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The free axisymmetric vibrations of cylindrical shells made of a functionally graded material and

subject to various boundary conditions are studied using the three-dimensional theory of elasticity and

the Timoshenko–Mindlin refined theory of shells. The possibility of applying the refined theory to shells

made of a material with properties gradually varying over the thickness is examined. The influence of

different laws of variation in mechanical properties on the dynamic characteristics of cylindrical shells

during axisymmetric vibrations is studied. The numerical results presented in the form of tables and

graphs are analyzed
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Introduction. Advanced materials technologies developed recently made it possible to create new materials with

predictable properties such as functionally graded materials (FGMs). Materials with mechanical properties gradually varying in

some direction (no layers and interfaces) can be made as a composition of two metals, or metal and ceramics, or two polymers.

The physical properties of such materials can be controlled by assigning a desired law of variation in the elastic modulus in some

direction. Such a material is often modeled by an isotropic material continuously inhomogeneous in the direction of variation of

the elastic properties [2, 4, 6, 9–12].

General problems of elasticity for bodies made of hypothetic FGMs are addressed in [7, 8]. The vibrations of

thick-walled cylinders made of polymeric composite FGMs were studied in [2] using the three-dimensional theory of elasticity.

However, applying the three-dimensional theory to dynamic problems for bodies made of FGMs involves difficulties in most

cases. The free vibrations of cylindrical bodies made of FGMs were studied in [6, 9–12] using different theories of shells.

Emphasis was on the change in the dynamic characteristics depending on the law of variation in the elastic properties. Of interest

is the use of shell theories to study the free vibrations of hollow cylindrical bodies made of materials essentially inhomogeneous

over the thickness.

In what follows, we will examine the possibility of applying the Timoshenko–Mindlin shell theory to problems of the

free vibrations of cylindrical shells made of materials with mechanical characteristics gradually varying over the thickness and

the influence of laws of variation in the mechanical properties on the dynamic characteristics of these shells during

radial-and-longitudinal axisymmetric vibrations. We will use the spline-collocation method in combination with incremental

search and discrete orthogonalization [2, 3, 5].

1. Problem Statement. Basic Equations.

1.1. Timoshenko–Mindlin Shell Theory. Consider circular cylindrical shells made of FGMs with elastic properties

gradually varying in the direction perpendicular to the shell midsurface. The shells undergo free vibrations. We will employ the

Timoshenko model based on the straight-normal hypothesis (normals to the coordinate surface remain straight and unstretched

after deformation, but do not remain normal). According to the accepted hypothesis, the small displacements of particles of the
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shell can be represented in the coordinate system �, �, z fixed to the mid-surface (� is the normal coordinate to the mid-surface,

� � �h h/ /2 2� , 0 2� �� �, 0 � �z L) as follows:

u z t w z t
�
� � �( , , , ) ( , , )� , u z t v z t z t

� �
� � � �� �( , , , ) ( , , ) ( , , )� 	 ,

u z t u z t z t
z z
( , , , ) ( , , ) ( , , )� � � �� �� 	 , (1)

where u z t( , , )� , v z t( , , )� , w z t( , , )� are the displacements of the coordinate surface; � �
�
( , , )z t , � �

z
z t( , , ) are functions

describing the independent complete rotation of the normal.

The expressions for strains below follow from (1):

e
�
�( , � 
 � �� �

� �
, , ) ( , , ) ( , , )z t z t z t� 	 ,

e
z
(�, � 
 � �� �, , ) ( , , ) ( , , )z t z t z t

z z
� 	 ,

e r z t z t z t
z z z� � �

� 
 � �� �( , , , ) ( , , ) ( , , )� 	 2 ,

e r z t z t
�� �

� � �( , , , ) ( , , )� , e r z t z t
z z�

� � �( , , , ) ( , , )� , (2)

where 
 
 

� �
, ,

z z
are the tangential strains of the coordinate surface; � � �

� �
, ,

z z
are the bending strain components; �

�
and �

z

are the angles of rotation of the normal caused by transverse shear.

The strains and displacements of the midsurface of the shell are related by
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The motion of an element of the coordinate surface is described by the equation
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and N M R N
z z z� � �
� � �

�1
0. Here N N N N

z z z
, , ,

� � �
are the tangential forces; Q Q

z�
, are the transverse forces; M

�
, M

z
,

M
z�
, M

z�
are the bending and twisting moments; � �( ) is the density of the shell’s material; I I I

0 1 2
, , are the inertial terms

calculated taking into account the gradient of the elastic properties:
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The force–deformation constitutive relations for cylindrical shells made of an FGM without symmetry of elastic

properties about the midsurface have the form

N C C K K
z z z
� 	 	 	

11 12 11 12
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 � �� 	 	 	

12 22 12 22
,
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1
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�

66
, (6)

where the stiffnesses referred to the coordinate surface are defined by
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where E,G, and� are the elastic and shear moduli and Poisson’s ratio, respectively, which are functions of the coordinate � for a

material with properties gradually varying over the thickness.

Consider the following boundary conditions at the ends z � 0and z L� :

(i) the ends are clamped: u v w� � � 0, � �
�
�

z
= 0;

(ii) the ends are hinged and free in the longitudinal direction: � � �u z/ 0, v w� � 0, � � � �� �
�z

z/ 0;

(iii) the ends are free: N
z
� 0, M

z
� 0,Q

z
� 0.

If free vibrations are axisymmetric (all functions in Eqs. (3), (4), (6) are independent of �, while their derivatives with

respect to � are equal to zero, i.e., � � �f / � 0), system (4) breaks up into two independent systems, one describing

radial-and-longitudinal vibrations and the other representing torsional vibrations. The radial-and-longitudinal vibrations are now

described by the equations
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The equations relating the tangential and bending strains of the midsurface to its displacements and the angle of rotation

of the normal due to transverse shears are become simpler as well:
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The force–deformation relations become
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Q K
z z
�

1
� . (10)

Assume that all particles of the cylindrical shell undergo harmonic vibrations with circular frequency � :

{ ( , ), ( , ), ( , )}u z t w z t z t
z

� �{
~
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~
( ),

~
( )}u z w z z e

z

i t
�

�
(11)

(hereafter the sign ~ is omitted).

Using (11), we will write the system of equations (8)–(10) for displacements:
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After some transformations, this system takes the form
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Thus, the eigenvalue problem has been reduced to the system of ordinary differential equations (13) subject to boundary

conditions at z � 0and z L� .

1.2. Three-Dimensional Theory of Elasticity. Consider a thick-walled cylindrical shell of constant thickness 2H,

length L, inner radius R H� , and outer radius R H	 (R is the mid-radius). The shell is made of an FGM with elastic properties

varying in the direction perpendicular to the midsurface. If the radial-and-longitudinal vibrations are axisymmetric, then the

components of the displacement vector and stress and strain tensors are independent of the circumferential coordinate � of the

cylindrical coordinate system r z, ,� chosen. The equations of motion become simpler:
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The kinematic equations in the axisymmetric case are
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The system of equations (14), (15) is supplementedwith the generalizedHooke’s law for an orthotropic elastic material:
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657



The elements of the stiffness matrix � �
ij ij

r� ( ) and the density �( )r of the shell’s material are continuous and

differentiable functions of the radial coordinate r. Here t is the time coordinate; u r z t
r
( , , )and u r z t

z
( , , )are the projections of the

displacement vector onto tangents to the coordinate lines r and z, respectively; e
r
( , , )r z t , e

�
( , , )r z t , e

z
( , , )r z t are the relative

linear strains along the coordinate lines; e r z t
rz
( , , )are the shear strains; �

r
r z t( , , ), �

�
( , , )r z t , �

z
r z t( , , )are the normal stresses;
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rz

r z t( , , ) are the tangential stresses.

The elements �
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of the stiffness matrix can be expressed in terms of the elements c
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In turn, the elements of the compliance matrix can be expressed in terms of the technical constants:
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where E r( ) is Young’s modulus;G r( ) is the shear modulus; �( )r is Poisson’s ratio of a FGM.

The inside and outside lateral surfaces r �R H� and r R H� 	 of the shell are free from stresses:

�
r
R H z t( / , , )� �2 0, �

rz
R H z t( / , , )� �2 0. (18)

The following boundary conditions can be specified at the ends z � 0and z L� :
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The boundary conditions (18) on the inside and outside surfaces become
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The system of ordinary differential equations (22) and the boundary conditions constitute an eigenvalue problem.

2. Problem-Solving Method. We will solve problem (13) by discrete orthogonalization and incremental search.
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where A z( , )� is a (6�6)-matrix. For this system of ordinary differential equations, the boundary conditions at z � 0and z L� are

as follows:
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The boundary-value eigenvalue problem (22), (23) can be solved using discrete orthogonalization in combination with

incremental search [1–3]. To calculate the inertial terms (5) and the integral stiffnesses (7), we will employ the Newton–Cotes

formulas with automatic adjustment of the step size.

Problem (24) with the boundary conditions (25) can be solved by the spline-collocation method. To this end, we
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higher than 2nd-order derivatives of the unknown functions with respect to z; therefore, it is sufficient to use cubic splines.

Substituting (26) into Eqs. (22), we require them to hold at the given collocation points �
k

L [ , ]0 , k N� 0, . The number

of nodes in the mesh (including z
0
) is even, i.e., N n� 	2 1(n ! 3), and the number of collocation points N N� 	1. We obtain a

system of 4 1( )N 	 linear differential equations for the functions u
ri
,
~

,u u
ri zi

,
~
u
zi
( ,... , )i N� 0 :

dY

dr
A r Y� ( , )� ( )R H r R H� � � 	 , (27)

where Y u u u u u u u u
r rN r rN z zN zo zN

� " " " "{ ,... ,
~ ~

, ,... , ,
~ ~

}

0
0 0

� �

T
is a vector function of r; A r( , )� is a 4(N + 1)�4(N +

1)-matrix.

The boundary conditions for this system are given by

B Y R H
1

0( )� � , B Y R H
2

0( )	 � , (28)

where B
1
and B

2
are 2 1 4 1( ) ( )N N	 � 	 -matrices.

The boundary-value eigenvalue problem (27), (28) can be solved using discrete orthogonalization in combination with

incremental search [1–3, 5].

3. Analysis of the Numerical Results.

3.1.Consider a cylindrical shell made of a two-component FGMwhose elastic modulusE, Poisson’s ratio�, and density

� can be determined from the concentration of the components. Let the elastic properties vary with the thickness coordinate. The

elastic modulus E, Poisson’s ratio �, and density � of this FGM are related to those of its components by the formulas

E E E V E� � 	( )
2 1 1

, � � � �� � 	( )
2 1 1

V , � � � �� � 	( )
2 1 1

V , (29)
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where E
1
, �

1
, �

1
and E

2
, �

2
, �

2
are the mechanical characteristics of the first and second materials, respectively; V is the

concentration of the second material depending on the thickness coordinate �. Let the elastic properties of the FGM vary with the

thickness coordinate asV h
m

� �( / . )� 05 .

The elastic constants of the components are summarized in Table 1.

Table 2 collects the first five frequencies � � �
i i

l G� �
0 0 0

2
10/ of free vibrations of a cylindrical shell made of FGM

determined using the three-dimensional and Timoshenko–Mindlin theories for different values ofm. To avoid using dimensions,

we choose �
0

1� kg/m
3
andG

0
1� GPa. The ends of the shell are hinged. The shell has the following geometrical parameters:

length L l� 20
0
, radius R l�10

0
, thickness h l� 2

0
.

Analyzing the data in Table 2, we conclude that the natural frequencies of the shell calculated using the two theories

differ a little. The difference between the frequencies is maximum (	5%) at m � 0.5. For the other values of m, this difference

does not exceed 3%. The frequencies obtained with the refined shell theory are lower form �0.5 andm � 2and higher form �10

than those obtained with the three-dimensional theory. For m � 5, the first frequency calculated with the refined theory is higher

than that predicted by the three-dimensional theory, while the third, fourth, and fifth frequencies found with the

Timoshenko–Mindlin theory are lower than those obtained with the three-dimensional theory.

Tables 3–5 summarize the first four frequencies � � �
i i

l G�
0 0 0

/ of free vibrations of the shell with either hinged, or

clamped, or free ends, respectively, calculated using the Timoshenko–Mindlin theory for different values of m.

The stiffness of the material increases with m, which results in lower frequencies.

3.2. Let us analyze the vibrations of thick-walled shells made of polymeric FGMs using the three-dimensional theory of

elasticity. Polymeric FGMsmust meet the following requirements: the behavior of materials in all gradient zones must be elastic

rather than viscoelastic and the gradual variation of their properties must remain over a wide temperature range. It should be

borne in mind that there are no perfectly elastic polymeric FGMs and the elastic behavior of polymers is a conventional notion

660

TABLE 1

Material E, GPa � �, kg/m
3

Aluminum 70 0.3 2707

SiC 427 0.17 3100

TABLE 2

m Theory �
1

�
2

�
3

�
4

�
5

0.5

Timoshenko–Mindlin 3.1605 3.5005 4.6404 5.2606 6.5207

Three-dimensional 3.3005 3.6605 4.8407 5.5506 6.8507

2

Timoshenko–Mindlin 2.4805 2.7405 3.6005 4.2807 5.0604

Three-dimensional 2.5305 2.7905 3.6605 4.4307 5.1504

5

Timoshenko–Mindlin 2.0506 2.3505 3.1604 3.6206 4.5004

Three-dimensional 2.0853 2.3505 3.1406 3.7006 4.4304

10

Timoshenko–Mindlin 1.8671 2.1405 2.9605 3.2605 4.2204

Three-dimensional 1.8605 2.1305 2.9195 3.2005 4.1205



(behavior is considered elastic when a stress is relaxing very slowly). Since all attempts made so far to specify laws of variation

in the properties of polymeric FGMs with allowance for the properties of their components have failed, the properties of FGMs

are determined experimentally [2].

Table 6 collects the frequencies � � �� H E
av av

/ of free vibrations of shells made of polymeric FGMswith Young’s

modulus varying as E r ar br c( ) � 	 	
2

.

The following cases are examined:

(i) decreasing Young’s modulus (E R H( )� �243.0 MPa, Å R( ) �150.0 MPa, E R H( )	 �110.0 MPa, a �26.5 MPa, b �

–278.5 MPa, c � 839.5 MPa);

(ii) increasing Young’s modulus (E R H( )� �100.0 MPa, Å R( ) �150.0 MPa, E R H( )	 �243.0 MPa, a �6.5 MPa, b �

–59.6 MPa, c � 243 MPa);
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TABLE 3

�

m

0.5 1 2 5 10

�
1

0.03161 0.02850 0.02481 0.02052 0.01861

�
2

0.03500 0.03141 0.02740 0.02351 0.02142

�
3

0.04643 0.04152 0.03600 0.03162 0.02964

�
4

0.05265 0.04854 0.04281 0.03623 0.03262

TABLE 4

�

m

0.5 1 2 5 10

�
1

0.03606 0.03042 0.02661 0.02263 0.02001

�
2

0.03901 0.03481 0.03033 0.02601 0.02442

�
3

0.05242 0.04760 0.04184 0.03600 0.03260

�
4

0.05360 0.04762 0.04240 0.03683 0.03493

TABLE 5

�

m

0.5 1 2 5 10

�
1

0.03160 0.02862 0.02481 0.02081 0.01860

�
2

0.03181 0.02881 0.02543 0.02123 0.01901

�
3

0.03262 0.02950 0.02588 0.02182 0.01983

�
4

0.03926 0.03584 0.03062 0.02664 0.02467



(iii) thickness-average Young’s modulus (E
av
� 158.33 MPa).

Poisson’s ratio is chosen� �0.4 because Poisson’s ratios of the polymeric components of the FGM are hardly different.

The density of the FGM is assumed constant and equal to the density averaged over the thickness, �
av
. The cylinder has the

following geometrical parameters: length L � 5, inner radiusR R H
in
� � � 3, outer radiusR R H

ex
� 	 � 5,H R/ �0.25. In Table

6, the number of longitudinal half-waves is indicated in brackets after the frequency values.

It can be seen that the modes corresponding to the fifth and sixth frequencies are different for different laws of variation

in Young’s modulus across the thickness. The frequencies determined in increasing order differ by 1.5–5.6%.

Figure 1 shows the vibration modes for the first and second natural frequencies of the clamped thick-walled shell made

of either homogeneous material (solid lines) or an FGM (dashed lines) with Young’s modulus varying as in case (i) for z L� / 2.

The displacements and stresses are normalized to their maximum magnitudes for the homogeneous material.

The inhomogeneity of the material has the strongest effect on the distribution of the stress �
r
over the thickness of the

shell. The number of half-waves across the thickness changes at the first frequency. If Young’s modulus varies as in case (i), the
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TABLE 6

�
i

Hinged shell Clamped shell

² ²² ²²² ² ²² ²²²

�
1

0.3094 (1) 0.2919 (1) 0.3019 (1) 0.4068 0.3917 0.4007

�
2

0.5981 (2) 0.5869 (2) 0.5969 (2) 0.6053 0.6053 0.6176

�
3

0.6543 (1) 0.6856 (1) 0.6788 (1) 0.6932 0.7321 0.7222

�
4

0.9556 (3) 0.9531 (3) 0.9619 (3) 0.9776 0.9730 0.9830

�
5

1.1269 (2) 1.1475 (1) 1.1844 (1) 1.1503 1.1441 1.1754

�
6

1.1700 (1) 1.1681 (2) 1.1863 (2) 1.1961 1.2429 1.2639

Fig. 1
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maximums of the displacement u
r
and stress �

rz
shift toward the inside surface of the shell. The displacement u

z
in the cylinder

made of the FGM changes less than that in the shell made of the homogeneous material at both the first and second natural

frequencies. The position of the inflexion point on the midsurface remains the same for different materials.

Conclusions. We have solved the problem of the free axisymmetric vibrations of cylindrical shells made of a

functionally graded material using the three-dimensional theory of elasticity and the Timoshenko–Mindlin refined theory of

shells for different boundary conditions. The applicability of the refined theory to shells made of a material with properties

gradually varying over the thickness and the influence of various laws of variation in the properties on the dynamic

characteristics of cylindrical shells undergoing axisymmetric vibrations have been analyzed.
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