
INFLUENCE OF AN ELASTIC FOUNDATION ON THE DISPERSION OF HARMONIC

WAVES IN LONGITUDINALLY REINFORCED CYLINDRICAL SHELLS

P. Z. Lugovoi and N. Ya. Prokopenko

The effect of discrete ribs and Winkler and Pasternak foundations on the number and shape of the

dispersion curves of harmonic waves propagating along a stringer-reinforced cylindrical shell is studied.

The following cases of deformation are considered: (i) the stringers bend and twist, (ii) the stringers only

bend, and (iii) the stringers only twist. The study of the effect of elastic foundation on the wave numbers

shows that as the coefficients of subgrade reaction increase, the cutoff frequencies increase within a given

range of excitation frequencies and the shape of the dispersion curves changes
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Introduction. To analyze the effect of harmonic loads on shell structures, the dynamic characteristics of propagating

waves [2, 5–7, 11] and, in particular, their wave numbers must be known. After determining them, the dispersion curves can be

plotted. The dispersion curves for a rib-reinforced closed circular cylindrical shell were addressed in [19, 20], where the effect of

discrete ribs on the number and shape of dispersion curves was also analyzed. The experimental studies [4, 8] suggest that the

ambient medium has a strong effect on both the dynamic characteristics of reinforced shells and the wave processes in them. The

effect of an elastic foundation on the natural frequencies and vibration modes, stability, and stress–strain state of ribbed

cylindrical shells was analyzed in [3, 9, 10, 12, 14–17]. The free vibrations of longitudinally reinforced cylindrical shells were

studied in [13, 18].

Here we will study the effect of Winkler and Pasternak foundation on the cutoff frequencies and the number and shape

of the dispersion curves for harmonic waves propagating along a stringer-reinforced closed cylindrical shell.

1. Problem Formulation. Basic Equations. Consider a closed circular cylindrical shell regularly reinforced with

identical stringers. The shell is hinged at the ends and resting on an elastic foundation characterized by Winkler or Pasternak

coefficients of subgrade reaction (C
1
andC

2
).

The equations of motion can be derived from applied theories of shells and rods based on the Kirchhoff and

Kirchhoff–Clebsch hypotheses, respectively [1]:
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where u, v, and w are the displacements of a particle of the shell’s mid-surface; � � x r/ ,  � y r/ , x and y are the Cartesian

coordinates of this particle; t
1
= t(

0
, t is time,
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h and r are the thickness and mid-radius of the shell; E, �, and �
0
are the elastic modulus, Poisson’s ratio, and density of the

material of the shell; F
s
, I

ys
, I

zs
, and I

tws
are the cross-sectional area of a stringer, its moments of inertia in bending in the radial

plane and in the plane equidistant to the tangent to the shell’s mid-surface, and the twisting moment of inertia; h
s
is the

eccentricity of a stringer (the distance from the shell mid-surface to the stringer axis; h
s
> 0 if the stringers are attached to the

inside surface of the shell); k
1
is the number of stringers; E

s
,G

s
, �

s
are the elastic and shear moduli and density of the material of

the stringers; �  ( )�
j

is the Dirac delta function, 
)

j
k

j�
2

1

.
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2. Problem-Solving Method. Let the candidate solution of system (1) be represented by series:

u e
ik

�
�

( cos sin )cosu n u n t
n n

n

1 2 1 1

0

  (�

�

*

� ,

v e
ik

�
�

( sin cos )cosv n v n t
n n

n

1 2 1 1

0

  (�

�

*

� ,

w e
ik

�
�

( cos sin )cosw n w n t
n n

n

1 2 1 1

0

  (�

�

*

� , (2)

where u v w
ns ns ns
, , (s = 1, 2) are unknown constants; k is the dimensionless wave number (the corresponding wavelength " =

2)r k/ ), ( ( (
1 0
� / , ( � �

0

2

0

2
1� �E r/ [( ) ].

Substituting (2) into (1), we reduce the problem to infinite systems of homogeneous linear algebraic equations for u
ns
,

v
ns
, and w

ns
. In [1] it was shown that these systems have an exact solution. It was used in [19] to derive dispersion equations

(from which the characteristic (wave) numbers are calculated) for the following three cases of deformation:

(a) the shell undergoes arbitrary circumferential deformation (general case of deformation, according to [1]); the wave

numbers depend on all the geometrical and mechanical characteristics of the stringers;

(b) the shell undergoes such circumferential deformation that the stringers are at the deflection antinodes (first special

case of deformation); the wave numbers depend only on the stiffnesses of the stringers in tension/compression and radial

in-plane bending and on the geometrical andmechanical parameters onwhich the inertial characteristics of the stringers depend;

(b) the shell undergoes such circumferential deformation that the stringers are at the deflection nodes (second special

case of deformation); the wave numbers depend only on the stiffnesses of the stringers in twisting and in bending in the plane

equidistant to the tangent to the shell’s mid-surface and on the geometrical and mechanical parameters on which the inertial

characteristics of the stringers depend.

We will use a simplified version of Eqs. (1). We will assume that the characteristic numbers have a weak effect on the

stiffness of the stringers in twisting and in bending in the plane equidistant to the tangent to the mid-surface and on the inertial

characteristics. Then the characteristic equations for the general and first special cases of deformation have the same form, but

correspond to different circumferential wave numbers.

Thus, the wave numbers can be determined by finding the roots of the following equations:

1 0
11 33 11 33 13 31

� � � � �L L L L L L
n n n n n n

, (3)

n = 1, …, n
2
(general case of deformation); n = 0, ( / )k

k s1 2
2

1 1

� (first special case of deformation). In the second special case of

deformation, these equations have the form

1 0
22 44 22 44 24 42

� � � � �L L L L L L
n n n n n n

(n = 0, �
k s

k
1 1
2 1

2/ ), (4)

where n k
2 1

2� / (if k
1
is even); n k

2 1
1 2� �( ) / (if k

1
is odd); 2n is the number of nodal lines in the circumferential wave; �

k s
1 1
2

is the Kronecker delta; s
1
= 1, 2, … .

As shown in [1], the number of different characteristic (dispersion in our case) equations is restricted and determined by

the periodicity conditions for the sums +
1

1

n

n
X( ) below:
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� �
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� � � �
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TABLE 1

C
1

(
1

10.

n = 0 n = 1 n = 2

0

0.099 0.053 0.841 0.018

0.427 0.165 1.180 0.236

0.978 0.334 1.576 0.676

1.753 0.559 — 1.339

0.001

0.305 0.220 0.638 0.268

0.521 0.295 0.896 0.380

1.024 0.345 1.220 0.740

1.780 0.453 1.606 1.374

0.005

0.644 0.490 0.888 0.590

0.798 0.641 1.089 0.708

1.190 0.699 1.368 0.957

1.881 0.764 1.722 1.503

0.010

0.892 0.691 1.126 0.825

1.051 0.892 1.291 0.973

1.372 0.975 1.534 1.176

— 1.031 1.857 1.657
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TABLE 2

C
1

C
2

(
1

10.

n = 0 n = 1 n = 2

0 0

0.099 0.053 0.841 0.018

0.427 0.165 1.180 0.236

0.978 0.334 1.576 0.676

1.753 0.559 — 1.339

0.001

0.0001

0.476 0.231 1.079 0.319

0.913 0.405 1.394 0.675

1.529 0.587 1.757 1.200

— 0.811 — 1.913

0.0005

0.872 0.269 1.118 0.466

1.753 0.686 1.571 1.304

0.0010

1.194 0.311 1.543 0.602

— 0.923 — 1.805

0.010

0.0001

0.976 0.696 1.421 0.856

1.281 0.952 1.674 1.115

1.779 1.078 1.988 1.504

— 1.225 — —

0.0005

1.224 0.711 1.436 0.928

— 1.108 1.817 1.575

0.0010

1.472 0.728 1.787 1.005

— 1.270 — —
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The equations for the cutoff frequencies can be derived from (3) and (4) where k = 0.

3. Analysis of the Numerical Results. The numerical results discussed here have been obtained for a shell reinforced

with four stringers (k
1
= 4) attached to the inside surface of the shell having the following dimensionless geometrical and

mechanical parameters: h r/ � 0.25.10
–2
, F rh

s
/ 2) � 0.16.10

–1
, h r

s
/ .� .

�
014 10

1
, I r h

tws
/ 2

3
) � 0.53.10

–6
, I r h

zs
/ 2

3
) �

0.13.10
–6
, E

s
= E, G

s
= 0.3845E, � = 0.3. The following range of excitation frequencies has been examined: 0 / (

1
/ 0.2.

The external loading was assumed to generate harmonic waves described by the dispersion equations (3). Since we are

considering harmonic waves propagating along the shell, only the real roots of Eqs. (3) will be considered.

The following types of harmonic load on the ribbed shell were considered: (i) cyclically symmetric circumferential load

with period 2
1

) / k (n = 0); (ii) cyclically symmetric circumferential load with period 4
1

) / k ( / )n k�
1

2 , (iii) antisymmetric

circumferential load (n = 1). For numerical purposes, 101 term (l
max

= 100) was retained in series (6).

Tables 1 and 2 summarize the cutoff frequencies for different values of the Winkler and Pasternak coefficientsC
1
and

C
2
. It can be seen that with increase in the coefficients of subgrade reaction, the cutoff frequencies increase, compared with the

frequencies for the shell without elastic foundation. The number of cutoff frequencies decreases at relatively great coefficients of

subgrade reaction. The cutoff frequencies corresponding to the Pasternak foundation are higher than the cutoff frequencies

corresponding to the Winkler foundation.
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Figures 1, 2, and 3 show the dispersion curves for n = 0 and forC
1
= 0 (no Winkler foundation),C

1
= 0.001, andC

1
=

0.01, respectively. It can be seen that as the Winkler coefficient of subgrade reaction increases, the dispersion curves become

more shallow.

Figures 4 and 5 show the dispersion curves for the same case of deformation,C
1
= 0, and forC

2
= 0.0001 andC

2
= 0.01,

respectively. With increase in the Pasternak coefficient of subgrade reaction C
2
, the number and shape of dispersion curves

change too.

Figures 6, 7, and 8 show the dispersion curves of harmonic waves propagating along a stringer-reinforced cylindrical

shell on a Pasternak foundation (C
1
= 0.001 andC

2
= 0.0005). Figure 7 represents harmonic circumferential waves of arbitrary

profile (the wavelength is not multiple of the distance between stringers, which is the general case of deformation), and Figs. 6

and 8 represent waves having antinodes on the stringers (first special case of deformation). Comparing these figures reveals that

the number of dispersion curves in the general case of deformation is greater than that in the first special case of deformation. In

the first special case of deformation (n = 0) and (n = 2), the dispersion curves differ in shape, but not in number. For n = 0, the

dispersion curves are more shallow than for n = 2.

Conclusions.Analyzing the results of the study, wemay conclude that theWinkler and Pasternak foundations affect the

cutoff frequencies for harmonic waves propagating along a stringer-reinforced shell. With increase in the coefficients of

subgrade reaction, the values of the cutoff frequencies increase and their number in the chosen excitation frequency range

decreases. The presence of discrete ribs made it possible to plot dispersion curves for different case of deformation of the shell.

The greater the coefficients of subgrade reaction, the more shallow the dispersion curves in all the cases of deformation

considered.
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