics. The basic results were obtained for brittle and ductile

fracture. In the latter case, the generalized concept of increasing load outlined in, for example, the monographs [6, 43] was used.

In line with the basic approach outlined in Sec. 1.2.3.1, it is necessary to analyze the static equations and boundary conditions of

the TLTSDB [6, 43]. The major results were obtained for microbuckling (internal fracture) and for near-surface buckling

(near-surface fracture) (see [8, Vol. 1, Ch. 2] for more details).
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1.2.3.2.1. Internal Fracture. Internal fracture should be studied for an unbounded composite. The propagation of

fracture is described by a system of static TLTSDB equations [6, 43], which is elliptic for a compressible material under no load.

In continuum approximation, the compressibility of a composite is due to the compressibility of either the reinforcement or the

matrix.

Since the material under consideration is unbounded, internal fracture is considered as buckling of a microvolume.

Thus, changes in a microvolumemust be somehowmanifested in a macrovolume, and theymust not be local because only in this

case, fracture of the whole specimen (macrofracture) will be observed. Such changes in a microvolume must manifest

themselves in the properties that are independent of the boundary conditions because it is the fracture of the material (internal

fracture corresponds to an “infinite” material) that is studied rather than the influence of the testing machines, the shape of the

cross section, etc. It is obvious that changes in a macrovolume are determined by perturbed displacements that are described by

the system of static TLTSDB equations [6, 43].

Thus, fracture may be considered to start when the solutions (except for homogeneous stress–strain states) of the system

of static TLTSDB equations [6, 43] for a compressible material become independent of the boundary conditions (the material is

unbounded) and nonlocal. This condition for the system of static TLTSDB equations [6, 43] can be satisfied only when this

system is hyperbolic.

Considering the foregoing, we can formulate the basic concept underlying the continuum theory of internal fracture of

compressed composites as follows.

The fracture onset can be identified with that instant in the history of loading when the system of static TLTSDB

equations (for compressible materials) changes over from elliptic into hyperbolic, i.e., the system loses the property of ellipticity.

The theoretical ultimate strength is determined from the same condition. The fracture of compressed composites occurs along

characteristic planes and surfaces.

More details can be found in [8, Vol. 1, Ch. 2]. We will consider only some results.

Following the basic concept, we introduce the concept of surfaceÏ
T
of theoretical ultimate compressive strengths in the

three-dimensional space of principal compressive stresses. In the case of brittle fracture (polymer-matrix composites), the

surface Ï
T
was constructed explicitly for three- and two-dimensional problems. Also, it was strictly proved that brittle fracture

propagates along planes perpendicular to the line of action of compressive loads. This theoretical fact is in agreement with the

experimental results in Figs. 1.5–1.8 and 1.10.

We will now compare, following [8, Vol. 1, Ch. 2], the theoretical ultimate compressive strengths and theoretical

ultimate compressive strains calculated with the continuum theory of internal fracture (Sec. 1.2.3.2.1) and found experimentally.

According to the classification of Sec. 1.1.4, these experimental studies fall into the third group.

Brittle Fracture. Let us consider a unidirectional fibrous composite with epoxy resin matrix and quite stiff fibers, for

which

E E
r m
�� . (1.6)

We introduce the following notation: ( )Ï
3




T
is the theoretical ultimate strength in compression along one axis (in our

case, the Ox
3
-axis); ( )Ï

3




ex
is the experimental ultimate strength in compression along the same axis. In the case of (1.6), the

theoretical ultimate compressive strength (found using the continuum theory of fracture) for a composite with 50% volume

fraction of unidirectional fibers (S S
r m
� � 0.5) was given in [8, Vol. 1, p. 192]:

( )Ï
3



�

T
2.09–3.00 GPa (1.7)

taking into account the spread in the properties of the epoxy resin specified in [8, Vol. 1, Table 0.1, p. 67)]. The handbook [24]

published in Russian in 1981 (and translated into English in [59] in 1978) gives (on p. 656) experimental ultimate strengths for

various composites (different fibers for S S
r m
� ). These results were also presented in [8, Vol. 1, p. 192] in the form

( )

.

Ï
3

310



�

ex

GPa for boron fibers,

1.38GPa for high-strength carbon fibers,

1.03GPa for high-modulus carbon fibers.

�

�
�

�
�

(1.8)
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Comparing (1.7) and (1.8), we see that polymer-matrix composites quite good correspondence between theoretical

ultimate strengths on compression and experimental ultimate strengths is observed at uniaxial compression.

Ductile Fracture. Let us consider a unidirectional fibrous material with pure aluminum matrix and stainless-steel wire

reinforcement. Experimental results for this composite are reported in [66]. The theoretical ultimate strength and theoretical

ultimate compressive strain (calculated using the continuum theory of internal fracture) were determined in the first

approximation in the monograph [8, Vol. 1, Ch. 2, pp. 193–202] where the reinforcement was modeled by a linear elastic

isotropic compressible body and the matrix was modeled by an elastoplastic isotropic incompressible body with power

relationship between intensities of stresses and strains:

� �
u

m

m u

m
m� A

k
, A

m
and k

m
are constants. (1.9)

In [66], the experimental results were given for different concentrations in % of the reinforcement (S
r
= 4.1, 11, 15.3,

21.2, 24.8, 32.8). To save space, Fig. 1.22 shows (in contrast to [8, Vol. 1, Ch. 2, Fig. 2.9, p. 206)] results only for the following

values of S
r
(%): 15.3, 21.2, 24.8, 32.8. In [8, Vol. 1, Ch. 2, Fig. 2.9, p. 206], the factor E

r


1
(E

r
is Young’s modulus of the

reinforcement (stainless steel wire) according to (1.5)) was left out. This is corrected in Fig. 1.22.

In describing the plastic deformation of pure aluminum using formula (1.9), the following three approximations for A
m

and k
m

in (1.9) were used:

1 100~ ,A k
m m

MPa� � 0.1,

2 100~ ,A k
m m

MPa� � 0.25,

3 68~ ,A k
m m

MPa� � 0.25. (1.10)

The monograph [8, Vol. 1, Ch. 2, p. 207] cites publications that used approximations (1.10).

Figure 1.22 shows the dependence of the following quantities on S
r
(volume fraction of stainless steel wire):

dimensionless normalized theoretical ultimate compressive strength ( )
( )

Ï E
3

1 1 3
10


 
 

� �

T r
calculated in the first approximation

(solid lines) and theoretical ultimate strain �
T

( )1
calculated in % in the first approximation (dashed lines).

The curves in Fig. 1.22 corresponding to approximations (1.10) are numbered by 1, 2, and 3. The experimental results

from [50] are shown in Fig. 1.22 by full circles for the ultimate strength and by open circles for the ultimate strain. Note that

approximation 2 was used in [50].

Figure 1.22 indicates that the satisfactory agreement between the theoretical and experimental results is observed for

ultimate strengths when approximation 3 in (1.10) is used and for ultimate strains when approximation 2 in (1.10) is used.
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This completes the discussion of the mechanics of internal fracture within the framework of the continuum theory of

fracture (see [8, Vol. 1, Ch. 2] for more details).

1.2.3.2.2. Near-Surface Fracture. The continuum theory of near-surface fracture is based on the TLTSDB [6, 30] used

to study a near-surface buckling mode within which displacements and stresses decay with distance from the boundary.

Following the basic approach outlined in Sec. 1.2.3.1, we arrive at static TLTSDB problems [6, 30] for semibounded domains

(eigenvalue problems in which eigenfunctions decay with distance from the boundary).

As already mentioned in Sec. 1.2.3.1, the continuum theory of near-surface fracture addressed two types of such

fracture: (i) near-surface fracture due to near-surface buckling in compression along reinforcement and (ii) end crushing due to

near-surface buckling near the loaded ends.

The continuum theory of near-surface fracture of type (i) is detailed in [8, Vol. 1, Ch. 2, Sec. 2, pp. 209–224)]. As an

example, Fig. 1.23 shows a design model for a plane problem for type (i) of fracture, where x
2

0� is the free surface and the

reinforcement is aligned with the Ox
1
-axis.

The continuum theory of near-surface fracture of type (ii) is detailed in [7, Ch. 7, Sec. 4, pp. 568–589)]. As an example,

Fig. 1.24 [8, Vol. 1, Ñh. 4, p. 486, Fig. 4.30] presents results of experimental observation of end crushing for specimens made of

unidirectional boron aluminum composite (these results were published in [13]).

Thus, the monographs [7, 8] detail the continuum theory of near-surface fracture due to near-surface buckling in

compression along the reinforcement and the continuum theory of near-surface fracture due to near-surface buckling near the

loaded ends (end crushing). Results were presented for polymer-matrix composites (brittle fracture) and for metal-matrix

composites (ductile fracture). The monograph [8, Vol. 1, Ch. 2, Sec. 2] also outlines the two-level continuummesomechanics of

fracture of compressed composites with cracks near holes.

In summary, it should be pointed out that in [7, 8], the following conditions were strictly proved for composites with

polymer and metal matrices:

( ) ( ) , ( ) ( )Ï Ï Ï Ï
3 3 3 3


 
 
 

� �

Ò

EC

Ò Ò

(i)

Ò
, (1.11)

where the following notation is introduced in addition to ( )Ï
3




Ò
(theoretical ultimate strength in uniaxial compression):

( )Ï
3




Ò

(i)
is the theoretical ultimate strength in uniaxial compression for fracture of type (i); ( )Ï

3




Ò

EC
is the theoretical ultimate

strength in uniaxial compression for fracture of type (ii) (end crushing). Conditions (1.11) are consistent with the commonly

accepted fact that fracture begins on the surface of a material.

Remark 1.6. In Sec. 1.2.3.2.1, it is shown that the experimental and theoretical ultimate strengths in uniaxial

compression are in agreement for both brittle fracture (polymer-matrix composites) and ductile fracture (metal-matrix

composites). This agreement is apparently due to the fact that the reinforcement and matrix of the composites analyzed were

considered differ considerably in stiffness (conditions (1.6) are satisfied). For other composites, such good agreement is hardly

achievable. It should be pointed out that the continuum theory of fracture is the most simple and convenient compared with any

theories based on the piecewise-homogeneous material model for approaches. In some cases, the continuum theory appears in

agreement with experiments. Historically, the paper [3] published in 1969 was the first to address the continuum theory of

fracture.
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1.2.3.3. Laminated Composite. Piecewise-Homogeneous Material. Here we will briefly discuss the mechanics of

fracture of compressed composite laminates with polymer and metal matrices based on the piecewise-homogeneous material

model. The TLTSDB [6, 43] is applied to each ply of the reinforcement and matrix, and continuity conditions for stresses and

displacements are prescribed at the interfaces. The basic results were obtained for brittle and ductile fracture. In the latter case,

the generalized concept of increasing load outlined in, for example, the monographs [6, 43] was used. In line with the basic

approach outlined in Sec. 1.2.3.1, it is necessary to analyze the static equations and boundary conditions of the TLTSDB [6, 43]

for a piecewise-homogeneous material (eigenvalue problem). The basic results were obtained for microbuckling [8, Vol. 1, Ch.

3] and for near-surface buckling [8, Vol. 1, Ch. 5]. The list of references in [8] includes publications on stability of composite

laminates analyzed using the second approach (as termed in Secs. 1.2.1 and 1.2.3.1 and in the monographs [7, 8]).

1.2.3.3.1. Internal Fracture. The internal instability of an unbounded composite laminate (Fig. 1.19) is analyzed using

the general solutions of the static TLTSDB equations [6, 43] and the procedure outlined in Sec. 1.2.1, taking into account the

approach corresponding to Fig. 1.20. It should be noted that here we discuss results for composites with no defects at the

interfaces (continuity of stresses and displacements at the interfaces). Results for composites with interfacial defects are

discussed in Sec. 1.2.3.3.3.

Two- and three-dimensional problems were solved for laminated composites with polymer and metal matrices

consisting of reinforcement plies (of equal thickness) and matrix plies (of equal thickness) that periodically alternate along the

Ox
2
-axis (Fig. 1.25) in the case of plane problems and along theOx

3
-axis (Fig. 1.26 corresponding to the plane x

2
0� ) in the case

of spatial problems. In Figs. 1.25 and 1.26, as in (1.5), the index “r” refers to reinforcement (filler, plies) and the index “m” refers

to the matrix (binder, plies). The plies are made of orthotropic materials (or isotropic materials in a special case) in the plane case

and of transversely isotropic materials (or isotropic materials in a special case) with the isotropy plane x
3
�const (Fig. 1.26). In

all cases, the characteristic determinants were obtained for materials described by general constitutive equations. Since the

structure is periodic with period 2( )h h
r m
� along the vertical axis in Figs. 1.25 and 1.26, buckling modes with period T

k

multiple of the period of the structure were analyzed,

T k h h k
k
� � �2 1 2( ), ,

r m
, … . (1.12)

The first four modes called modes of the first, second, third, and fourth kinds (schematized in Figs. 1.27–1.30) were

analyzed. The buckling mode of the first kind has a period equal to the period of the structure (k �1in (1.12)) and is shown in Fig.

1.27; in Fig. 1.21 (Fig. 3.22) this mode corresponds to the shear mode.

The buckling mode of the second kind has a period equal to the double period of the structure (k � 2 in (1.12)) and is

shown in Fig. 1.28; in Fig. 1.21 (Fig. 3.22) this mode corresponds to the tension mode.

The buckling mode of the third kind has a period equal to the period of the structure (k �1in (1.12)) and is shown in Fig.

1.29.

The buckling mode of the fourth kind has a period equal to the double period of the structure (k � 2 in (1.12)) and is

shown in Fig. 1.30.

In the plane and spatial cases, characteristic determinants were derived in closed form for the reinforcement and

polymer and metal matrices of laminated composites described by general constitutive equations. The critical loads were
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obtained by finding numerically and minimizing the roots of the characteristic determinants. This approach helped to obtain

numerous results for specific laminated composites with either polymer or metal matrix.

As an example, we will briefly discuss results for a composite laminate with isotropic plies, each modeled by a linear

elastic body. These results were detailed in [8, Vol. 1, pp. 297–299]. Figure 1.31 (replicating Fig. 3.9 from [8]) shows the

dependence of the load parameter on the wave number�
r
(as in (1.2)) for a composite laminate with the following parameters in

the plane case: E E
r m
� �


1
500; h h

m r
� �


1
1, 5, 10, 20, 30, 40, 50 (curves 1–7, respectively), the notation corresponding to Fig.

1.25. The solid lines represent the bending mode (buckling mode of the first kind, Fig. 1.27), while the dash-dot lines represent

the tension mode (buckling mode of the second kind, Fig. 1.28).

Let us briefly analyze the results in Fig. 1.31 for the bendingmode. Solid curves 1 and 3 (h h
m r
�


1
= 1 and 10) are curves

of typeB in Fig. 1.20; therefore, if h h
m r
�


1
= 1 and 20, microbuckling in bendingmode does not occur. Solid curves 4, 5, 6, and 7

(h h
m r
� �


1
20, 30, 40, 50) are curves of type A in Fig. 1.20; therefore, if h h

m r
� �


1
20, 30, 40, 50, microbuckling occurs in

bending mode. Thus, it was strictly proved that microbuckling in bending mode can or cannot occur depending on the structure

of the composite laminate. As mentioned in Sec. 1.2.2.3 (qualitative contradiction 1), the approximate theories based of the first

approach do not describe this phenomenon.

The following result is of interest too. It was strictly proved in [8, Vol. 1, Ch. 3] that the continuum theory of fracture

(Sec. 1.2.3.2) follows as long-wave approximation (as the buckling wavelength tends to infinity) from the bending mode within

the framework of the piecewise-homogeneous material model.

More details on the internal fracture of composite laminates can be found in [8, Vol. 1, Ch. 3].

1.2.3.3.2. Near-Surface Fracture. Let us briefly discuss results on the near-surface fracture of composite laminates

obtained using the piecewise-homogeneous material model (see [8, Vol. 1, Ch. 5] for more details).

In studying surface instability, the composite laminate is assumed to occupy the lower half-spaceconst � � �x
2

– in the

plane case (Fig. 1.25) and the lower half-space const � � �x
3

– in the spatial case (Fig. 1.26). All the notation and reasoning

stated in Sec. 1.2.3.3.1 before expression (1.12) also apply to near-surface fracture. Specific results were obtained for laminated

composites with polymer or metal matrix (brittle or ductile fracture, respectively).

Two- and three-dimensional near-surface fracture problems are solved with (i) an exact method that reduces the

problems to infinite systems of algebraic equations and (ii) an essentially approximate method that employs variational

principles and the TLTSDB [6, 43].

In what follows, wewill analyze results on near-surface instability in specific laminated composites with either polymer

or metal matrix. We will restrict ourselves to the following qualitatively new phenomenon [8, Vol. 1, Ch. 5, p. 513]: surface

instability does not occur at all concentrations of reinforcement and all relative stiffnesses. For example, as the external

compressive load is continuously increased, internal instability may occur first or the critical loads for internal and surface

instabilities may coincide.

This completes the brief discussion of results on near-surface fracture (near-surface instability) in laminated composite

with polymer and metal matrices obtained within the framework of the piecewise-homogeneous material model. More details

can be found in [8, Vol. 1, Ch. 5].
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1.2.3.3.3. Laminated Composites with Interfacial Defects. The TLTSDB [6, 43] and the piecewise-homogeneous

material model were used to study the fracture of compressed laminated composites (microbuckling in composites) with

interfacial defects of two types.

Defects of the first type are modeled by the absence of friction or imperfect bonding at the interface. In this case, the

normal stresses and displacements are continuous at the interfaces, and it is also assumed that the shear stresses are zero at the

interfaces. Such problems are solved using the general solutions of the static TLTSDB equations [6, 43], and the characteristic

determinants are derived in explicit closed form. The roots of the characteristic equations are found numerically.

Defects of the second type are modeled by interface cracks. A design model for such problems is exemplified in Fig.

1.32 where the interaction of (micro)cracks located at different interfaces is generally taken into account.

Problems for composite laminates with interfacial defects of the second type (Fig. 1.32) can be solved only numerically

(finite-difference method, finite-element method).

The exception is, apparently, microcracks located at the same interface. Note that microcracks do not interact with

microcracks located at the neighboring parallel interfaces. The exact solution in closed form was obtained for microcracks

located at the same interface, the corresponding design model being shown in Fig. 1.33 (see [8, Vol. 2, Ch. 8, pp. 168–199] for

more details). The exact solution is found by using a general solution expressed in terms of functions of complex variables,

introducing complex variables that include compressive stresses, and solving the problem of joining two holomorphic functions

defined on the whole plane.

More details on the mechanics of fracture of compressed composite laminates modeled by a piecewise-homogeneous

material can be found in [8, Vol. 1, Chs. 3 and 5; Vol. 2, Ch. 8, Sec. 2].
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1.2.3.4. Unidirectional Fibrous Composites. Piecewise-Homogeneous Material. Here we will briefly discuss the

mechanics of fracture of compressed unidirectional fibrous composites (Fig. 1.18) with polymer andmetal matrices based on the

piecewise-homogeneous material model. The TLTSDB [6, 43] is applied to each fiber and the matrix, and continuity conditions

for stresses and displacements are prescribed at the interfaces. The basic results were obtained for brittle and ductile fracture. In

the latter case, the generalized concept of increasing load outlined in, for example, the monographs [6, 43] was used. In line with

the basic approach outlined in Sec. 1.2.3.1, it is necessary to analyze the static equations and boundary conditions of the

TLTSDB [6, 43] for a piecewise-homogeneous material (eigenvalue problem). The basic results were obtained for

microbuckling [8, Vol. 1, Ch. 4] and for near-surface buckling [8, Vol. 1, Ch. 6]. The list of references in [8] includes

publications on stability of unidirectional fibrous composites analyzed using the second approach (as termed in Secs. 1.2.1 and

1.2.3.1 and in the monographs [7, 8]).

1.2.3.4.1. Internal Fracture. The internal instability of an unbounded unidirectional fibrous composite (Fig. 1.18) is

analyzed using the general solutions of the static TLTSDB equations [6, 43] and the procedure outlined in Sec. 1.2.1, taking into

account the approach corresponding to Fig. 1.20. It should be noted that here we discuss results for composites with no defects at

the interfaces (continuity of stresses and displacements at the interfaces). Results for composites with interfacial defects are

discussed in Sec. 1.2.3.4.3. As in (1.5), the indices “r” and “m” are used to refer to the reinforcement (filler, unidirectional fibers)

and to the matrix (binder), respectively.

For unidirectional fibrous composites compressed along the fibers (Fig. 1.18), various problems arise depending on the

structure of the composite in the cross-sectional plane and the design models used. Figure 1.34 (cross-sectional plane) shows the

following design models.

1. One fiber (Fig. 1.34a); applied to fibrous composites with so low volume fraction of fibers that neighboring fibers do

not interact.

2. Two fibers (Fig. 1.34b); applied to fibrous composites with so low volume fraction of fibers that two neighboring

fibers can interact upon buckling due to the irregularity of the structure.

3. A periodic row of fibers (Fig. 1.34c); applied to fibrous composites of periodic structure such that upon buckling,

fibers of the same row interact, whereas fibers in neighboring rows do not interact (rather short distances between fibers in the

same row, rather long distances between neighboring rows).

4. Several periodic rows of fibers (Fig. 1.34d); applied to fibrous composites of periodic structure such that upon

buckling, fibers in the same row interact, rows of fibers within a group of rows interact, and different groups of rows do not

interact.

5. Doubly periodic array of fibers (Fig. 1.34e); applied to fibrous composites of doubly periodic structure with so short

distances between neighboring fibers that upon buckling, the interaction of fibers should be described by the doubly periodic

model.
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The number of problems for unidirectional fibrous composites is determined by not only the number of design models

(five models in Fig. 1.34), but also by the necessity of analyzing various buckling modes depending on cross-sectional

symmetry. Certainly, after analyzing various buckling modes, it is necessary to minimize all the eigenvalues (usually the first

eigenvalues for each buckling mode) to determine the critical shortening along the fibers.

Figure 1.35 shows (in the cross-sectional plane), as an example, various buckling modes for two fibers (Fig. 1.34b):

in-phase out-of-plane buckling modes (Fig. 1.35a); antiphase out-of-plane buckling modes (Fig. 1.35b); antiphase in-plane

buckling modes (Fig. 1.35c); in-phase in-plane buckling modes (Fig. 1.35d).

The general method for solving such problems, which was used to solve all problems of the internal fracture of

unidirectional fibrous composites under uniaxial compression within the framework of the second approach, involves the

following steps:

– application of the general solutions of the static TLTSDB equations [6, 43] in circular cylindrical coordinates to fibers

and matrix;

– representation of the solution as the sum of solutions in local cylindrical coordinates in the form of Fourier series with

undetermined coefficients, including special circular cylindrical functions;

– derivation of characteristic equations in the form of infinite characteristic determinants and explicit calculation of

their elements;

– proving that these infinite characteristic determinants are normal for noninteracting fibers, which allows replacing

infinite determinants with finite determinants to find the roots, i.e., to apply the method of truncation;

– proving the practical convergence of the method by comparing the roots obtained with increase in the order of

truncated determinants.

This method helped to obtain numerous results on the internal fracture of compressed unidirectional fibrous composites

with polymer and metal matrices (see [8, Vol. 1, Ch. 4] for a more detailed and consistent exposition of these results). Currently,

these results appear the most accurate and rigorous. Moreover, the method allows refining results obtained for noninteracting

fibers.

Let us now briefly discuss two examples from [8, Vol. 1, Ch. 4].

Example 1.Most results in [8, Vol. 1, Ch. 4] were obtained assuming homogeneous subcritical states under loading, as

in Fig. 1.18. This assumption is valid when (i) the fibers and the matrix are incompressible and (ii) Poisson’s ratios of the fibers

and the matrix are equal (� �
r m
� ). If Poisson’s ratios of the fiber and matrix are different (� �

r m
� ), the subcritical state will be

inhomogeneous. This suggests that it is necessary to take into account (in buckling problems for unidirectional fibrous

composites) the inhomogeneity of the subcritical state when� �
r m
� . This issue for one fiber (Fig. 1.34a) was examined in [8,

Vol. 1, Ch. 4, Sec. 1, pp. 391–396]. Quite accurate results were obtained numerically for an inhomogeneous subcritical state. For

example, Fig. 1.36 shows the dependence of �
T
�10 (�

T
is the theoretical ultimate strain) and � 	

cr cr
� R l/ (critical wave

number � 	� R l/ , R is the fiber cross-sectional radius, l is the buckling half-wavelength (along the fibers)) on lg
r m

( )E E�

1

.

Curves 1 correspond to �
cr
, curves 2 to �

T
�10; the solid curves correspond to�

r
�0.2 and�

m
�0.4 (inhomogeneous subcritical
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state), the dashed curves to � �
r m
� � 0.2 (homogeneous subcritical state), and the dash-and-dot curves to � �

r m
� � 0.4

(homogeneous subcritical state). Note that the solid and dash-and-dot lines for �
T
�10practically coincide. The values �

r
�0.2

and �
m

� 0.4 represent the case of the maximum difference between Poisson’s ratios of typical reinforcements and matrices,

according to [8, Vol. 1, Tables 0.1 and 0.2, p. 67 and p. 68].

Analyzing Fig. 1.36 and [8, Vol. 1, Table 4.1, p. 395], we conclude that when E E
r m
� �


1
20, tolerating an error 5% is

sufficient to neglect the inhomogeneity of the subcritical state caused by the difference between Poisson’s ratios of the

reinforcement and the matrix and to assume that � �
r m
� � 0.3.

Example 2. Let us briefly discuss experimental and theoretical ultimate strengths for a VKA-1 metal-composite

(unidirectional fibrous composite with aluminum matrix reinforced with 50% of boron fibers 140 �m in diameter; S S
r m
� �

0.5). Figure 1.24 shows specimens made of boron–aluminum composite. These results were reported in [52] and discussed in [8,

Vol. 1, Ch. 4, pp. 486–488]. Note that ductile fracture was considered there and formulas (1.9) were used to describe the

aluminum matrix. In fact, two metal-composites were considered: annealed and unannealed. In experiments, 32 annealed

specimens and 14 unannealed specimens were destroyed to determine their experimental ultimate strengths. The theoretical

ultimate strengths were determined using the continuum theory of fracture (Sec. 1.2.3.2), the piecewise-homogeneous material

model for fibrous unidirectional composites (Sec. 1.2.3.4), and the doubly periodic design model (Fig. 1.34e). The results are

summarized in Table 1.1 [8, Vol. 1, Ch. 4, Table 4.10, p. 487]. It can be seen that the continuum theory of fracture is in agreement

with the average experimental results, while the of piecewise-homogeneous material model is in agreement with the maximum

experimental results.

More details on the internal fracture of unidirectional fibrous composites can be found in [8, Vol. 1, Ch. 4].

1.2.3.4.2. Near-Surface Fracture. Let us briefly discuss results on the near-surface fracture of unidirectional fibrous

composites obtained using the piecewise-homogeneous material model (see [8, Vol. 1, Ch. 6] for more details).

To study surface instability, a fibrous unidirectional composite occupying a half-space with the boundary surface

parallel to the fibers is considered (Fig. 1.18). In this connection, the cross-section of the composite is a half-plane (Fig. 1.37)

whose structure depends on which of the typical design models is usec. Figure 1.37 shows five typical design models that can be

described in a similar way as in Sec. 1.2.3.4.1. Note that the full circles in Fig. 1.37, as well as in Figs. 1.34 and 1.35, represent

fiber cross-sections. The surface instability of unidirectional fibrous composites is studied by analyzing buckling modes that

decay with distance from the boundary of the lower half-space (Fig. 1.37), which is determined by an additional condition. The

solution is formed by adding a term in the form of a Fourier transform to the solution in 1.2.3.4.1 to satisfy the boundary

conditions on the boundary of the lower half-space. With such a candidate solution, the method described before Example 1 in

Sec. 1.2.3.4.1 was used.

Specific results on near-surface fracture were obtained for unidirectional fibrous composites with polymer and metal

matrices. More details can be found in [8, Vol. 1, Ch. 6].

1.2.3.4.3. Unidirectional Fibrous Composites with Interfacial Defects. Let us briefly discuss results on the internal and

near-surface fracture of unidirectional fibrous composites with interfacial defects of the first and second types (defined in Sec.

1.2.3.3.3) under compression.
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TABLE 1.1

Material

( )Ï
3




ex
, MPa ( )Ï

3




Ò
, MPa

2 min Average Continuum theory

Piecewise-homogeneous

model

Annealed 965 501 665 736 958

Unannealed 1716 1049 1282 1467 1972



For defects of the first type, results are obtained for one fiber and can be found in [8, Vol. 1]. For internal fracture, results

were obtained using the design model shown in Fig. 1.34a and are presented in [8, Vol. 1, pp. 415–417]. For near-surface

fracture, results were obtained using the design model shown in Fig. 1.37a and are presented in [8, Vol. 1, pp. 561–563].

For defects of the second type (at cylindrical interfaces in unidirectional fibrous composites), no results have been

published yet.

More details on the mechanics of fracture of compressed unidirectional fibrous composites modeled by a

piecewise-homogeneous material can be found in [8, Vol. 1, Chs. 4 and 6].

1.2.3.5. More General Buckling Modes. Piecewise-Homogeneous Material. Here we will discuss general and specific

results on more general buckling modes (in the internal structure of laminated and fibrous composites) in comparison with the

buckling modes analyzed in Secs. 1.2.3.3 and 1.2.3.4.

1.2.3.5.1. Generalities. In studying stability of laminated (Sec. 1.2.3.3) and unidirectional fibrous (Sec. 1.2.3.4)

composites modeled by a piecewise-homogeneous material based on the TLTSDB [6, 43], the factor sin 	 l x

1

3
is separated out

in all buckling modes, where the coordinate x
3
is measured along the fibers or plies and l is the buckling half-wavelength along

fibers or plies. Thus, the infinite-fiber model was used assuming that each fiber or ply buckles in the same periodic mode along

fibers or plies. That such buckling modes occur was confirmed by experiments on composites with polymer (epoxy resin) matrix

reinforced with glass fibers (Fig. 1.2) or with carbon fibers (Fig. 1.3).

The planes of equal phase in such buckling modes (along the x
3
-axis; along fibers or plies) are perpendicular to the

Ox
3
-axis (perpendicular to fibers or plies). In this connection, it may be considered that fracture propagates along these planes. In

a sense, the validation of the above procedure regarding buckling modes is the rigorous proof (Sec. 1.2.3.2.1), based on the

continuum theory of fracture (Sec. 1.2.3.2), of the fact that brittle fracture propagates along planes perpendicular to the line of

action of compressive loads. Note that the continuum theory of fracture (Sec. 1.2.3.2) assumes compression in the direction of

preferred reinforcement (along fibers or plies). Nevertheless, the use of the continuum theory to prove an element of the

piecewise-homogeneous material model is insufficiently logical and consistent because the continuum theory of fracture is

approximate and less accurate than the piecewise-homogeneous material model.

In this connection, it appears reasonable to develop a method that would allow analyzing more general buckling modes

in laminated and unidirectional fibrous composites than the buckling modes addressed in Secs. 1.2.3.3 and 1.2.3.4. Certainly,

alongwith development of this method, it is necessary to analyze specific classes of problems to formulate general conclusions.

A method for studying more general buckling modes was proposed in [42] for unidirectional fibrous composites (Fig.

1.18) with themost complex doubly periodic structure (Fig. 1.34e) and in [46] for laminated composites (Fig. 1.19). This method

[42, 46] assumes that fibers or plies are infinitely long along the Ox
3
-axis, compression is along the Ox

3
-axis, and the buckling

modes are periodic along the Ox
3
-axis. In Secs. 1.2.3.3 and 1.2.3.4, it was additionally assumed that all reinforcement elements

(plies or fibers) buckle in phase or that neighboring reinforcement elements buckle in antiphase. The method from [42, 46] does

not use such an assumption, which is why the buckling modes addressed in [42, 46] can be considered more general.

For more accurate characterization of the buckling modes considered in [42, 46] and being periodic along theOx
3
-axis,

use is made of the concept of plane Ï that consists of points of the buckled composite that are in phase along the Ox
3
-axis. The

first octant of the plane Ï in Fig. 1.38 is hatched and is defined by a unit vector n with the following components:

n n n
1 2 3
, , , n n n

1

2

2

2

3

2
1� � � . (1.13)

In [42, 46], solutions of the system of the static TLTSDB equations [6, 43] were found in explicit form for an arbitrary

position of the plane Ï (Fig. 1.38) defined by the unit vector n. These solutions were constructed for unidirectional fibrous
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composites of the most complex doubly periodic structure (Fig. 1.34e), which, certainly, can be reduced to simpler structures

(Fig. 1.34a–d), and for laminated composites (Figs. 1.19, 1.25, and 1.26). In [42], it was pointed out that for an arbitrary position

of the plane Ï in unidirectional fibrous composites, the characteristic equation has the form of an infinite determinant. It was also

proved that the infinite determinant is normal for noninteracting fibers, which means that it is possible to truncate the

determinant to find the roots numerically. Practical convergence can be achieved by increasing the order of the truncated

determinant and comparing the results obtained. In [46], it was pointed out that the characteristic determinant for laminated

composites is of finite order and its elements are represented in closed form.

Note that the methods of Secs. 1.2.3.3 and 1.2.3.4 follow from the methods of [42, 46] if

n n n
1 2 3

0 0 1� � �, , (1.14)

in (1.13). In this case, the planeÏ is perpendicular to theOx
3
-axis (perpendicular to the line of action of the compressive load).

After finding the roots of the characteristic determinants [42, 46], it is necessary to minimize them (to find the critical

values) with respect to the following parameters: l is the buckling half-wavelength along the Ox
3
-axis; n

1
, n

2
, and n

3
are the

parameters defining the position of the plane Ï. For this purpose, it is possible first to determine l
cr
at values (1.14) and then to

analyze the variation in parameters of interest (( ) ,Ï
3




Ò Ò
� ) at l = l

cr
and different values of n

1
, n

2
, and n

3
(1.13).

1.2.3.5.2. Results for Unidirectional Fibrous Composite. Results for a unidirectional fibrous composite modeled as in

Fig. 2.34c (one infinite periodic row of fibers) are published in [55, 56, 58]. The designmodel for the case of an arbitrary position

of the plane Ï is shown in Fig. 1.39.

The cross-section of a composite with one periodic row of fibers is shown in the lower part of Fig. 1.39. The upper part

of Fig. 1.39 corresponds to the plane that passes through the axes of the fibers in the infinite periodic row. The following notation

is used in Fig. 1.39:R is the fiber radius; �is the distance between two neighboring fibers; d is the phase shift along fibers within a

buckling mode; l is the buckling half-wavelength along the fibers. Note that if d � 0 in Fig. 1.39, then we have the case (1.14)

where the plane Ï is perpendicular to the fibers, which was assumed in Sec. 1.2.3.4.

In [58], fibers and matrices were modeled by linear elastic bodies with � �
r m
� and the following parameter values

were used:

E E

R

d

r m
� �

� �
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Figure 1.40 shows the dependence of �
cr

(critical shortening along fibers) on d l�

1

(deviation of the plane Ï from the

plane perpendicular to the fibers) for different distances ��



R
1
between neighboring fibers for E E

r m
� �


1
200. Figure 1.40a

represents in-plane buckling as in Fig. 1.35c and d, and Fig. 1.40b represents out-of-plane buckling as in Fig. 1.35a and b.

In minimizing �
cr

(Fig. 1.40) with respect to d l�

1

for in-plane buckling (Fig. 1.40a) and out-of-plane buckling (Fig.

1.40b), we obtain

� �
Ò cr
� at d l� �


1
0. (1.16)

Thus, the plane Ï (Fig. 1.38) is perpendicular to the fibers, as in Sec. 1.2.3.4, i.e., which confirms the generality of the

method described in Secs. 1.2.3.3 and 1.2.3.4. The above conclusion was drawn after analysis of only one example. In this

connection, this conclusion should be validated against other internal and near-surface fracture problems for laminated and

unidirectional fibrous composites.

To illustrate the effect of change in the relative stiffness of fibers and matrix (� �
r m
� ) on �

cr
, Fig. 1.41 shows the plot

of � �
cr cr r m

� �



( )E E
1

obtained in [58] for d l� �

1

0.5 and different values of ��



R
1
(the notation being the same as in Fig. 1.39).

Figure 1.41a represents in-plane buckling as in Fig. 1.35c and d, and Fig. 1.41b represents out-of-plane buckling as in

Fig. 1.35a and b. The solid curves in Fig. 1.41 correspond to �� �



R
1

2.5, 3, 4, 5, the dashed curve represents the case �� � �



R
1

(one fiber; design model shown in Fig. 1.34a), and a log scale is used for the axis E E
r m
�


1
. It follows from Fig. 1.41a, b that the

parameter E E
r m
�


1
has a strong effect on �

cr
.
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It should be noted that the method proposed in [42] and intended to study the internal instability of unidirectional

fibrous composites allows finding the roots of infinite determinants. In [42], it is pointed out that these infinite determinants are

normal (for noninteracting fibers). Thus, infinite determinants can be truncated to find their roots numerically. In this

connection, the practical convergence of the method is usually proved by analyzing the change in the roots with increasing order

of characteristic determinants obtained by truncating infinite characteristic determinants.

In [58], the case of one infinite periodic row of fibers (Fig. 1.39) was considered, and numerical results were obtained by

modeling thematrix and fibers with� �
r m
� as in Sec. 1.2.3.5.2. Table 1.2 summarizes, following [58], values of �

cr
�10

4
(�

cr
is

the critical shortening along the fibers) for d l� �

1

0.5 (d is specified in Fig. 1.39, l is the buckling half-wavelength along the

fibers) for different values of ��



R
1
and E E

r m
�


1
. The values of �

cr
�10

4
were calculated using different number of equations

(also indicated in Table 1.2), which represents the order of the truncated characteristic determinant.

It follows from Table 1.2 that for the stiffness and geometry used, sufficient accuracy can be achieved with a

determinant of the 22nd order for in-plane buckling and a determinant of the 20th order for out-of-plane buckling, because using

determinants of the 34th and 32nd orders, respectively, affects only the third decimal place. The case �� �



R
1

2.5 represents

closely spaced fibers (the distance (matrix) between fibers is fiber half-radius).

In summary, it makes sense to point out that the analysis made in this section is more detailed than in Secs. 1.2.3.3 and

1.2.3.4 because the results discussed in this section were not included in the monograph [8].

1.2.4. Analysis of Theoretical Results. On Study of the Kinking Phenomenon.Wewill briefly discuss, following [8, Vol.

1, pp. 72–74], studies of the kinking phenomenon, a concept especially popular among English-speaking researchers.

The kinking phenomenon was for the first time addressed in the paper [31] published in 1983 and in some other

publications. Studies on kinking were reviewed in [32, 33, 40] of which [40] was published in Advances in Applied Mechanics

(Vol. 33, pp. 43–119) in 1997 and [33] was published in Applied Mechanics Reviews in 1994. The results partially addressed in

Secs. 1.2.3.3 and 1.2.3.4 were also reviewed Applied Mechanics Reviews [65] in 1992.

Kinking is manifested as narrow kink bands of destroyed material occurring in a composite compressed along the

reinforcement. The kinking phenomenon is schematized in Fig. 1.42 [33, Fig. 2, p. S247], whereW is the width of the kink band.

Kink bands are usually analyzed using quite approximate formulas.

Figure 1.42 represents an already destroyed specimen; The beginning (start) of fracture is unclear; therefore, it may be

expected that fracture begins with microbuckling. It should also be noted that kinking caused by compression along the
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TABLE 1.2

E E
r m
/

In-plane Out-of-plane

Number of

equations
� � R � 2.5 � � R � 4

Number of

equations
� � R � 2.5 � � R � 4

50

22 1740 1346 20 1450 1275

34 1750 1346 32 1452 1275

200

10 820 671 8 718 624

22 972 693 20 756 628

34 981 694 32 757 627

1000

10 377 300 8 328 273

22 465 315 20 347 274

34 469 315 32 348 274



horizontal axis (Fig. 1.42) is accompanied by displacement of the material on both sides of the kink band along the vertical axis

(Fig. 1.42), which is a typical feature of the kinking phenomenon.

Some considerations on the occurrence of kinking were given in [47] and in [8, Vol. 1, pp. 73–74]. Some considerations

from [8] are given below.

1. Kinking (Fig. 1.42) can occur if the boundary conditions for a specimen compressed along the horizontal axis allow

displacements along the vertical axis.

2. An isolated kink band cannot occur during internal fracture in an unbounded material compressed along the axes of

material symmetry (in continuum approximation). Inside a composite compressed along the axes of material symmetry, only

alternating kink bands can exist to balance the disturbed stress–strain state.

3. By analyzing the kinking phenomenon, it is, apparently, impossible to uniquely identify the mechanisms responsible

for the beginning (start) of fracture. One of suchmechanismsmay bemicrobuckling. It can be studied using the TLTSDB [6, 43].

As already mentioned in [8, Vol. 1, p. 73], the above considerations are just the point of view of [8, 47]. In this

connection, there may be other considerations.

The second consideration is in a sense validated by the experimental results reported in [74] and presented in Fig. 1.14.

These experimental results were discussed in Sec. 1.1.2 near Fig. 1.14.

This completes the brief discussion of the kinking phenomenon.

1.3. Conclusions to Sec. 1. Section 1 has provided a brief historical sketch of experimental and theoretical studies on

microbuckling in and subsequent fracture of composites under compression. The theoretical studies were based on the

infinite-fiber model. The following conclusions can now be made.

1. The experimental results discussed prove that microbuckling may occur in composites with quite long reinforcement

elements, which are studied using the infinite-fiber model, and in composites with relatively short reinforcement elements,

which are studied using the finite-fiber model.

2. Only theoretical results obtained with the infinite-fiber model have been analyzed. These results were obtained using

either various approximate assumptions or the three-dimensional linearized theory of stability of deformable bodies (TLTSDB)

[6, 43].

3. This brief historical sketch has not involved the mathematics used to solve specific classes of problems. This kind of

exposition allows a wide range of researchers to gain insight into various aspects of the issue.

2. Finite-Fiber Model in the Three-Dimensional Theory of Stability of Composites. Analysis of Approaches and

Results. We will discuss results on internal instability and near-surface instability of composites compressed along the

reinforcement obtained using the finite-fiber model and the TLTSDB [6, 43]. The studies were conducted assuming plane strain.

In this connection, the results to be discussed may be considered to represent infinitely long bands (infinite in the direction

perpendicular to the plane of interest) of finite width, i.e., ribbon-reinforced composite laminates. Since the finite-fiber model is

used in this section (unlike Sec. 1.2), the subcritical state is inhomogeneous and it is necessary to use numerical methods.

According to the basic assumption of the approximate approach [26, 67] formulated in Sec. 1.2.2.2, a unidirectional

fibrous composite is modeled by a composite laminate under plane strain conditions. In this connection, we will use terminology

typical for the theory of stability of unidirectional fibrous composites. Such results are included in well-known fundamental

multivolumemonographs on fracture [25] and on composites [19] and cited in later publications without any comments (see Sec.

1.2.2.2 for more details).
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It should be noted that the above-mentioned modeling and terminology will be used only to interpret the results, which

were obtained using the piecewise-homogeneous material model and the TLTSDB [6, 43] for composites reinforced with

relatively short fibers (finite-fiber model).

2.1. Principles of the Finite-Fiber Model. We will briefly outline the principles of the theory of stability that allows

adequate description of the buckling of composites reinforced with fibers of finite length under compression along the

reinforcement. We will discuss the basic equations and relations of the three-dimensional linearized theory of stability of

deformable bodies at small initial strains, approaches to the selection of models for the description of the mechanical properties

of composites, to mathematical formulation of differential problems, and microbuckling criteria.

The principles of the theory of stability of finite fibers in a matrix used to formulate problems and its applicability limits

can be formulated as follows.

1. The matrix and fibers are modeled by linear elastic isotropic bodies, which is justified for relatively short-term

external loads and moderate temperatures.

2. Use is made of the second theory of small subcritical deformations of the three-dimensional linearized theory of

stability when the initial state is determined by a geometrically linear theory. This approach is considered valid for relatively stiff

fibrous composites that undergo fracture at relatively small strains.

3. The external loads are considered to be “dead,” which means that the sufficient applicability conditions for the static

TLTSDB method are satisfied and this method can be used in all studies.

4. The reinforcement and the matrix are assumed perfectly bonded (the stress and displacement vectors are continuous

at the interfaces) in either determining the subcritical state or solving buckling problems.

5. When the number of fibers is finite, decay at infinity is assumed. For a periodic system of fibers, periodicity

conditions are additionally prescribed.

6. All studies are carried out assuming plane strain: a longitudinal section of fibrous materials passing through the axis

of fibers in one plane is considered.

2.1.1. Problem Statement. Thus, plane strain in the plane x Ox
1 2

is assumed, the TLTSDB for small subcritical strains is

used, and the reinforcement and matrix are modeled by elastic isotropic bodies. Use is made of Lagrangian coordinates that

coincide with Cartesian coordinates before deformation. Figure 2.1 shows a design model for the elementary case of fibers that

do not interact with each other through the matrix before and during buckling. Such a situation occurs when the volume fraction

of the reinforcement is relatively small.

Since we are considering a longitudinal section of fibrous materials that runs through the axis of fibers lying in one

plane, the three-dimensional problem (for cylindrical fibers of finite length) is, in fact, reduced to a plane problem (for plies of

finite sizes). This procedure, as already mentioned above, is consistent with the basic assumption of the approximate approach

[26, 67] formulated in Sec. 1.2.2.2. This procedure may be considered an approximate approach to the interpretation of results
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because no modeling or similarity criteria have not applied and analyzed for half a century now (the paper [67] was published in

English in 1965). The results from [26, 67] were included in well-known encyclopedicmonographs on composites and fracture.

The subcritical state is analyzed using the classical linear theory of isotropic elasticity; the corresponding equilibrium

equations and constitutive equations have the following form (the index “0” is used to refer to the initial (subcritical) state; the

indices “r” and “m” refer to the fibers and matrix, respectively):

�

�
�

x
i

ij
�
0
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� � �� ��
ij ij nn ij
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2
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. (2.1)

Since the matrix is considered unbounded, it is convenient to represent the stresses and displacements as the sums of the

stresses and displacements induced by the external load applied to the matrix at infinity and the to perturbations of the

stress–strain state caused by the presence of a fiber of finite length:

� � �
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The subcritical state is determined using the basic relations that include the following continuity conditions for the

stress and displacement vectors at the interfaces between the composite components:
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and the conditions of decay at infinity

�
ij

10
0

m

 , u

j

10
0

m

 as x x

1

2

2

2
� 
�. (2.6)

The buckling problem is solved using the static TLTSDB method and the second theory of small subcritical

deformations; the reinforcement and the matrix are modeled by linear elastic isotropic bodies, which is consistent with the

problem of determining the subcritical stress–strain state. Thus, the equilibrium equations and the components of the

asymmetrical stress tensor can be represented as

�

�

�

�

"

#

$

$

%

&

'

'
�

x x
u

i

ij
(

��

�

�
0, t

x
u

ij ij
�

�

�
(

��

�

�
, i j, , , ,� � �1 2, (2.7)

the components of the tensor ( are expressed as
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where � and � are the Lame constants.
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In solving buckling problems, the basic relations (2.7) should be applied separately to the matrix, writing them for �
ij

1m
,

�
ij

1m
, and u

j
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, and for(
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m
and separately to the fiber, writing them for �

ij

r
, �

ij

r
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j
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r
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r
, and�

r
.

Thus, according to (2.2), (2.3), (2.8), we have the following expressions for the matrix and fiber, respectively:
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The complete statement of the buckling problem also includes the following continuity conditions for the stress and

displacement vectors at the interfaces:
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and the following conditions of decay at infinity:

u
j

1
0

m

 as x x

1

2

2

2
� 
�. (2.13)

It should be noted that the subcritical state in the situation shown in Fig. 2.1 is similar to the problem of the stress

concentration (under axial loading) near a rectangular inclusion filled with a dissimilar material. In this case, the subcritical state

is essentially inhomogeneous, depending on the two variables x
1
and x

2
.

Thus, in solving buckling problems using the TLTSDB (second theory of small subcritical deformations) and assuming

plane strain, we arrive at an eigenvalue problem for a system of partial differential equations with variable coefficients dependent

on x
1
and x

2
. This eigenvalue problem cannot be solved analytically, and numerical methods should be used.

2.1.2. Numerical Method. The problems formulated are solved using the finite-difference method, the variational

difference method, and the concept of reference schemes. This approach was detailed in the review [63] with reference to wide

classes of problems of composite mechanics.
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Using the notation introduced in Fig. 2.1, we will discuss themain steps of the numerical method. The infinite domain is

replaced by a finite rectangular domain with side lengths l l
1 2
� . To determine the subcritical state and to solve the buckling

problem, the condition of decay at infinity is replaced by similar conditions of decay on the boundary of the rectangle. The

dimensions of the external rectangle l l
1 2
� are chosen by way of computational experiments so that their further increase does

not effect the results.

The rectangle l l
1 2
� is covered by straight lines parallel to the coordinate axes x

1
�const and x

2
�const to form a

doubly nonuniform difference mesh ( ( *� + , where ( is the set of internal nodes and * is the set of boundary nodes (Fig. 2.2).

The mesh is such that the material can be considered homogeneous within each cell. The mesh can be refined where the material

properties change sharply, as along the interfaces between the composite components. Thus, the mesh consisting of internal and

boundary nodes is a set of rectangular cells that have mechanical and geometric characteristics of the composite component

contained in them.

Discrete problems over the mesh (are formulated using the variational difference method and the concept of reference

schemes. The components of reference schemes are determined by approximating and minimizing the appropriated functional

on a cell template. When applying this procedure to buckling problems, the variational principles of the TLTSDB are used.

Summing the values of reference schemes at each node of the mesh, we arrive at difference problems that are discrete analogs of

the corresponding continuous problems.

Thus, the difference problem in operator form that should be solved to determine the subcritical stress–strain state and

corresponds to the problem of linear elasticity (2.1)–(2.6) can be formulated as follows:

Au � �, x,( or A
i i
u � - , x,( . (2.14)

The expressions of difference operators are obtained by summing the values of reference schemes at each node of the

mesh:

A a
i i
u u

X

�

,

. ( ))

)

, -
i i
�

,

./ )

)

( )

X

, x,( . (2.15)

The reference operators obtained on a cell template are expressed as

a H
i

ji ji

j

j

( ))

� �

0

)

)

u � 


�

, x,( ,

/ )
0
)

i

H
P

j

( ) � 

2

1
, x,*, (2.16)

where H h h�
1 2

is the cell area, h
i i

i

� �0 )
)
sign 0.

Hereafter, the sum sign means that the values of the reference operator at the node x,( are summed for those

parameters ) that correspond to the node x in all adjacent cells.

Note that the difference operator of problem (2.14) preserves the properties of self-adjointness and positive definiteness

of the differential operator. Thus, the subcritical stress–strain state is determined by solving Eqs. (2.14), which can be

represented as a system of linear equations with symmetric matrix.

The difference problem corresponding to the differential problem (2.7)–(2.13) can be represented in operator form as

Au Bu x� ,p , ( or A pB
i i
u u x� ,, ( . (2.17)

The expressions of difference operators are obtained by summing the values of reference schemes at each node of the

mesh:

A a B b
i i i i
u u u u x

X X

� � ,

, ,

. .( ) , ( ) ,) ) (

) )

. (2.18)

The reference operators obtained on a cell template are expressed as
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where H h h�
1 2

is the cell area, h
i i

i

� �0 )
)
sign 0.

The difference operators of problem (2.17) preserve the properties of self-adjointness and positive definiteness of the

corresponding differential operators. Thus, the buckling problem is solved by solving Eqs. (2.17), which can also be represented

as a generalized algebraic eigenvalue problem.

This approach to difference problems considerably simplifies the numerical procedure because general expressions of

reference operators can be applied to all problems of the class in question.Moreover, the abovemethod of summing the values of

reference operators obtained on a cell template applies to all classes of problems and allows automating the process of

constructing algebraic problems. To solve algebraic problems, direct and iterative methods well known in the theory of

difference schemes are used, such as the Cholesky method, the conjugate-gradient method, the subspace-iteration method, the

gradient-descent method.

2.1.3. Asymptotic Passage to the Infinite-Fiber Model. Let us compare results on buckling of polymer-matrix

composites obtained using the finite-fiber (Fig. 2.1) and infinite-fiber (Fig. 1.19) models. The assumption of plane strain in the

plane x Ox
1 2

(Figs. 2.1 and 1.19) is made. We will discuss the numerical results from [9, 52] with reference to the finite-fiber

model and the results from [8] with reference to the infinite-fiber model. All the results were obtained using the second

three-dimensional linearized theory of stability of deformable bodies [6, 43] and the assumption of small subcritical strains,

determining the initial state from the geometrically linear theory, and modeling the reinforcement (fibers) and the matrix by

linear elastic compressible isotropic materials.

The results of the comparative analysis are the dependence of | |�
11

cr r

on the geometrical parameter LD

1
. In the case of

the infinite-fiber model, this quantity is the critical strain along theOx
1
-axis for both reinforcement and matrix. In the case of the

finite-fiber model, we have

� �
11 11 1 2

cr r cr r

� ( , )x x for x
1

0� and x
2

0� . (2.20)

In this case, quantity (2.20) is the critical strain of the fiber along the Ox
1
-axis at the middle of the fiber. The critical

strain of the matrix along theOx
1
-axis determined at infinity can reach very different values. This situation should necessarily be

taken into account when comparing results obtained using both models.

Figures 2.3 and 2.4 presents results for micro- and nanocomposites, respectively, with polymer matrix with the

following mechanical parameters: E
m

�2.68 GPa,�
m

�0.4. For microcomposites, the following values of the mechanical and

geometrical parameters were used: E E
r m



�

1
10, 30, 50, 100, 150 (E

r
and E

m
are Young’s moduli for the fibers and the matrix,

respectively), 10 1510
1

! !



LD . For nanocomposites, the following values of mechanical and geometrical parameters were

used: E E
r m



�

1
285, 373, 448, 500, 1000,10 2310

1
! !



LD . The last two values of the parameter E E

r m


1
represent situations that
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may arise during the production of nanocomposites due to the strong dependence of the properties of the matrix on temperature.

The solid lines correspond to the finite-fiber model, and the dashed lines to the infinite-fiber model.

It follows from Figs. 2.3 and 2.4 that for all values of E E
r m


1
, as the geometrical parameter LD


1
increases within the

specified range, the critical strains along the Ox
1
-axis calculated using the finite-fiber model asymptotically tend to the critical

strains obtained using the infinite-fiber model. The critical strains practically coincide for the upper values of the geometrical

parameter. Thus, all the results for microcomposites and nanocomposites with polymer matrix obtained using the finite-fiber and

infinite-fiber models are consistent.

Moreover, for relatively short fibers, there is a significant difference between the critical strains calculated using the

finite-fiber and infinite-fiber models. For example, in the range10 100
1

! !



LD , the critical strains along theOx
1
-axis calculated

using the infinite-fiber model are severalfold higher than the critical strains calculated using the long-fiber model. For the

shortest fibers (LD



�
1

10), the critical strains along theOx
1
-axis calculated using the infinite-fiber model are almost an order of

magnitude higher than the critical strains calculated using the long-fiber model. Thus, micro- and nanocomposites with

10 100
1

! !



LD are rather short fibers to which the infinite-fiber model is believed to be inapplicable.

This situation can be explained as follows: an analysis of the buckling modes of a fiber in a matrix (its results are

detailed below) established that relatively short fibers buckle in modes that have nothing in common with periodic (along the

fiber) buckling modes, which is characteristic for the infinite-fiber model and is determined by separating out periodic factors.

For example, for relatively short and quite stiff fibers, the finite-fiber model predicted a buckling mode in which fibers turn as a

perfectly rigid body. It is natural that such buckling modes are not described by the infinite-fiber model with isolated periodic

factor. This is why the critical strains corresponding to this phenomenon cannot be calculated using the infinite-fiber model.

This completes the comparative analysis of results on stability of nanocomposites with polymer matrix obtained using

the two models.

Remark 1.At first sight, the value LD



�
1

100, which is the upper limit of the range for which the infinite-fiber model is

inapplicable, corresponds to quite long fibers. More details can be drawn from the scale of levels proposed in [12, 48]. According

to this scale, the fiber diameter is D 1 


 


( )10 10
4 8

m in microcomposites and D 1 


 


( )10 10
7 9

m in nanocomposites. Thus,

the infinite-fiber model is inapplicable to materials with linear dimensions along fibers that are equal to or less than those for

microcomposites (1 cm – 1 �m) and nanocomposites (10 �m – 0.1 �m). Thus, the fiber lengths at which the infinite-fiber model

is inapplicable are not great.
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Remark 2. It should be noted that the results of the comparative analysis of the infinite-fiber and finite-fiber models are

strongly dependent on what quantities are compared. Such a quantity used here is the critical strain along a fiber for which

expression (2.20) holds in the case of the finite-fiber model (Fig. 2.1) and the following expression holds in the case of the

infinite-fiber model (Fig. 1.19):

� � �
11

0

11

0

11

0( ) ( )r m
const� � � . (2.21)

This choice is believed to be physically justified. The results would be absolutely different if the comparison quantity

was the critical strain along theOx
1
-axis for thematrix at infinity. For the infinite-fiber model, comparisonwould bemade for the

same quantity, in view of (2.21). If the critical strain at infinity of the matrix was calculated using the finite-fiber model, much

greater values would be obtained because the matrix is much less stiffer than the fibers.

It should be noted that the critical strain | | | |� �
11 11

cr cr m

�
�

at infinity of the matrix (Fig. 2.1) was used in [9–11, 14–18,

36–38, 48–54], where only the finite-fiber model was used:

| | | |� �
11 11

cr m cr m�
� as x

1

 �. (2.22)

In this connection (in contrast to Figs. 2.3 and 2.4), the value (2.22) appears much greater than | |�
11

cr r

and asymptotically

tends from above to that obtained using the infinite-fiber model, as evidenced in [9, Fig. 3].

The considerations given in Remarks 1 and 2 should be taken into account in comparing the solutions of buckling

problems for composites obtained using the infinite-fiber and finite-fiber models.More details on the comparative analysis of the

models and their limits of applicability can be found in [48].

2.2. Analysis of Internal Instability.We will briefly discuss results on the internal instability of short-fiber reinforced

composites under compression along the fibers obtained using the finite-fiber model. Numerical results obtained using this

approach were analyzed, and the effect of mechanical and geometrical parameters on the critical strain of a composite and the

buckling modes of the reinforcement were examined.

Remark. The distribution of stresses, strains, and displacements in bucklingmodes predicted by the finite-fiber model is

complex; therefore, it is expedient to introduce quantities to describe these buckling modes. Here, such quantities are imaginary

bucklingmodes that characterize the deformation pattern of thematrix and fibers during buckling and are the shape of themiddle

horizontal line of the fiber after buckling. Note that imaginary buckling modes are based on physical considerations and

introduced to describe buckling modes when interpreting numerical solutions and are not used to solve problems.

2.2.1. One Fiber in a Matrix. The buckling of a composite under a compressive load along the fibers (axis Ox
1
) was

studied. The composite is under-reinforced with fibers of finite length and is in plane strain conditions provided by a constant

load P acting at infinity (Fig. 2.5). Since the volume fraction of reinforcement is low, it is possible to neglect the interaction of
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neighboring fibers in both determining the subcritical state and studying buckling. Such problemsmay be considered as “model”

or “reference” ones in the mechanics of composites.

Figures 2.5a–d show imaginary buckling modes symmetric about the middle of the fiber. The solid lines represent the

horizontal middle line of the fiber after buckling. Buckling modes (Fig. 2.5a, b) can be called symmetric, while buckling modes

(Fig. 2.5c, d) antisymmetric about the vertical axis Ox
2
.

Symmetric buckling modes can be called flexural modes, similarly to the buckling mode of a strip under axial

compression. The antisymmetric buckling mode corresponds to a rigid-body turn of a fiber when the matrix does not ensure

adequate support because of which a kind of a plastic hinge forms near the fiber ends during buckling. It is obvious such a

buckling mode can occur when the matrix and the reinforcement differ considerably in stiffness, which is typical of production

processes for composites. The antisymmetric bucklingmode (Fig. 2.5d) corresponds a turn of a fiber accompanied by bending.

The numerical solution of buckling problems are presented in Fig. 2.6 as the dependence of | |�
11

cr
(2.22) (which is the

critical strain along Ox
1
-axis for the matrix at infinity) on the shape factor k m m LD� �


 


1 2

1 1
of the fiber (length-to-diameter

ratio).

The following mechanical and geometrical parameter values were used: E E
r m



�

1
100, 200, 300, 500, 1000, E

m
�2.76

GPa, � �
m r

� � 0.35; 100 500! �k .

It was established that all values of the critical strain is much less than 0.028, which corresponds to the ultimate strength

of the matrix (cast polyamide). This suggests that a composite under-reinforced with fibers of finite length can undergo fracture

due to microbuckling before the ultimate strength of the matrix is reached.

Let us now discuss some results on buckling modes. A buckling mode is characterized by the dimensionless

displacement u
2
along the vertical axis divided by an amplitude factor:

u x u x x u x x
x x2 1 2 1 2 0 2 1 2 0
2 2

*
( ) ( , ) ( , )�

2

34

5

67
�

�
�
�

8
9
:

� �
max
;

;

; ;

;

;
2

3
4

5

6
7


1

. (2.23)

For example, Fig. 2.7 shows buckling modes for k �10 (curve 1) and k = 30 (curve 2).

It may be concluded that relatively short fibers buckle in a mode similar to the imaginary antisymmetric mode shown in

Fig. 2.5c.

For k � 30 and constant values of the elastic moduli of the composite components, the reinforcement undergoes

buckling in flexural mode (Fig. 2.5a).

More details on stability of composites under-reinforced with fibers of finite length (including the dependence of the

critical strains on the mechanical and geometrical parameters of composites and possible buckling modes of the reinforcement)

can be found in [9, 10, 52, 53].

2.2.2. Two Fibers along the Line of Action of a Compressive Load. Figure 2.8 represents a composite reinforced with

fibers of finite length and low volume fraction that can interact with each other due to the irregularity of the internal structure. Let
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us first consider two identical fibers of finite length aligned with the line of action of the compressive load and interacting with

each other both in the subcritical state and during buckling. Plane strain in the plane x Ox
1 2

is assumed.

An additional parameter r is introduced to characterize the distance between neighboring parallel fibers. The

corresponding dimensionless parameter r r m
2 1

1*
� �



(Fig. 2.8) is used to present the results.

To obtain specific results for two parallel fibers of finite length, computational experiments were conducted to identify

an external rectangle l l
1 2
� such that it includes two parallel fibers and the conditions of decay on its boundary are satisfied.

Figure 2.9 shows the dependence of the critical strain | |�
11

cr
along the Ox

1
-axis for the matrix at infinity on the relative

distance r
2

*
between the fibers. The following mechanical and geometrical parameters of the composite components were used:

E E
r m



�

1
1000, � �

r m
� ; k m m� �

1 2
/ 100, 0001 32

2
.

*
! !r .

Note that situations in which the critical strain | |�
11

cr
decreases and the dimensionless parameter r

2

*
increases from r

2

*
1

0.001 to r
2

2
*
1 are typical for engineering. For example, when r

2

*
1 0.001, the fibers almost touch each other and deform as a

single fiber of the same length and double diameter during buckling. As the distance between the fibers is increased to r
2

2
*
1 ,

they tend to deform independently during buckling. Thus, as the parameter r
2

*
is increased, the parameter k for one fiber as if

increases too, and, similarly to Fig. 2.6 for one fiber, as the parameter k increases, the critical strain | |�
11

cr
along the Ox

1
-axis

decreased.

Figure 2.10 represents a composite reinforced with fibers of finite length and low volume fraction such that two

neighboring inline fibers aligned with the line of action of the compressive load can interact with each other due to the

irregularity of the internal structure either in the subcritical state or during buckling. Plane strain in the plane x Ox
1 2

is assumed.

Similarly to the situation with one fiber in Fig. 2.10, four buckling modes can be imagined for two inline fibers. These

imaginary modes are shown by solid lines in Fig. 2.10a–d, which represent the middle lines of the fibers after buckling.

The flexural buckling mode (Fig. 2.10a) corresponds to the case where the fibers buckle almost independently of each

other. The buckling mode (Fig. 2.10b) is an almost rigid-body turn of each fiber. This is possible when the fibers are rather stiff

and the matrix does not provide the appropriate support, which results in the formation of a kind of plastic hinge at the fiber ends

during buckling. The buckling mode (Fig. 2.10c) corresponds to the case where the two fibers buckle in the same flexural mode.
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The buckling mode (Fig. 2.10d) corresponds to the case where the two fibers undergo relatively rigid turn and bending. This is

possible when the fibers are rather stiff and the matrix does not provide the appropriate support, which results in the formation of

a kind of plastic hinge between the fibers ends during buckling. The construction of imaginary modes can be continued

considering the buckling modes in Fig. 2.10a–d as the first imaginary modes.

It should be noted that the first imaginary bucklingmodes in Fig. 2.10a–d for two inline fibers of finite length and in Fig.

2.5a–d for one fiber of finite length are constructed before the numerical solution of buckling problems only to analyze the

numerical results obtained.

To obtain specific results for two inline fibers of finite length, computational experiments were conducted to identify an

external rectangle l l
1 2
� such that it includes two inline fibers and the conditions of decay on its boundary are satisfied. Also,

computational experiments were conducted to choose a nonuniform mesh spacing in the region of contact between the

composite components.

Additionally, a dimensionless parameter r
1

*
characterizing the relative distance between two neighboring inline fibers is

introduced as r r m
1 1

1*
� �



(Fig. 2.10). The following mechanical and geometrical parameters of the composite components were

used: E E
r m



�

1
1000, � �

r m
� ; k m m� �

1 2
100/ , 0001 32

1
.

*
! !r .

Figure 2.11 shows the variation of the dimensionless displacement (2.23) along theOx
1
-axis for r

1

*
�1 (Fig. 2.11a; the

distance between the ends of the fibers equals the fiber length) and r
1

*
� 0.001 (Fig. 2.11b).

Thus, when r
1

*
�1, buckling occurs in a mode similar to the imaginary buckling mode in Fig. 2.10c as a general flexural

mode.When r
1

*
�0.001, buckling occurs in a mode similar to the imaginary mode in Fig. 2.10d as mutual turn and bending in the

presence of a hinge between the fiber ends.
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The results of studying the influence of the interaction of two inline fibers of finite length on the critical strain are

presented in Fig. 2.12, which shows the dependence of the critical strain | |�
11

cr
along the Ox

1
-axis on the relative distance r

1

*

between the cylinder ends, the range of r
1

*
being divided into two parts ( . .

*
0001 001

1
! !r and 01 32

1
. )

*
! !r with different scales

for theOr
1

*
-axis.

It may be concluded that when the distance between the fibers of finite length is quite long (r
1

30
*
� ), the critical strain

| |�
11

cr
tends to the value corresponding to the case of one fiber in a matrix and the buckling mode is similar to the imaginary mode

in which each fiber buckles almost without interaction with the other fiber (Fig. 2.10a).With decrease in r
1

*
, the interaction of the

fibers becomes stronger. For example, the general flexural mode (Fig. 2.10c) occurs and | |�
11

cr
reaches the maximum when

0005 30
1

.
*

! !r and r
1

8
*
� and the mutual turn and bending of the fibers occurs in the presence of a hinge between their ends

(Fig. 2.10d) and the critical strain | |�
11

cr
sharply decreases when 0001

1
.

*
! !r 0.005.

Thus, the numerical analysis revealed that the critical strain depends nonmonotonically on the distance between the

ends of inline fibers. This mechanical effect was discovered for the first time in the cited publication. The effect may be

explained by the fact that the buckling modes change in the range of distances between the ends of inline fibers under

consideration.

More details on the stability of composites reinforced with interacting fibers of finite length can be found in [11, 14, 15,

49, 54].

2.2.3. Periodic Row of Fibers along the Line of Action of a Compressive Load. Let us consider a composite reinforced

with identical fibers of finite length regularly arranged in periodic rows and interacting with each other which each row. The

rows of fibers are parallel and spaced so far that fibers in different rows do not interact either in the subcritical state nor during

buckling.

Figure 2.13 represents composites in which the volume fraction of fibers is such that one can analyze only one periodic

(along the Ox
2
-axis) row of parallel identical fibers of finite length that interact with each other (within a row) either in the

subcritical state or during buckling. A parameter r characterizing the distance between neighboring parallel fibers is additionally

introduced. The dimensionless parameter r r m
*
� �




1

1
(Fig. 2.13) can also be used to present the results.

An external rectangle l l
1 2
� is chosen by way of computational experiments so that the results are independent of

l l
1 2
� . In the case of a periodic (along theOx

2
-axis) row of identical fibers, the side length l

2
of the rectangle along theOx

2
-axis

is selected from the periodicity condition. If the buckling mode along the Ox
2
-axis has period equal to the period of structure,

then l m r
2 2
� � , where the period of structure on the right-hand side is denoted as in Fig. 2.13. The external rectangle l l

1 2
� is

shown in Fig. 2.13 by a dashed line, and only the value of l
1
is determined in a computational experiment.
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If the structure is periodic (Fig. 2.13) with period T m r� �
2

, it is possible to consider buckling modes along the

Ox
2
-axis with period multiple of the structure period N m r( )

2
� , where N is an integer. In this case, the size N m r( )

2
� of the

external rectangle l l
1 2
� can be found from the expression l N m r

2 2
� �( ).

Figure 2.14 shows the dependence of the critical strain | |�
11

cr
along the Ox

1
-axis at infinity on the relative distance r

*

between neighboring fibers within one periodic row. The following mechanical and geometrical parameters of the composite

components were used: E E
r m



�

1
500, � �

r m
� , k m m� �

1 2
/ 10, 20, 50, 100, 500; 002 5.

*
! !r .

From Fig. 2.14, it may be concluded that as the distance between neighboring fibers exceeds the fiber length (r
*
�1), the

critical strain periodic along the Ox
2
-axis of a row of parallel fibers of finite length hardly changes and tends to the values

obtained for one fiber in a matrix and shown by dashed lines in Fig. 2.14. As the distance between neighboring fibers in a row of

parallel fibers decreases (r
*
�1), the critical strain increases.

Figure 2.15 represents composites in which the volume fraction of fibers is such that one can analyze only one periodic

(along the Ox
1
-axis) row of inline identical fibers of finite length that interact with each other (within a row) either in the

subcritical state or during buckling.

A parameter r characterizing the distance between neighboring parallel fibers is additionally introduced. The

dimensionless parameter r r m
*
� �




1

1
(Fig. 2.15) can also be used to present the results.

An external rectangle l l
1 2
� is chosen by way of a computational experiment so that the results are independent of

l l
1 2
� . In the case of a periodic (along theOx

1
-axis) row of identical fibers, the side length l

1
of the rectangle along theOx

1
-axis

is selected from the periodicity condition. If the buckling mode along the Ox
1
-axis has period equal to the period of structure,

then l m r
1 1
� � , where the period of structure on the right-hand side is denoted as in Fig. 2.15. The external rectangle l l

1 2
� is

shown in Fig. 2.15 by a dashed line, and only the value of l
2
is determined in a computational experiment.
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If the structure is periodic (Fig. 2.15) with periodT m r� �
1

, it is possible to consider bucklingmodes along theOx
1
-axis

with period multiple of the structure period N m r( )
1
� , where N is an integer. In this case, the size N m r( )

1
� of the external

rectangle l l
1 2
� can be found from the expression l N m r

1 1
� �( ).

By analogy with one and two inline fibers, it makes sense to analyze imaginary buckling modes for a periodic row of

inline fibers of finite length. Figures 2.16a–c and 2.17a–c show imaginary buckling modes that are, respectively, symmetric and

antisymmetric about the vertical lines drawn through the middle points between the ends of neighboring fibers. The buckling

modes in Figs. 2.16a and 2.17b, c are periodic along the Ox
1
-axis with period equal to the structure period T, and the buckling

modes in Figs. 2.16b, c and Fig. 2.17a are periodic along the Ox
1
-axis with period equal to 2T.

The buckling mode in Fig. 2.16a can be considered similar to the flexural mode for far spaced, noninteracting fibers.

The buckling mode in Fig. 2.16b can be considered similar to the rigid-body turn of closely spaced fibers that are stiffer than the

matrix so that it does not provide appropriate support, resulting in a plastic hinge between the fiber ends. The buckling mode in

Fig. 2.16c can be considered similar to the turn and bending of relatively stiff fibers (this mode may be considered to result from

imposing bending on the fibers in Fig. 2.16b). It is convenient to use these considerations on imaginary buckling modes when

describing buckling modes obtained numerically.

To analyze buckling modes, Fig. 2.18 shows the variation of the dimensionless displacement (2.23) along theOx
1
-axis

for r
*
� 1 (curve 1) and r

*
� 0.2 (curve 2).

Bucklingmode 1 in Fig. 2.18 is very similar to the flexural modes in Figs. 2.16a and 2.17a for noninteracting fibers (one

isolated fiber in a matrix). Buckling mode 2 in Fig. 2.18 is very similar to the modes (turn and bending) in Figs. 2.16c and 2.17c.

Thus, as inline fibers within a periodic row draw close to each other, buckling modes change. The situation with two inline fibers

is similar.

Figure 2.19 shows the critical strain | |�
11

cr
versus the relative distance r

*
between neighboring fibers for the following

mechanical and geometrical parameters: E E
r m



�

1
1000, � �

r m
� , k m m� �

1 2
/ 100, 200, 300, 500 (curves 1, 2, 3, 4,

respectively); 02 4 5. .
*

! !r (the dash-and-dot lines represent the values of | |�
11

cr
for one fiber at the same values of k).

It can now be concluded that if the distance between neighboring fibers exceeds the fiber length (r
*
�1), the critical

strain | |�
11

cr
for a periodic row of inline fibers of finite length is practically equal to | |�

11

cr
for one isolated fiber of finite length in a

matrix (dashed lines).

More details on the stability of composites reinforced with periodic rows of interacting fibers of finite length can be

found in [16, 17, 36, 37, 50].

2.3. Analysis of Near-Surface Instability. Here we will briefly discuss results on the stability of composites

under-reinforcedwith short fibers near the free plane boundary and compressed along fibers parallel to the boundary (Fig. 2.20).

Since the volume fraction of the reinforcement is low, the interaction between fibers is neglected; therefore, a composite

in plane strain conditions is modeled in Cartesian coordinates x
1
Ox

2
by a semi-infinite matrix reinforced with one short fiber

along the Ox
1
-axis coinciding with the free boundary.
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2.3.1. Specific Features of Near-Surface Instability. An analysis of the subcritical stress–strain state of the composite

revealed that a compressive load induces an asymmetric subcritical state that causes initial curving of the short fiber near the free

boundary.

Let us first discuss some results from the analysis of the subcritical stress–strain state for the following mechanical and

geometrical parameters: E E E
*
� �




r m

1
343, � �

1 2
� � 0.4, LD m m



� �

1

1 2
1000/ , 0 15

1
! � !r r m

*
/ .

To analyze the initial shape mode of the fiber, we will consider the variation of the vertical displacements u x
2 1
( )along

the Ox
1
-axis in the range x m

1 1
�  (where x m

1 1
2�  / corresponds to the fiber) for the lines x r m

2 2
2� � / , r m r�

2
, that pass

through the horizontal axis of the fiber and the lower and upper contact lines of the composite components for r
*
� 0.

If the distance from the fiber is quite great (r
*
�15), the distribution of displacements of the fiber about its axis is

symmetric and the fiber axis is straight. In this case, the fiber that is on the surface (r
*
� 0) curves together with the boundary

surface toward the region not filled with matrix material. It is obvious that the asymmetry of the initial stress–strain state is due to

the interaction between the fiber and the free boundary under the compressive load.

Let us analyze the dependence of the curvature of the fiber on the distance to the boundary r
*
. Figures 2.21 and 2.22

show the variation of the vertical displacements u x
2 1
( ) in the range x m

1 1
�  for the lines x r r m

2 2
2� �, / (curves 2 and 3) that

pass through the horizontal axis of the fiber and the upper contact of the composite components that is closer to the boundary and

the boundary line x
2

0� (curve 1) for r
*
� 0.1 and r

*
� 0.2, respectively.

From these results it follows that as the distance between the fiber and the boundary increases, the direction of bending

of the fiber changes. For example, Fig. 2.23 shows the dependence of the displacement u u u

x x m

2

0

2

0

0

2

0

2
1 1 1

*

/

�
;

;

; 

;

;

;

� �

of the fiber’s

center of symmetry x r m
2 2

2� � / about the ends (curve 1) and its projection x
2

0� onto the boundary surface (curve 2) on the

distance r
*
.
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It can be seen that for r
*
� 0(the fiber is on the surface), the middle line of the fiber shifts toward the region not filled

with matrix material, while the fiber ends remain in the matrix. With distance from the surface, the matrix material that is

between the fiber and the boundary as if presses the fiber into the matrix, and only at rather long distances (r
*
�15), the fiber and

the boundary do not affect each other.

2.3.2. Analysis of Numerical Solutions of the Buckling Problem. To solve the problems posed, we isolate in the

semi-infinite matrix a rectangular domain containing reinforcement and having one side on the free boundary. The dimensions l
i

of the domain are determined in computational experiment so that the conditions of decay of the perturbations caused by the

stress concentration around the fiber are satisfied on the sides of the rectangle that do not coincide with the boundary.

The following mechanical and geometrical parameters of the composite components were used: E E E
*
� �

r m
343,

1000,� �
r m
� , k m m� �

1 2
/ 200, 1000, 0 15

1
! � !r r m

*
/ . Figure 2.24 shows the dependence of the absolute critical strain �

11

cr

on the dimensionless distance r
*
between the fiber and the boundary for E

*
�1000, k �1000(curve 1); E

*
� 343, LD



�

1
200

(curve 2); E
*
�1000, LD



�

1
200 (curve 3). The dashed lines represent the case of one fiber in a matrix with the same

mechanical and geometrical parameters.

The above results on the stability of a composite under-reinforced with short fibers near the free plane boundary allow

us to conclude whether buckling is possible under compression along fibers parallel to the boundary. If the distance between the

fiber and the boundary exceeds the fiber length, internal instability occurs.With decrease in this distance, near-surface instability

occurs.

More results on the stability of composites under-reinforced with fibers of finite length near the free plane boundary can

be found in [18, 38].

2.4. Conclusions to Sec. 2. In Sec. 2, we have discussed results on microbuckling in compressed composites obtained

using the finite-fiber model. The following conclusions can now be made.

When applied to the analysis of the stability of composites reinforced with short fibers, the finite-fiber model allows

describing reinforcements of finite dimensions. The results obtained using the finite- and infinite-fiber models have appeared

consistent.

By analyzing the solutions of buckling problems for one fiber, two fibers of finite length, periodic rows of identical

fibers, and a short fiber near the free boundary, we have studied the influence of the mechanical and geometrical parameters of

the composite components on the critical strain and the buckling mode of interacting fibers. New mechanical effects have been

revealed.

One relatively short fiber undergoes a rigid-body turn when the matrix does not provide sufficient support and a plastic

hinge occurs near the fiber ends.

Two inline fibers of finite length either buckle in one flexural mode or turn and bend when the matrix between the fibers

does not provide sufficient support and a plastic hinge occurs between the fibers.

The dependence of the critical strain for two inline fibers of finite length on the distance between the fiber ends is

nonmonotonic, which is due to the change of buckling modes at a certain distance between the fibers.

By comparing results obtained using the infinite- and finite-fiber models, we have validated the former results and have

established the following limits of applicability of these models:
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– in the range 10 100
1

! !



LD , the critical strains along the Ox
1
-axis calculated using the infinite-fiber model are

severalfold higher than the critical strains calculated using the long-fiber model;

– for the shortest fibers (LD



�
1

10), the critical strains along the Ox
1
-axis calculated using the infinite-fiber model are

almost an order of magnitude higher than the critical strains calculated using the long-fiber model.

Thus, the infinite-fiber model is inapplicable in the range 10 100
1

! !



LD . Hence, fibers with LD



�
1

100 are

considered quite short, and the infinite-fiber model cannot be used.
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