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The problem of improving aircraft’s capability of tracking the reference trajectory is solved by feeding

the reference signal with a certain advance to the control system. It is essential that this approach

imposes no constraints on the derivatives of the reference signal. The efficiency of the algorithm

proposed is demonstrated against an example of an aircraft tracking a reference trajectory that does not

have derivatives at some points
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Introduction. Vehicle maneuvering tasks [2] require high-accuracy navigators [8, 9] and accurate tracking of the

reference trajectory. In this connection, researchers are still interested in improving aircraft’s capability of tracking the reference

trajectory (see, e.g., [5, 11] and the references therein).

We will discuss the design of an aircraft’s servo system based on the approaches from [6, 7]. Following the procedure

from [7], we will decompose the original problem into a linear velocity control problem and an attitude control problem. To

improve the aircraft’s capability of tracking the reference trajectory, we will use the approach [6] in which the reference signal is

fed with a certain advance to the servo system. The algorithm proposed will be demonstrated against an example of tracking a

reference trajectory similar to that in [3, Fig. 11.6]. Note that this approach imposes no constraints on the differentiability of the

reference signal.

1. Equations ofMotion. To describe the motion of the aircraft, we will use equations similar to those in [5, Eq. (1)] and

[11, Eq. 2]:

� cosx V� �, � siny V� �,
�

� ��V , (1.1)

where x and y are the coordinates of the aircraft; � is the heading angle;V is the velocity. According to [10, formula 10.43], the

variable � is related to the bank angle � by

� ��

g

V
2

tan . (1.2)

To limit the rate of variation in
�

�, we assume that the control u is related to d dt� / by

� cos� �� uV . (1.3)

It is expedient to use Eqs. (1.1) and (1.3) to analyze the straight-line motion of the aircraft. If the aircraft circles, then it

makes sense to use polar coordinates ( cos , sin )x R y R� �� � . Then Eq. (1.1) become:
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�
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2

,
�

sinR V� �, � cos� ��

V

R

, � �� � �� 
V . (1.4)

Supplementing system (1.4) with the equation � �� �� u, which is analogous to Eq. (1.3), we obtain

�

sinR V� �, � cos� ��

V

R

, � �� � �� 
V , � �� �� u. (1.5)

2. Problem Decomposition. Equations (1.1), (1.3), (1.5) are such that we can decompose the original problem into the

problems of controlling the angle � and the velocityV.

Let us first address the control of �. Assume that V � 0 (� , | | /x � �0 2� � ), �� � 0. Then, we can choose x or � as an

independent variable in Eqs. (1.1), (1.3), (1.5), thus reducing the order of the system. Then the following equations are analogs of

systems (1.1)–(1.5):


 � �y

dy

dx

tan �, 
 � ��

� �

�

d

dx cos

,

d

dx

u

�

� , (2.1)


 � �R

dR

d

R

�

�tan , 
 � � 
�

�

�

�

�

d

d

R

1

cos

,

d

d

u

�

�

� . (2.2)

Note that the prime denotes differentiation with respect to x in (2.1) and differentiation with respect to � in (2.2) (this

does not apply to the derivatives of �, which remain to be denoted by d dx� / and d d� �/ ).

LetV � 0. It is expedient to replace system (2.1) with one differential equation of the third order:




 �y v (2.3)

v

u

� 	

�

�

�

�

�

�

�

�

(cos )

sin

(cos )�

��

�

3

2

5

3

, (2.4)

considering that


 �y tan �,



 �y

�

�(cos )
3

. (2.5)

Using � �w y y y
T
� 
 

 as a phase vector (the superscript ”T” denotes transposition), we rearrange (2.3) to

A �

�

�

�

�

�

�

�

�

�

�

0 1 0

0 0 1

0 0 0

, B �

�

�

�

�

�

�

�

�

�

�

0

0

1

. (2.6)

According to (2.4), (2.5), the variables of motion ( , )� � and the control uare expressed in terms of the components of the

vectors w ( , )
 

y y and v as follows:

� � 
arctan y , � �� 

y (cos )
3
, u v� 
(cos )

sin

(cos )

�

��

�

3

2

2

3

.

Obviously, a similar approach can be applied to circular motion (Eqs. (2.2)). Choosing � �w R R R
T
� 
 

 as a phase

vector and considering that

�

�

� �� 
 	

2

, 
 �R R tan �, 

 � 	 


�

�

�

�

�

�

�

�

�

�

�

�R R

R

tan
2

2

1

1�

�

�

�cos cos

, (2.7)
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we can replace (2.2) with the following equations of the third order (analog of (2.3), (2.4)):




 �R v, (2.8)

v

R

ce

se ce ce R se Rce se uR ce�





 	 
 	 	

5

2 2 2 2 2
6 3 9( ( ) )� � , (2.9)

where se � sin �, ce �cos �.

According to (2.7) and (2.9), the “physical” variables of motion and the control uare expressed in terms ofR R R, ,
 

, and

v as follows:

� �
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3. Stabilization ofMotion. Let us solve the stabilization problemwhen the motion is described by Eq. (2.1). The task is

to find a law of variation in uwith y,�, � such that the zero solution of Eq. (2.1) is asymptotically stable.

From (2.3) and (2.4) we get




 � 	y

u

(cos )

sin

(cos )�

��

�

3

2

5

3

. (3.1)

The control u is chosen so that Eq. (3.1) has the form




 � 
 

 
 
 
y ay by dy, (3.2)

where a, b, d are given constants. Then we have

u a b d y� 
 	 	 
( (cos ) sin (cos ) )

sin

(cos )

� � � �

��

�

2 3

2

2

3

. (3.3)

Thus, we have a nonlinear algorithm to stabilize the system.We need a procedure for finding the values of the constants

in this algorithm. For example, the feedback law defined by (3.3) stabilizes the system if the constants a, b, d have such values

that system (3.2) is asymptotically stable, i.e., a, b, d > 0 and d < ab. Naturally, these constants should be selected using some

optimization procedure. This will be demonstrated below for Eq. (2.6).

According to (3.2), the constants a, b, d are determined by the feedback law u kw� , which (k is the feedback-gain

matrix) can be found by, for example, solving the linear quadratic problem (see, e.g., [4]), i.e., optimizing the system according

to the quadratic performance criterion

J w Qw rv dx
T

� 	

�

�
( )

2

0

, (3.4)

or by the modal control method [1].

4. Design of a Servo System. Let us generalize the stabilization algorithm (3.2) to the case of tracking a reference

trajectory. Let the reference path be nearly straight and let y x( )describe the reference trajectory of the aircraft. We rearrange the

stabilization law (3.2) to the form




 � 
 

 
 
 
 
y ay by d y y x( ( )), (4.1)

to allow the coordinate y to “track” the reference trajectory ( y x( )). However, such a (relatively simple) algorithm cannot ensure

sufficient accuracy of tracking if y x( ) is a relatively quickly varying function.
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Let us discuss the possibility of improving the accuracy of trajectory tracking. The transfer function H s( ) between the

input ( y x( )) and the output ( y x( )) of system (4.1) is given by

H s

d

s as bs d

( )

( )

�

	 	 	

3 2

. (4.2)

At relatively low frequencies (���1, s i� �), the absolute value of the transfer function (4.2) is close to 1. In this

frequency range, the error of reproducing the input ( y x( )) by the output ( y x( )) is due to the phase lag. The phase lag � of the

system with transfer function (4.2) at frequency � is given by

tan �

�

�

��







2

2

b

d a

.

If � is small, then

� � 
( / )b d . (4.3)

This phase lag can be counterbalanced by feeding y x( ) to algorithm (4.1) with some advance !:




 � 
 

 
 
 
 
 	y ay by d y x y x( ( ) ( ))! . (4.4)

Indeed, the associated transfer function H s
1
( ) is given by

H s

de

s as bs d

H s e

s

s

1
3 2

( ) ( )�

	 	 	

�

!

!

.

The phase lag of this system at low frequencies (analog of (4.3)) can be expressed as

� � �� 
 	( / )b d ! . (4.5)

Choosing ! such that � � 0and using (4.5), we get

! � b d/ . (4.6)

Thus, the feedback law (2.3) can be modified as follows:

u a b d y y x� 
 	 	 
 	 
( (cos ) sin (cos ) ( ( )))

sin

(co

� � � �

��
2 3

2
3

!

s )�
2

. (4.7)

Stabilization algorithms similar to (2.3) and (4.7) can be designed if a polar coordinate system (Eqs. (2.2)) is used to

describe the motion of the system.
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It is also possible to use the algorithmwhen the condition �x � 0fails. In some cases, the reference trajectory can be “cut”

into sections on which the condition �x � 0 is satisfied, provided that the coordinates are transformed appropriately. Then the

tracking problem can be solved in the new coordinate system (in which �x � 0). The solution found can then by transformed to the

original coordinates (see the example below).

Example.Let us illustrate the algorithm byway of an example where an aircraft tracks the reference trajectory shown in

Fig. 1 (two sides and two diagonals of a square with a side length of 1000 m (an analog of the trajectory shown in [3, Fig. 11.6])).

The aircraft is programmed to track the reference signals from the sections AB, BC, CD, DE, EF, and FA. The equations of

motion of the aircraft in Cartesian coordinates have the form (2.6). In designing the control system, the coefficients a, b, and d

appearing in (3.2) are found by minimizing functional (3.4), where

Q

q

q

�

�

�

�

�

�

�

�

�

�

�

11

33

0 0

0 0 0

0 0

, r �1, q
11

8
10�




, q
33

� 0.1.

The following values of a, b, d correspond to the chosen Q and r: a � 0.341, b � "




826 10
3

. , d �




10
4
, ! � 82.6 m,

according to (4.6).

Let us analyze in detail the motion of the aircraft along the trajectory defined by the points A, B, andC. It is obvious that

the condition �x � 0fails on the section BC in the original coordinate system. In this connection, we will use a coordinate system

turned by an angle 
� / 8 relative to the original coordinate system to track this section (shown by a solid line in Fig. 2) of the

reference trajectory.

In this coordinate system, the condition �x � 0is satisfied. In the same figure, the dash-and-dot line shows the trajectory

of the aircraft (the advance ! is defined by (4.6)). Figure 3 shows, in the same coordinate system, the heading angle �defined by

the first formula in (2.5). Figure 4 shows the bank angle � determined from (1.2) for velocityV �10m/sec (� is defined by the

second formula in (2.5)).
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Figure 5 shows, in the original coordinate system, the section ABC of the reference trajectory (solid line) and the

trajectory of the aircraft (dash-and-dot line). Using similar procedures, we obtain the trajectory of the aircraft on the sections

CDE and EFA (on these sections, the angle of rotation of the coordinate system that ensures that �x � 0 is equal to � # �8
 ). The

whole trajectory of the aircraft is shown by a dash-and-dot line in Fig. 6 (the solid line represents the reference trajectory).

Comparing Fig. 6 and [3, Fig. 11.6] indicates that the algorithm described above and the algorithm from [3, algorithm 6] provide

equal accuracy of tracking the reference trajectory.

To demonstrate the improved accuracy of tracking owing to feeding, according to (4.4), the reference signal with an

advance ! defined by (4.6), Fig. 7 shows the solution for ! � 0, i.e., when the servo system is described by (4.1).

Comparing these figures suggests that feeding the reference signal with an advance allows considerable improvement

of the tracking accuracy.

Conclusions. The aircraft’s capability of tracking the reference trajectory has been improved by feeding the trajectory

signal with a certain advance to the servo system. The algorithm is tested by way of example of an aircraft tracking a reference

trajectory similar to that in [3, Fig. 11.6]. It is significant that this approach imposes no constraints on the differentiability of the

reference signal.
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