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The results of solving spatial problems of the fracture of cracked materials under loads acting along

cracks are reviewed. A combined approach based on the three-dimensional linearized solid mechanics is

used to analyze two nonclassical brittle-fracture mechanisms: (i) fracture of materials with initial

stresses acting along cracks and (ii) fracture of materials compressed along parallel cracks. The results

of solving nonaxisymmetric and axisymmetric problems for the most typical cases of arrangement of

cracks relative to each other and to the boundaries of prestressed bodies are generalized. In the

linearized theory, stresses and displacements are expressed in terms of harmonic potential functions.

TheHankel transform is used to reduce problems for interacting cracks to the Fredholm equations of the

second kind. This approach allows solving problems in a universal general form for compressible or

incompressible, isotropic or transversely isotropic homogeneous elastic bodies with an arbitrary elastic

potential using the theories of finite and small initial deformations and specifying the material model

only at the stage of numerical solution of the general governing equations. New mechanical effects

associatedwith the influence of the initial stresses and crack interaction on the asymptotic distribution of

stresses and displacements near the crack tips are analyzed. Resonant effects occurring as the initial

compressive stresses tend to the level at which local buckling of the material occurs near the crack are

detected. This allows using the combined approach to determine the critical loads for bodies compressed

along cracks. Conclusions on the behavior of the stress intensity factors and critical compressive loads

with variation in the geometrical and material parameters are drawn

Keywords: initial (residual) stresses, compression along cracks, local buckling, Griffith–Irwin failure
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materials, transversely isotropic elastic materials, mechanical effects

1. Introduction. Fracture mechanics is a division of solid mechanics that has been most intensively developed in the

last decades. This is due to, on the one hand, the complexity of the fracture process, which requires the development of new and

refined models and approaches to studying it at macro-, meso-, and micro-scales and the formulation of adequate failure criteria

and, on the other hand, the great importance of fracture mechanics for the evaluation and prediction of strength, service life, and

residual life of critical structures, machines, and mechanisms.

Despite the active development of classical fracture mechanics initiated by Griffith, Orowan, and Irwin [80, 129–131,

141], it fails to adequately treat certain theoretical and practical problems. Among them are the study of the effect of the initial (or

residual) stresses acting in parallel to the crack plane on the stress–strain state of cracked bodies and the determination of the

critical compressive loads acting in parallel to cracks. To solve these problems, it is necessary to develop new approaches and

adequate failure criteria. It should be noted that the problem of the fracture of materials with initial stresses acting along cracks

and the problem of the compression of materials along cracks are different in subject of study, but have a common feature: there
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are load components that are parallel to cracks. It is these loads whose effect cannot be described by classical fracture mechanics.

This circumstance allows us to unite these problems into a group of problems of the fracture of materials loaded along cracks.

The problems in this group are also related by the fact that they are solved using the three-dimensional linearized solid mechanics

(TDLSM) [11, 12, 24, 97].

The present review generalizes and analyzes results on some classes of spatial axisymmetric and nonaxisymmetric

problems for various cases of arrangement of cracks obtained with the combined approach based on TDLSM proposed in [63,

68, 69, 123].

The Introduction briefly addresses the results and approaches that are the subject of the present review, including

classification of problems of fracture mechanics (classical and nonclassical problems), brief discussion of results on two

nonclassical problems of fracture mechanics (fracture of materials with prestresses acting along cracks and fracture of bodies

compressed in parallel to crack planes), and conceptualization of the combined approach to solving the two nonclassical

problems using TDLSM.

The second section briefly describes TDLSM problem formulations, models of solids, methods for solving some

problems of the fracture of materials loaded in parallel to cracks, and failure criteria for materials with prestresses acting along

cracks and for bodies compressed along cracks.

The third section discusses results obtained with the combined approach to specific classes of spatial problems of the

fracture of materials loaded along cracks. Results on nonaxisymmetric and axisymmetric problems for the most typical cases of

arrangement of cracks relative to each other and to the boundaries of bodies will be discussed. Specific numerical results for

compressible and incompressible isotropic hyperelastic materials and some types of composite materials (obtained with the

continuum approach) will be presented. Mechanical effects due to the influence of prestresses, geometrical and material

parameters on the stress intensity factors and critical compressive loads will be analyzed.

1.1. Classification of Problems of the Fracture of Cracked Bodies. The theory of propagation of cracks in materials

under tensile and shear forces is a well-established division of fracture mechanics and is based on the following concepts and

approaches: Griffith’s fundamental theory of brittle fracture [80]; the Orowan–Irwin concept of quasibrittle fracture [129, 141],

which made it possible to generalize Griffith’s theory to inelastic structural materials; the energy failure criterion based on the

concepts of elastic energy release rate and specific surface energy as a material constant [80, 130] or Irwin’s stress-based failure

criterion [131]; the concept of invariant (independent of the integration path) Eshelby–Cherepanov–Rice integral [53, 79, 144];

Leonov–Panasyuk–Wells criterion of critical crack opening displacement [42, 148]. These concepts and approaches were later

generalized to combined stress states and compound bodies, nonstationary and cyclic loading, thermal and electromagnetic

fields, viscoelastic, composite, and other materials [53, 59, 74, 78, 133, 134]). Currently, most studies on fracture mechanics are

based on the five approaches mentioned above. In this connection, problems solved with these approaches can be regarded as

classical problems of fracture mechanics.

However, a number of problems in this field are yet to be analyzed to the full. Among them are study of new failure

mechanisms that cannot be described with the five concepts and approaches, formulation of new failure criteria corresponding to

these mechanisms, and study of classes of problems for materials and structural members subject to new failure mechanisms.

These problems can be regarded as nonclassical problems of fracture mechanics.

Note that Guz was the first to propose this classification of problems of fracture mechanics (into classical and

nonclassical) in the introduction to the multivolume monograph [46]. Such a classification is obviously conventional and not

always unambiguous. However, this classification allows a relatively accurate evaluation of the novelty of studies on fracture

mechanics and the adequacy of models and approaches they use to analyze new failure mechanisms. For example, this

classification was used in [29, 30, 70, 73, 92, 98, 108, 109, 112, 118, 133] to generalize and analyze new results on some

nonclassical problems of fracture mechanics.

Nonclassical problems of fracture mechanics include:

– fracture initiated in the microstructure of composites (failure of composites compressed along reinforcement initiated

bymicrobuckling of the material, end crushing of compressed composites due to local buckling near their ends, and shredding of

composites with curved internal structure under tension or compression);

– brittle fracture of cracked materials with initial (residual) stresses;

– brittle and ductile fracture of materials compressed along parallel cracks initiated by local buckling near cracks;

– fracture of thin-walled cracked bodies initiated by preliminary buckling under tension;

– crack propagation in materials with initial (residual) stresses;

490



– brittle fracture of materials with cracks with interacting faces under dynamic loads;

– delayed fracture of viscoelastic bodies caused by subcritical growth of cracks.

The number of results on these nonclassical problems of fracture mechanics is much less than the number of results

obtained using classical approaches, which are usually based on essentially approximate models. For example, approximate

models were widely used, beginning with [49], to analyze failure in the microstructure of composites (see [30, Sec. 0.4 of

introduction] for a detailed review of such studies) and fracture of homogeneous and composite materials compressed along

cracks [112] (see Sec. 1.3 below for a brief description of the design models used). Using approximate models introduces

substantial quantitative errors to the results and leads in many cases to qualitative disagreement with experimental data [112].

Hence, with approximate models, it is rather difficult to carry out a reliable analysis of nonclassical problems and fracture

mechanisms.

It is therefore significant to use rigorous problem formulations, mathematical models, and methods to study

nonclassical problems of fracture mechanics and failure mechanisms. Such studies were conducted in [23, 24, 27, 28, 31, 32, 34,

36, 37, 46, 58, 90, 98, 99, 107, 114, 122] using the most rigorous and exact problem formulations in solid mechanics. For

example, fracture initiated by local buckling was studied using the three-dimensional linearized theory of stability of deformable

bodies [11, 12, 24, 97] or the two-dimensional linearized theory of stability of thin-walled structural members [32], and the

stress–strain state was analyzed using the three-dimensional equations of the statics of deformable bodies.

In what follows, we will briefly review studies on two theoretically and practically important nonclassical problems of

fracture mechanics: (i) fracture of materials with initial (residual) stresses and (ii) fracture of bodies compressed along cracks.

1.2. Problems of the Brittle Fracture of Materials with Initial (Residual) Stresses Acting along Cracks. Initial (or

residual, process-induced) stresses occur due to the inhomogeneity of linear or bulk strains in adjacent regions of the material.

Such stresses are almost always induced in real structural materials and structural members by the manufacturing process (which

is especially typical of composites [54, 55, 77] and polymers), joining (by, for instance, welding [43]), surface machining [44,

76], and operation and have a strong effect on the fracture behavior of bodies with cracks. Such problems are also quite typical

for biomechanics (modeling of blood vessels and living tissues), geophysics, seismology, and other research areas, either

fundamental or applied.

Of special interest are problems in which the initial (residual) stresses act along cracks (in Fig. 1 and below, S
0

11
are the

initial or residual stresses acting along a crack, �Q
22

are additional (effective or operating) stresses (normal stresses are assumed

as an example)). Problems of the brittle fracture of crackedmaterials with initial (residual) stresses acting in parallel to cracks are

considered nonclassical because when the linear theory of elasticity (see, e.g., [135]) is used, the prestresses S
0

11
acting along

cracks do not appear in the expressions for the stress intensity factors and crack opening displacement (COD) and, hence, in the

classical criteria such as Griffith–Irwin, critical COD, or their generalizations. Note that the effect of the prestresses can be

incorporated into the specific surface energy �. However, this approach is impractical because � must depend on both the

prestresses and the class of problems under consideration.

In his papers [13–15, 19, 22, 23, 28, 81, 89] published since 1980, Guz used the three-dimensional linearized solid

mechanics (see [11, 24, 97, 99, 101, 110] for its principles and state of the art) to solve problems of fracture mechanics of

prestressed materials. In these studies, he developed methods for solving plane, antiplane, and spatial problems of the fracture of

cracked bodies with prestresses that are considerably higher than the additional stress and strain fields, which allows using

linearized relations. Such a problem formulation is quite obvious and logical for, for example, composites with one preferred

reinforcement direction and cracks located along reinforcement [54]. For such composites, prestresses S
0

11
acting along the

reinforcement can be an order of magnitude higher than the ultimate strength �Q
22

(Fig. 1). Also, brittle fracture criteria for

materials with initial (residual) stresses were formulated in [87, 88]. They are analogs of the classical Griffith–Irwin failure

criteria and go over into them as the prestresses tend to zero (see Sec. 2.5 below for more details on failure criteria for prestressed

materials with cracks). A key justification for this approach is that the use of linearized relations to solve this class of problems of

fracture mechanics, unlike classical fracture mechanics, allows describing the basic phenomenon associated with the effect of

the load components acting along cracks on the fracture behavior of materials.

This approach is universal and allows analysis in general terms for compressible and incompressible, isotropic and

orthotropic (in the plane and antiplane cases) or transversely isotropic (in the three-dimensional case) elastic materials with

arbitrary elastic potential for the theory of finite (large) initial deformations and the first and second theories of small initial

deformations. The model of a material is specified (for example, the elastic potential is assigned one form or another) only at the
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final stage, i.e., during the numerical analysis of the general characteristic equations, governing integral equations, etc., derived

at the previous stage. This general approach to problems of the brittle fracture of materials with prestresses can be generalized to

inelastic materials. It should be taken into account that the additional (to the prestresses) stress and strain fields applied to

elastoplastic materials disturb the stress–strain state and, hence, change the unloading zones, which considerably complicates the

analysis.

This general approach made it possible to find solutions to some classes of static plane problems for isolated mode I, II,

III cracks and a wedged crack in the form of an infinite strip [16–18, 23, 28, 81, 89]. Spatial axisymmetric problems for isolated

internal and external mode I, II, III penny-shaped cracks in an unboundedmaterial with prestresses and a general spatial problem

for an internal penny-shaped crack are addressed in [19–21, 23, 28, 40, 82]. Spatial problems for unbounded prestressed bodies

with elliptic mode I, II, III cracks were analyzed in [28, 35].

New mechanical effects associated with the initial (residual) stresses were detected there. For example, it was shown

that the stresses near the tip of an isolated “free” crack (i.e., a crack with only stresses specified on its faces) do not depend on the

prestresses and are equal to those observed in the mechanics of brittle fracture of materials without prestresses. The opening of

the crack faces is strongly dependent on the prestresses. In plane wedging problems and in the general spatial shear problem for

“free” cracks, the stress intensity factors are strongly dependent on the prestresses and are not equal to those in the mechanics of

brittle fracture of materials without prestresses. It was also revealed that as the prestresses tend to the critical level that causes

surface instability of a half-plane or a half-space, the basic variables change resonantly: the stresses and displacements at the

crack tip tend to infinity and the critical loads in the linearized theory tend to zero (see Sec. 1.4 for more details on this

mechanical effect).

The above results for plane and spatial static problems for one crack in materials with initial (residual) stresses are

conclusive within the framework of the general formulation (for various material models) and were generalized in the

monographs [23, 27 (Ch. 6, Sec. 1), 28, 30 (Vol 2, Ch. 7)] and the references therein. In [23, 25–28, 91], it was proved that the

order of singularity at the crack tip in the fracture mechanics of materials with initial (residual) stresses acting along cracks is the

same as the order of singularity (square-root singularity) at the crack tip in classical linear fracture mechanics.

Later, this general formulation was also used to solve a number of problems of the fracture of prestressed materials with

interacting cracks. For example, some spatial problems for penny-shaped cracks in a half-space and in a layer with prestresses

and for arrays of parallel cracks in unbounded prestressed bodies were addressed in [2, 4–6, 38, 48, 60–62, 70, 72, 139]. The

effect of prestresses and the interaction of cracks with each other and with the boundaries of bodies on the stress intensity factors

near the cracks was analyzed. For example, it was shown that unlike problems for isolated “free” cracks, the distribution of

stresses and displacements near the crack tip in problems for interacting “free” cracks is strongly dependent on the prestresses.

Studies on prestressed materials with interacting cracks were reviewed in detail in [114, 122].

492

Fig. 1 Fig. 2

O y1

–a

S
0

11

O

y2

y1

y2

+a –a +a

S
0

11

�Q
22

�Q
22

S
0

11
S
0

11



Some classes of problems of crack propagation in materials with initial (residual) stresses acting along cracks were

considered in [23, 28, 85, 93–96, 100]. The effect of the prestresses on the motion of an interface crack between two materials

with initial (residual) stresses was analyzed in [102–105]. Possible critical phenomena accompanying the growth of cracks in

prestressed materials (including in the interface) were analyzed. It was shown that as crack growth rate in a prestressed material

tends to the speed of a Rayleigh wave in this material, the stresses and displacements near cracks abruptly increase to infinity,

which are resonant phenomena. We will not dwell on such studies here because they were detailed in the review [110] and in the

monograph [30, Ch. 10].

The static and dynamic problems of the fracture of materials with initial (residual) stresses acting along cracks have a

universal general form for all models and problem formulations, according to the approach mentioned in the first part of the

present section. Researchers often follow another approach by using a specific model (for example, for a material with specific

elastic potential) from the very beginning of the study on three-dimensional linearized solid mechanics. Examples of such

studies are [1, 51, 75, 127, 136, 137, 143, 145]. A fundamental shortcoming of this approach is the necessity to repeat the entire

analysis to solve the same problem for a different model, which may lead to repetition of results, including those obtained using

the universal approach for different models. Examples are given and analyzed in [106, 110, 116]. A review of such studies is

beyond the scope of the present paper.

1.3. Problems of the Fracture of Materials Compressed along Cracks. The need for resolving practical issues and

engineering problems in some fields of science and technology necessitates studying the fracture of bodies with cracks under

compression. For example, the mechanics of composites (especially laminates) and the mechanics of materials with coating

(heat insulation, anticorrosion, etc.) often deal with near-surface bulging (separation) near delaminations under compressive

stresses of various nature. Many engineering problems involving design of products with structural defects are reduced to design

models where compressive forces act along crack-like defects. Such problems arise in geomechanics in modeling tectonic forces

in highlands (fractured stratified rock mass), construction (design of various supports), etc.

Problems of the fracture of bodies compressed along cracks are considered nonclassical because uniform compression

strictly along cracks (Fig. 2) in isotropic and orthotropic materials (in orthotropic bodies, cracks are assumed to be located in

planes parallel to one of the planes of material symmetry) induces a homogeneous stress–strain state, no matter what

viscoelastoplastic model is, whichmeans that the corresponding solutions have no singularities at the crack tips. Hence, with this

type of loading, the stress intensity factors and crack opening displacement are equal to zero; therefore, approaches based on the

classical Griffith–Irwin theory, critical COD criterion, or their generalizations are inapplicable.

In the problem under consideration, fracture is most probably begins, as in the problem of the compression of structural

members along axes of symmetry, with local buckling of the material around the crack [27, 30, 33, 112]. There can be two

situations with this failuremechanism, depending on the configuration of the specimen and the arrangement of cracks in it [112].

One situation is when the initial stage of fracture (local buckling of the material near cracks) coincides with the main

stage fracture of the entire specimen, i.e., after buckling, the material no longer takes the load because the material surrounding

the region that has lost stability does not provide sufficient support for it. This situation is observed in materials with cracks

located in parallel planes and forming a periodic (in the direction perpendicular to the line of action of the compressive load)

array of cracks penetrating the whole specimen. This is because buckling of the material around a periodic array of parallel

coaxial cracks gives rise to a phenomenon similar to a plastic hinge going through the thickness of a beam in bending.

The other situation is where local buckling does not lead to fracture, but causes the material to change over to an

adjacent equilibrium mode near cracks. With further increase in the external load, no failure occurs due to the “supporting”

action of the surrounding material.

In the former case, the study of fracture is completed by determining the critical load that causes local buckling of the

material around the cracks. In the latter case, the study of fracture should be continued, proceeding from the distribution of

stresses and strains in the adjacent equilibrium mode of the material near cracks. In the adjacent equilibrium state, the

configuration of cracks is different and not all stress intensity factors are equal to zero because there are bending stresses due to

asymmetry and thematerial is now compressed not only along cracks, but also in other directions. Because of this, local buckling

can be accompanied by other failure mechanisms described, for example, by the Griffith–Irwin failure criteria.

According to the classification introduced in [112], the local buckling of the material around a crack that initiates

fracture is addressed by the first basic problem of the fracture of bodies compressed along cracks. The second basic problem of

the fracture of bodies compressed along cracks is concerned with the postcritical deformation of a material with cracks with
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allowance for the changed configuration of the body after local buckling. The present paper reviews studies related to the first

basic problem.

Thus, what both failure mechanisms for bodies compressed along cracks have in common is the local buckling of the

material near cracks as the initial stage of fracture. The approaches to studying this stage of the fracture of bodies compressed

along cracks and approaches to determining the corresponding critical loads can be classified as follows [112].

One approach is to model the portion of the material (hatched region in Fig. 3a, b) between parallel cracks or between a

crack and the boundary by a beam (plane problem) or by a plate or a shell (spatial problem). This approach, which has been

widely applied beginning with [140], is called the beam approximation. Such beams, plated, and shells are analyzed using

various applied theories of stability of thin-walled structures (Bernoulli, Kirchhoff–Love, Timoshenko hypotheses, etc.), setting

various boundary conditions for these thin-walled elements such as clamping or hinging (though these are elastic restraints in

reality).

The beam approximation was widely developed in [10, 45, 47, 73, 128, 147]. Despite possible usefulness for

engineering applications and relative simplicity, the beam approximation has essential shortcomings. For example, this

approach is not applicable to all geometries and systems of forces. For example, if there is one crack in an unbounded material, it

is difficult to justify the thickness of the beam. Also, applied theories of stability of thin-walled systems cannot be used when

cracks are spaced far from each other. Finally, the beam approximation introduces an irreducible error to the results because the

substantial change in energy at the crack tip is determined by the type of singularity in the stress distribution near this tip. Applied

theories used to describe the deformation of isolated beams, plates, or shells do not allow evaluating the order of this singularity

corresponding to the exact (three-dimensional) description. Studies employing the beam approximation were reviewed in [112],

indicating the shortcomings inherent in these approach and irreducible errors that it introduces.

Therefore, it is necessary to use more rigorous approaches that would adequately describe the phenomena involved.

Such rigorous approaches employ the three-dimensional linearized theory of stability of deformable bodies to analyze the

fracture of compressed materials with local buckling near the crack [11, 12, 24, 97]. For example, in [83] for two-dimensional

problems and in [84] for three-dimensional problems, Guz proposed a failure criterion expressed as a critical load causing local

buckling near cracks and found by solving the appropriate eigenvalue problems in the three-dimensional linearized theory of

stability of deformable bodies. Problem statements, basic equations, and results are presented in a universal general form for

compressible and incompressible, isotropic and orthotropic (in plane cases) or transversely isotropic (in three-dimensional case)

materials with arbitrary elastic potential and elastoplastic materials for the theory of finite (large) initial deformations and the

first and second theories of small initial deformations. For elastoplastic materials, the generalized concept of increasing load [24,

97] is additionally used, thus neglecting the change in the unloading zones during loss of stability. This approach introduces no

essential errors typical for the beam approximation and ensures accuracy typical for solid mechanics.

This general approach was used in [23, 33, 83, 84, 86] to find the exact solutions to plane and spatial problems for

homogeneous and composite materials (continuum problem formulation) compressed along isolated cracks and along an

arbitrary number of complanar cracks. It was shown that the critical loads that cause local buckling of the material near cracks in

this case are equal to the critical compressive loads causing surface instability of a half-space without cracks.

Later, the linearized approach was used to solve plane and spatial problems for elastic and elastoplastic homogeneous

bodies compressed along arrays of interacting parallel cracks (see, e.g., [9, 67, 71, 119–121, 124, 138]). It was shown that the

494

a b

Fig. 3



interaction of cracks with each other and with the free surface of the specimen substantially (by an order of magnitude and more)

reduces the critical compressive stresses compared with those for an unbounded material compressed along an isolated crack or

an array of complanar cracks. Such studies are reviewed in detail in [30, 33, 36, 37, 109, 112, 114, 122]. The passages to the limit

as the distances between parallel coaxial cracks or between a crack and the boundary of the half-space tends to zero (see, e.g.,

[113]) have been recently analyzed to assess the limits of applicability of the beam approximation.

Piecewise-homogeneous material models helped to obtain results on the mechanics of brittle and ductile fracture of

materials compressed along plane micro- and macrocracks located at the interface between dissimilar materials [30, 39, 115,

117, 125, 126, 149]. Problems of the viscoelastic fracture of composites and structural members compressed along cracks solved

using the TLTSDB are generalized in [56, 57].

This completes the brief discussion of studies on the fracture of elastic, elastoplastic, and viscoelastic materials

compressed along cracks. The foundations of the fracture mechanics of materials compressed along cracks, including associated

concepts, approaches, and specific problems, and new mechanical effects revealed in solving them are discussed in [112].

1.4. Combined Approach to Problems of the Fracture ofMaterials under Loads Acting along Cracks.Earlier, the two

nonclassical problems of fracture mechanics, namely, fracture of bodies with initial (residual) stresses acting along a crack and

fracture of materials compressed along parallel cracks were analyzed separately. This was due to the logic of development of

these (different in subject of study) groups of nonclassical problems and the complexity of mathematical methods used to solve

them.

It should be noted that even the pioneering studies on the brittle fracture of prestressed unbounded materials with

isolated cracks [13, 14, 19, 22, 23] revealed a new mechanical effect: the stress and strain fields near a crack and, hence, the

critical loads depend on the prestresses. For example, it was shown that as the initial (residual) stresses tend to the stress levels

that cause the surface instability of a half-plane (for plane problems) or a half-space (for spatial problems), the stresses and

displacements at the crack tip predicted by the linearized theory abruptly increase to infinity, which are resonant phenomena. As

the initial (residual) compressive stresses in bodies with a “free” crack tend to the critical level that causes the surface instability

of a half-plane or a half-space, the ultimate loads in the linearized theory tend to zero.

As an illustration, we will discuss results for a compressible isotropic body with a disk-shaped crack of radius a located

in the plane y
3

0� ; the body has equal tensile (or compressive) prestresses S S
0

11

0

22
� acting along theOy

1
- andOy

2
-axes and

characterized by coefficients of elongation (or shortening) along the coordinate axes � �
1 2
� (�

1
1� correspond to initial tension,

�
1

1� to initial compression, and �
1

1� to zero prestresses). Let us consider the general case of shear where uniform shear

stresses of intensity qare applied to the lower and upper faces of the crack at an angle�to theOy
1
-axis (Fig. 4). The exact solution

[23, 28] indicates that the mode II and III stress intensity factors are nonzero in this case:

K K K
II

II

II
� 	

( ) 0
, K K K

III

III

III
� 	

( ) 0
,

where K
II
and K

III
are the mode I and II stress intensity factors in a material with prestresses S S

0

11

0

22
� under a given external

shear load; K
II

0
and K

III

0
are the mode II and III stress intensity factors in the same material without prestresses under the same

external load;K
II( )

andK
III( )

are the dimensionlessmode I andmode II stress intensity factors that characterize the effect of the

prestresses.

Figure 5 shows the factors K
II( )

(curves 1, 2, 3) and K
III( )

(curves 1�, 2�, 3�) as functions of the coefficient of

elongation (shortening) �
1
for a compressible isotropic material with a harmonic elastic potential [132] and Poisson’s ratio 
 �

0.2, 0.3, 0.5 (curves 1, 2, 3, respectively). As can be seen, there are vertical asymptotes representing the surface instability of the

half-space, the corresponding shortening coefficient � 

1

1 2� �( ) / . Thus, as the prestresses tend to the critical level causing

surface instability of the half-space, resonant phenomena occur.

On the other hand, as noted in Sec. 1.3, in studying the fracture of unbounded materials compressed along an isolated

crack that is initiated by local buckling near the crack, it was found out [23, 33] that the critical compressive loads acting along a

crack are equal to the critical loads causing surface instability of a half-space. The local buckling of the material near the crack is

similar to surface instability.

The above two mechanical effects suggest that the phenomenon of surface instability is fundamental for both the

mechanics of brittle fracture of materials with prestresses acting along cracks and the mechanics of fracture of materials

compressed along cracks. This situation can be explained by invoking the following physical considerations. When the initial
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stresses acting along cracks reach the critical level at which surface instability of a half-space occurs, the state at the crack tip is

neutral equilibrium. A minor increase in the external load is sufficient to disturb the neutral equilibrium and to initiate the

fracture process characterized by local buckling of the material near the crack.

Considering this physical interpretation, we may expect similar “resonant” phenomena (abrupt increase in the stresses

and displacements near cracks) to occur in prestressed materials with other geometrical arrangements of cracks when the initial

compressive stresses tend to the stresses causing local buckling of the material compressed along parallel cracks. This

assumption was validated in [139] for a prestressed semibounded body with a near-surface crack. Figures 6a and 6b show the

ratios K K
II II

/
�

and K K
I II
/

�

(where K
I
and K

II
are the stress intensity factors for a near-surface crack in a prestressed

half-space; K
II

�

is the SIF for an isolated crack in an unbounded material without prestresses) for an incompressible highly

elastic material with Treloar potential [146] containing a near-surface mode II crack parallel to the free surface of the material as

functions of �
1
for different values of the distance between the crack and the free surface divided by the radius of the crack. It can

be seen that K K
II II

/
�

and K K
I II
/

�

tend to infinity (vertical asymptotes) as the initial compressive stresses tend to the critical

level causing local buckling of the material compressed along the near-surface crack (see, e.g., [36, 120]).

It should be noted that both nonclassical problems mentioned above are solved using related mathematics of TDLSM.

The linearized equilibrium equations and the equations of state are identical for both classes of problems, and so are the

configurations of the bodies and the arrangements of defects. The essential difference in statement and solution between

problems of the brittle fracture of materials with initial stresses acting along cracks and problems of the brittle and ductile

fracture of materials compressed along an array of cracks located in parallel planes is that we deal with boundary-value problems

(with nonzero boundary conditions on the crack faces), as in the linear mechanics of brittle fracture, in the former case and with

eigenvalue problems (with zero boundary conditions on the crack faces) in the latter case.

Therefore, it appears reasonable to combine problems of the fracture of prestressed materials and problems of the

fracture of materials compressed along cracks to be solved using TDLSM. This will help to substantially reduce awkward

mathematical calculations and allow a more adequate description and correct interpretation of all mechanical effects associated

with the action of loads along cracks.

A combined approach based on TDLSM to studying the fracture of prestressed materials and the fracture of cracked

materials compressed along cracks was proposed in [68, 69, 63, 123]. This approach made it possible to develop a simpler and

effective method for determining the critical loads for materials compressed along cracks without the need to solve eigenvalue

problems using the three-dimensional linearized theory of stability of deformable bodies. The critical loads are found by solving

boundary-value problems of the fracture of prestressed materials. The load parameters are changed continuously to find initial

compressive stresses at which the amplitudes (of stresses and displacements) at the crack tips change resonantly. These initial

496

Fig. 4 Fig. 5

O

K
II( )

, K
III( )

y2

�

0.5

0

0.6 1 2 3 �
1

–a +a

y1

y3

1

1.5

1

2

3

3

2

1

1�

1�

3�

2�

2�

3�



stresses are the eigenvalues of the eigenvalue problem for bodies compressed along cracks. It is obvious that the compressive

prestresses in problems of the fracture of prestressed materials must not exceed the critical values at which local buckling of the

material occurs near the cracks.

Note that a mathematically similar approach is used in some other divisions of mechanics. For example, as the

frequency of an external load that forces a linear mechanical system to undergo vibrations tends to the natural frequency of the

system, the amplitude of vibrations changes resonantly. This phenomenon underlies one of the approaches widely used to

determine the natural frequencies (modes) of linear systems.

1.5. On Classes of Problems of the Fracture of Materials under Loads Acting along Cracks. The present review

addresses two groups of nonclassical problems of fracture mechanics: (i) brittle fracture of materials with initial (residual)

stresses acting in parallel to crack planes and (ii) fracture of bodies compressed along parallel cracks, both initiated by local

buckling of the material near the cracks. Studies that employed the combined approach (see Sec. 1.4) to solving these problems

are reviewed here.

We will consider spatial problems solved using the TDLSM approach [11, 24, 97], which allows formulating and

solving problems in a universal general form for compressible and incompressible elastic bodies with an arbitrary elastic

potential for the theory of finite (large) initial deformations and the first and second theories of small initial deformations. The

results to be discussed were obtained for homogeneous isotropic hyperelastic materials and composite materials with elastic

components. Composites were modeled by a transversely isotropic body with reduced (effective) characteristics and planes of

isotropy parallel to the crack planes [30, 41, 52, 77], which is a well-known continuum model.

The problems of the fracture of homogeneous and composite materials with cracks under loads acting along cracks can

be divided into three classes, depending on the arrangement of defects.

First class: cracks are located in several (finite number of) parallel planes that are far from the edges, i.e., the effect of

the free (or reinforced) surface can be neglected (Fig. 7a). Second class: cracks are located in parallel planes and form a periodic

(along the axis perpendicular to the line of action of the load) array, i.e., actually, penetrate the entire specimen (Fig. 7b). Third

class: cracks are located in parallel planes near the edge of the material, i.e., the effect of the free (or reinforced) surface must be

taken into account (Fig. 7c). In this case, we deal with near-surface fracture of a material.

Due to the complexity and inadequate development of the nonclassical problems of fracture mechanics under

consideration, this review addresses the following characteristic (reference) arrangements of cracks:

(a) an isolated internal crack in an unbounded body;

(b) a near-surface crack parallel to the boundary of the half-space;

(c) two internal parallel coaxial (i.e., with coinciding projections, not shifted relative to each other) cracks in an

unbounded body;

(d) a periodic array of parallel coaxial cracks in an unbounded body.

Results are presented for circular (penny-shaped) cracks because this configuration is the most typical for brittle

materials [135].

Formulating and solving problems for such arrangements of defects allow us to separate out, into a pure form, and

analyze the basic laws of interaction of cracks with each other and with the edges of bodies under loads acting along cracks. An
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isolated crack is the limiting case because all the other cases of arrangement of interacting cracks are reduced to it as the distances

between cracks or between the crack and the surface of the material tend to infinity. Thus, the results obtained for an isolated

crack can be used to test results for long distances between cracks. Solving the problem for a near-surface crack parallel to the

surface of the material, we can estimate the effect of the interaction between the crack and the boundary of the body on its

fracture behavior. Solving problems for two parallel coaxial cracks and a periodic array of coaxial parallel cracks, we can

estimate the effect of the interaction of cracks with each other on the fracture behavior and are limiting cases for problems of the

fracture of materials with an arbitrary finite number of coaxial parallel cracks. Mathematically, the problem for a body with a

periodic array of coaxial parallel cracks is reduced to the problem for a layer with one crack parallel to the edges of the layer;

therefore, themethod for solving it can be used to solve problems for a crack in a prestressed layer with free or reinforced edges.

For each of the arrangement of cracks, wewill discuss results obtained for different systems of forces acting on the faces

of mode I, II, and III cracks. Also, we will discuss the critical loads causing local buckling found using the combined approach to

problems of the fracture of materials with prestresses acting along cracks and cracked bodies compressed along cracks.

2. General Formulation of Linearized Spatial Problems of the Fracture of Materials under Loads Acting along

Cracks. In this section, we will briefly discuss formulations of TDLSM problems, linearized equilibrium equations,

representation of their solutions in terms of potential functions, material models, methods for solving some problems of the

fracture of materials under loads acting along cracks, failure criteria for materials with prestresses acting along cracks and for

bodies compressed along cracks. We will mainly use the terminology and notation adopted in the monographs [23, 28, 30].

2.1. Basic Equations of Three-Dimensional Linearized Solid Mechanics. As indicated in the Introduction, problems

of the fracture of materials under forces acting along cracks are solved using the combined approach based on TDLSM.

Historically, TDLSM evolved within the framework of the three-dimensional linearized theory of stability of deformable bodies

and the theory of wave propagation in materials with initial (residual) stresses (see [99, 101, 111] for a detailed historical sketch

of their development). The most general equations of TDLSM are derived by rigorous and consistent linearization of the

equations of nonlinear elasticity. Therefore, we will briefly discuss some equations of nonlinear elasticity, the general principles

of their linearization, and the linearized equilibrium equations, boundary conditions, and expressions for the Green strain tensor.

The deformed configuration of a body will be described in Lagrangian coordinates x x
j

j

 ( j �1 3, ), which coincide

with the Cartesian coordinates with unit vectors
�

g
j
in the natural (undeformed) configuration because the covariant,

�

g
j
, and

contravariant,
�

g
j
, basis vectors coincide for Cartesian coordinates.

The metric tensor is given by

g g g
mn

nm

m

n

m

n

nm

 
 � �� � ,

g g g g
rs

rs
� 
 � �

�

det det| | | | | | | |
1

1. (2.1)

Each point (particle) of the material is associated with three parameters x
m
, the one-to-one correspondence holding at

any instant �. We introduce the following notation:
�

r is the position vector of a point before deformation (in the natural

configuration);
�

r* is the position vector of the same point after deformation;
�

u is the displacement vector of the point; the
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coordinates x x
n

n

 are considered frozen in the body; the asterisk refers to the deformed configuration. We can now write the

following expressions:

� � �

r x r x u x
m m m

* ( , ) ( ) ( , )� �� � ,

� �

r g x
n n

� ,
� �

u g u
n n

� . (2.2)

If
�

g
m

*
and

�

g
m

*
are the covariant and contravariant basis vectors in the deformed configuration and g

nm

*
, g

nm

*
, and

g
m

n

m

n

*
� � are the covariant, contravariant, and mixed components of the metric tensor in the deformed configuration, then the

expressions below follow from (2.2):

d r
r

x

dx g dx
m

m

m

m�

�

�

*
* *

�

�

�

� ,

�

�

� �

g
r

x

g g
u

x
m m m n

n

m

* *
�

�

�

� �

�

�

.

Forming the difference of squared arc elements in the deformed and undeformed configurations and performing

transformations, we get

ds ds dr dr dr dr g g dx dx
nm nm

n m
* * * ( )

*2 2
� � 	 � 	 � �

� � � �

,

g
nm nm nm

*
� �� �2 , (2.3)

where �
nm

are the components of the Green strain tensor,

2�
nm

n

m

m

n

k

n

k

m

u

x

u

x

u

x

u

x
�

�

�

�

�

�

�

�

�

�

�

(n m k, , ,�1 3). (2.4)

These formulas allow determining changes in geometrical objects during deformation, such as

change in the length of a line element (coefficient of elongation) aligned with the coordinate axis x
n
,

� �
( )

*

n

n

n

nn

ds

ds
� � �1 2 , (2.5)

change in the angle (
~ *
� � �

nm nm nm
� � , �

nm

*
is the angle after deformation) between the coordinate lines x

n
and x

m
,

sin
~

( )

( )( )

(
�

� � �

� �

�

�

nm

nm nm nm

nn mm

nm

nm
�

� �

� �

� �

�2 1

1 2 1 2

1
2

1 2 1 2

2
�

� �

nm

nn mm

)

( )( )� �

, (2.6)

change in an area element of the surface x
n

�const,

dS

dS

n

n

mm kk mk mk

*

( )( ) ( )� � � � �1 2 1 2 2
2

� � � � ,

n m k n� � � , (2.7)

change in a volume element formed by the coordinate surfaces,

dV

dV
rs rs

*

| | | |� �det � �2 . (2.8)
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It follows from (2.4) that the Green strain tensor is a symmetric tensor of the second rankwhose algebraic invariants are

A
nn1

� � , A
nm mn2

� � � , A
nm mk kn3

� � � � . (2.9)

It is possible to form other systems of invariants for the Green strain tensor that are expressed in terms of algebraic

invariants (2.9). For example, the following system of invariants is often used [12]:

I A
nn1 1

3 2 3 2� � � �� ,

I A A A
nn nn mm nm mn2 1 1

2

2
3 4 2 3 4 2� � � � � � � �� � � � �( ) ( ),

I A A A A A A A
rs rs3 1 1

2

2 3 1 2 1
2 1 2 2

4

3
2 3� � � � � � � � �det | | | | ( ) (� �

3
). (2.10)

If the elastic body is incompressible, then I
3

1� follows from the last expression in (2.10) and from (2.8).

Let us consider the principal values �
1
, �

2
, and �

3
of the Green strain tensor. Moreover, let the coordinate lines x

n
be

aligned with the principal directions of the Green strain tensor. Denoting the coefficients of elongation (2.5) by �
n
and

introducing relative coefficients of elongation �
n
, we get

� �
n n

� �1 2 , � � �
n n n

� � � � �1 1 2 1, 2 1
2

� �
n n

� � , 2 1 1
2

� �
n n

� � �( ) . (2.11)

In this case, it is possible to introduce another system of invariants:

s
1 1 2 3 1 2 3
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s
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3

3
1 1 1� � � � � � 
 � �( ) ( ) ( )� � � � � � . (2.12)

Also, the expressions below follow from (2.9):

A
1 1 2 3
� � �� � � ,

A
2 1

2

2

2

3

2
� � �� � � ,

A
3 1

3

2

3

3

3
� � �� � � . (2.13)

To characterize the stress state, the finite-deformation theory uses various stress tensors (see [12, 97] for more details).

For example, when the stress vector
�

t
i( )
applied to an area x

i
�const in the deformed configuration andmeasured per unit area in

the undeformed configuration is considered, the symmetric stress tensor
~
S and the asymmetrical Piola–Kirchhoff stress tensor

~
t

are introduced:

�
� �

t t g S g
i ij

j

ij

j

( ) *
� � . (2.14)

The relationship between the tensors
~
S and

~
t follows from the second expression in (2.3) and (2.14):

t S

u

x

ij in

nj

j

n

� �

�

�

�

�

�

�

�

�

�

�

� . (2.15)

From (2.1) and (2.14) we get

�
� �

t t g t g
i ij

j ij

j( )
� 
 ,

� �

g g
j

j

 . (2.16)
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Let us now formulate the equilibrium equations (body forces being absent), boundary conditions for stresses on a

portion S
1
of the surface, and boundary conditions for the displacements on a portion S

2
of the surface [24] in the form of

components for the covariant basis vectors
�

g
j
in the undeformed configuration:
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, (2.17)

where P
j
are the components (for

�

g
j
) of the external load vector fixed to the surface of the body in the deformed configuration,

but measured per unit area in the undeformed configuration;N
i
are the components of the unit normal vector to the surface of the

body in the undeformed configuration; f
j
are the components of the right-hand sides of the boundary conditions for

displacements.

The system of geometrically nonlinear equations (2.17) should be supplemented with constitutive equations, which will

be presented in Sec. 2.2 for some material models.

We will now briefly outline the main principles of deriving the linearized equations.We will consider three equilibrium

states of an elastic body:

(i) natural (undeformed) state in which stresses and strains are zero;

(ii) initial (or residual) stress–strain state or, differently, unperturbed state, denoted by index “0” (in problems of the

fracture of prestressed materials, this state is induced by the initial (residual) stresses acting along cracks);

(iii) perturbed stress–strain state (represented as the sum of the second state and perturbations). The stress–strain state of

prestressed materials is perturbed by additional loads applied to the crack faces.

The perturbations are considered small compared with the unperturbed (second) state. We will use no index to refer to

the perturbations. Therefore, it can be assumed that the second and third states are described by the same equations of nonlinear

elasticity. Thus, we will only consider initial or residual stress–strain states resulting from elastic deformation. It should be noted

that “elastic” initial or residual stresses in one part of a solid can be induced by “inelastic” deformation of complex physical

nature in its another part.

To derive the basic equations of the TDLSM, we will use the principle of linearization. The foregoing can be illustrated

by a simple example. Let the following relation in nonlinear elasticity hold:

y f x� ( ), (2.18)

where the natural (undeformed, first) state is the beginning of the process. Formula (2.18) can be written for the initial and

perturbed states as

y f x
0 0

� ( ),

y y f x x
0 0
� � �( ), (2.19)

where x and y are perturbations. Since the perturbations are small (| | | |x x��
0
), we can linearize relation (2.19):

y y f x x
df

dx
x x

0 0

0

� " �

�

�

�

�

�

�

�

( ) . (2.20)

Subtracting expression (2.19) for the second (initial) state from the linearized relation (2.20) for the third state, we

obtain
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y x
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. (2.21)

Let us now consider the linearized theory of elasticity for bodies with initial (residual) stresses. Its basic equations

(2.21) relate the perturbations.

For example, linearizing the nonlinear kinematic equations (2.2), (2.4), (2.5), (2.7), (2.8) (see [24, 97] for more details),

we obtain linearized expressions:

for the covariant basis vectors in the deformed state:
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for the Green strain tensor:
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for other geometrical objects:
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From (2.9), (2.10), (2.23), we get linearized relations for determining the invariants of the Green strain tensor:

A

u

x

u

x
jn

j

n

j

n

1

0

� �

�

�

�

�

�

�

�

�

�

�

�

�

� , A

u

x

u

x
nm jm

j

m

j

n

2

0

0

2� �

�

�

�

�

�

�

�

�

�

�

�

�

� � , A

u

x

u

x
im ni jm

j

mn

j

n

3

0 0

0

3� �

�

�

�

�

�

�

�

�

�

�

�

�

� � � , (2.27)

I

u

x

u

x
jn

j

n

j

n

1

0

2� �

�

�

�

�

�

�

�

�

�

�

�

�

� , I

u

x

u

x
nm nm ii nm jm

j

m

j

n

2

0 0

0

4� � � �

�

�

�

�

�

�

�

�

�

�

�

�

( )� � � � � . (2.28)

The incompressibility condition is
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According to (2.17), we obtain the following linearized equilibrium equations and boundary conditions:
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the equilibrium equations
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where the stress tensors
~
t and

~
S are related by
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the boundary conditions
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where P
j
are the components (with respect to

�

g
i
) of the perturbations of the right-hand sides of the boundary conditions for

stresses; f
j
are the perturbations of the right-hand sides of the boundary conditions for displacements;N

i
are the components of

the unit normal vector to the surface of the body in the undeformed state.

The above basic linearized equations are for the theory of finite (large) initial deformations. These equations can also be

reformulated for two theories of small initial deformations (see [24, 97, 99] for more details).

For example, the first theory of small initial deformations is based on the assumption that the elongations and shears are

small and can be neglected compared with unity. Its basic equations include

the equilibrium equations
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where the components of the asymmetric Piola–Kirchhoff stress tensor
~
t and the components of the usually used symmetric

stress tensor
~
* are related by

t

u

x

u

x
ij nj

j

n

in in j

n

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

� * *

0

0
, (2.34)

the boundary conditions have the form (2.32), (2.34), and the incompressibility condition is
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In addition to the assumption made in the first theory of small initial deformations, the second theory of small initial

deformations assumes that the initial state can be determined using the geometrically linear theory. In this case, the components

of the Green strain tensor for the initial state are given by

2
0

0 0

�
nm

n

m

m

n

u

x

u

x
�

�

�

�

�

�

. (2.36)
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The basic equations of the second theory include

the equilibrium equations

�

�

�

�

�

�

�

�

�

�

 
�

x

u

x
i

ij in j

n

* *
0

0, (2.37)

where the components of the asymmetric Piola–Kirchhoff stress tensor
~
t and the components of the usually used symmetric

stress tensor
~
* are related by

t

u

x
ij

ij in j

n

� �

�

�

* *
0

, (2.38)

the boundary conditions have the form (2.32), (2.37), and the incompressibility condition is

g

u

x

nj j

n

�

�

� 0. (2.39)

2.2. On Models of Solids. Here we will briefly discuss the basic equations of the nonlinear and linearized theories for

elastic compressible and incompressible bodies, which will be used below.

For hyperelastic bodies, it is assumed that there exists an elastic potential function characterizing the elastic strain

energy [24, 97, 99]:

� ��+ � S
ij

ij
. (2.40)

For the theory of finite (large) deformations, from (2.40) we obtain general expressions for the components of the stress

tensor:
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for compressible bodies and
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2 � �
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(2.42)

for incompressible bodies, where p is a scalar function related to hydrostatic pressure.

We will further consider the most typical and theoretically and practically important models: isotropic hyperelastic

materials with different elastic potentials and composites as popular structural materials.

Isotropic Hyperelastic Materials. For compressible hyperelastic materials, it is convenient to use elastic potentials

derived from the basis algebraic invariants (2.9), (2.27) of the Green strain tensor (2.4), (2.23):

+ �
,

c A A A
ijk

i j k

i j k

1 2 3

, ,

, c
ijk

�const. (2.43)

With a difference finite number of terms retained in (2.43), we have different elastic potentials. For example, keeping

terms up to the second order, we obtain the following elastic potential [23]:

+ � �

1

2
1

2

2
� -A A (2.44)
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which becomes linear in changing over to the classical theory of linear elasticity, the parameters � and - being the Lamé

constants.

Retaining terms up the third order in (2.43), we get the Murnaghan potential [23]:

+ � � � � �

1

2 3 3
1

2

2 1

3

1 2 3
� -A A

a
A bA A

c
A . (2.45)

Using the invariants of the Green strain tensor s
1
, s

2
, s

3
in the form (2.12), representing the elastic potential for

compressible materials in terms of these invariants in a form similar to (2.43),

+

s

ijk

s i j k

i j k

c s s s�
, 1 2 3

, ,

, c
ijk

s
�const, (2.46)

and retaining a finite number of terms in (2.46), we obtain elastic potentials in terms of the basis invariants. For example, keeping

two terms in (2.46) and introducing new notation for the constants, we obtain a harmonic elastic potential [132]:

+

s
s s� �

1

2
1

2

2
� - . (2.47)

Elastic potentials for incompressible hyperelastic materials are constructed in a similar way. For example, using the

system of invariants (2.12) and retaining one term in series (2.46), we obtain the simplest elastic potential for an incompressible

material (Bartenev–Khazanovich potential) [3]:

+

s
s� 2
1

- , - �const. (2.48)

Using the system of invariants I
1
, I

2
, I

3
(2.10), (2.28) and retaining a finite number of terms in the series, we can obtain

the Treloar potential [146]:

+ � �c I
10 1

3( ), c
10

�const. (2.49)

Note that an elastic incompressible isotropic material described by the Treloar potential is called a neo-hookean

material.

More details on other elastic potentials can be found in [24, 97].

Composite Materials. In studying composite materials, we will assume that cracks are much larger than structural

elements of composites (i.e., macrocracks) and will consider only fracture processes in which composites do not manifest

themselves as piecewise-homogeneous materials (interface fracture, etc.).With such assumptions, following [30, 41, 52, 77], we

will model a composite by an anisotropic continuum with effective characteristics (for example, a transversely isotropic body

with planes of isotropy parallel to the crack planes x
3

�const).

The elastic potential for an anisotropic compressible body can be represented in the following general form [30]:

+ � � �E E
ijnm

ij nm

ijnmpq

ij nm pq
� � � � � … . (2.50)

Keeping terms up to the second order in (2.50) and using the second theory of small deformations (for which S
ij

ij

 * ),

we obtain the following constitutive equations:

* �
ij ijnm nm

A� , � *
nm nmij ij

a� . (2.51)

For example, for a transversely isotropic body withOx
3
as an axis of isotropy, we have

* � � �
11 11 11 12 22 13 33

� � �A A A , * �
12 11 12 12

� �( )A A ,

* � � �
22 12 11 11 22 13 33

� � �A A A , * �
13 44 13

2� A ,

* �
23 44 23

2� A , * � � �
33 13 11 13 22 33 33

� � �A A A . (2.52)
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Using five independent technical constants (elastic moduli E
j
, shear moduli G

ij
, and Poisson’s ratios 


ij
), we can

rearrange the constitutive equations (2.52) as
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, (2.53)
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.

Transversely isotropic materials with effective macrocharacteristics model will be used to model laminated composites

with isotropic plies and fibrous composites reinforced with random short ellipsoidal fibers in the plane x
3

�const [52]. The

effective macrocharacteristics of these composites are determined by the elastic characteristics and volume fraction of their

components. For example, the macrocharacteristics of a composite laminate with isotropic plies are as follows [52]:
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(2.54)

the plies are laid up in the plane x x
1 2

; �



and-



are the Lamé constants of the
th ply (
 �1 2, ); c



is the volume fraction of plies

with elastic characteristics �



and -



. For example, the Lamé constants appearing in (2.54) have the following values for a

composite with aluminoborosilicate-glass plies in composition with maleic epoxy resin plies [52]:

�
1

4
194 10� 	. MPa, -

1

4
292 10� 	. MPa for the glass and

�
2

3
369 10� 	. MPa, -

2

3
114 10� 	. MPa for the resin.

The effective macrocharacteristics of a composite reinforced with random ellipsoidal short carbon fibers (with a

volume fraction of 0.7) in the isotropy plane x
3

�const are the following [52]:

E
1

4
1 10� 	 MPa, E

3

4
3 10� 	 MPa, G

13

4
1 10� 	 MPa, 


12
� 0.125, 


31
� 0.09.

Using the general approach to the linearization of nonlinear equations, we obtain the following linearized constitutive

equations [24, 97]:
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for compressible bodies, where the components of the tensors
~
� and

~
2 are defined by
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for incompressible bodies, where the components of the tensors
~
1,

~
-,

~
q are defined by
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where q
ij

*0
are the contravariant components of the metric tensor in the initial stress state. Moreover, the tensors
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are related by
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For a compressible anisotropic (in particular, transversely isotropic) material for the second theory of small initial

deformations, we have

2 � �
3� 3� 3

�

ij ij j

i
S� �

0
,

� � � � � � � �
3� 3� � � 3 3 �ij ij i ij ij i j i j

A G� � � �( ) ( )1 ,

S A G
i

i ik kk

k

i i i0

0

1

3

0
2 1

�

4 � � �

� � � �� � �

�

,
( ) . (2.60)
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2.3. General Solutions of the Linearized Equations for Homogeneous Initial States. Here we will briefly discuss the

basic equations of TDLSM for compressible and incompressible solids with homogeneous initial stress–strain states and general

solutions of the linearized equilibrium equations expressed in terms of potential functions.

To solve problems of the fracture of materials with prestresses acting along cracks and the fracture of materials

compressed along parallel cracks, it is convenient to use the coordinates of the initial (second) state. Therefore, along with the

Lagrangian coordinates x x
j

j

 , which coincide with the Cartesian coordinates in the natural (undeformed) state, we will use the

Cartesian coordinates y y
j

j

 ( j �1 3, ) of the initial (second) stress–strain state. The coordinates x

j
and y

j
of the same material

point of a body are related by

y x
j j j
� � , �

j
�const, j �1 3, , (2.61)

where �
j
are the coefficients of elongation (or shortening) along the coordinate axesOy

j
(Ox

j
) associatedwith the prestresses.

Loads acting strictly along cracks induce a homogeneous initial (second) stress–strain state characterized by the

following relations for the components of the displacement vector:

u y
m m m m

0 1
1� �

�

� �( ) . (2.62)

Let us also introduce the following notation and use the prime to refer to the initial (second) state: �Q
ij

are the

components of an asymmetric stress tensor per unit area in the initial state; �P
j
are the components of the surface load vector on an

area with unit normal vector
�

N . We obtain the following relations [24, 97]:
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If the initial stress–strain state defined by (2.62) is homogeneous, the constitutive equations (2.55), (2.57), (2.63)

become:
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for compressible bodies and
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for incompressible bodies
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are determined by the material model (in particular, elastic potential) chosen.

The linearized equilibrium equations (2.30), (2.31) take the following form in the coordinates y
j
:

�

�

� �

y
Q

j

ij
0. (2.66)

With (2.64), (2.65), these equilibrium equations can be written for displacements:
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for compressible bodies and
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As can be seen, if the initial state (2.62) is homogeneous, the linearized equilibrium equations for displacements (2.67),

(2.68) constitute systems of partial differential equations with constant coefficients. In [24, 97] the operator method was used to

find general solutions to these equations in one of the following forms (or their linear combination):
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for compressible bodies and
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for incompressible bodies.

It is possible to further simplify the general solutions of the linearized equilibrium equations for spatial problems in the

special case of homogeneous initial state where the prestresses acting along theOy
1
- andOy

2
-axes are equal. We will assume

that if the initial state (2.62) is homogeneous, the following conditions for isotropic and transversely isotropic bodies with axis of

isotropyOy
3
are also satisfied:
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Let us consider an arbitrary cylindrical coordinate system with axis aligned with Oy
3
and an arbitrary curve (in the

initial deformed state) with unit normal
�

N and tangent
�

S vectors in the plane y Oy
1 2

; N
1
and N

2
are the projections of the unit

vector
�

N onto theOy
1
- andOy

2
-axes. If the initial stress–strain state is given by (2.62), (2.71), then the components u
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and u
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of the displacement vector can be expressed in terms of two potential functions7 and 4 as follows [24, 97]:
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for compressible bodies and
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for incompressible bodies, where .
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The potential functions7 and 4 satisfy the equations
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where n j
j
, ,�1 3, are the roots of the algebraic (characteristic) equations corresponding to the differential equations (2.74),
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for compressible bodies and
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for incompressible bodies.

The general solutions can further be simplified by defining a function 4 satisfying the fourth-order equation (2.74) in

terms of two functions satisfying second-order equations [24, 97].

For example, if the roots of the characteristic equation (n n
1 2
� ) are unequal, then introducing new functions7 � �9
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expressions for the displacements:
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If the roots of the characteristic equation are equal (n n
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where 9, F, +, 9
3
are harmonic functions.

In a circular cylindrical coordinate system r y, ,:
3
, the general solutions for unequal roots of the characteristic equation

are represented as
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The parameters appearing in (2.77) are defined by
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for compressible bodies and
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for incompressible bodies.

For equal roots of the characteristic equation, the general solutions have the form
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whereC
44
, m

1
, l
1
, d

j
, j �1 2, , are parameters determined from (2.78) and (2.79) for compressible and incompressible bodies,

respectively; m
2
and l

2
are parameters given by
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for compressible bodies and
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for incompressible bodies.

The values of the parameters in (2.77) and (2.80) for some materials are given below:

a material with harmonic potential (2.47) (compressible body; equal roots):
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where 
 � � -� �/ ( ( ))2 is Poisson’s ratio;

a material with Bartenev–Khazanovich potential (2.48) (incompressible body; equal roots):
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a material with Treloar potential (2.49) (incompressible body; unequal roots):
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a composite material modeled by a transversely isotropic body, (2.52)–(2.54):
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2.4. Formulation of Spatial Linearized Problems of the Fracture of Materials under Loads Acting along Cracks and

General Methods to Solve Them. To formulate problems, we will use coordinates of the initial stress–strain state y
j
, j �1 3, ,

which are related by (2.61) to the Cartesian coordinates of the undeformed state. Cracks are modeled by mathematical cuts of

zero thickness, as in classical fracture mechanics [135].

Two classes of problems are considered:

(i) determination and analysis of the stress–strain state of a cracked elastic body with prestresses S S
0

11

0

22
� acting in

parallel to crack planes (Fig. 8a) and

(ii) determination of the critical loads for a cracked material compressed along parallel cracks (Fig. 8b).

The general problem formulation is as follows. Consider elastic isotropic materials with arbitrary elastic potential or

composite materials with elastic components containing cracks in parallel planes y
3

�const. The cracks in the composite

materials are assumedmuch larger than their structural elements, and only fracture processes are studied in which composites do

not manifest themselves as piecewise-homogeneous materials. With such assumptions, it is possible to model a composite by a

transversely isotropic continuum with effective characteristics and isotropy planes parallel to the crack planes (see Sec. 2.2).

The initial normal stresses act along the planes in which cracks are located; the prestresses are zero on these planes. In

this case, the initial stress–strain state is homogeneous and defined by (2.62) and (2.71). The perturbations of the initial

stress–strain state that are generated by additional (to the initial stresses) loads (the normal stresses �Q
33

are presented in Fig. 8a

as an example) are assumed much smaller than the initial stress–strain state, which allows using TDLSM.

Thus, it is necessary to find the exact solution to the linearized equilibrium equations for displacements (2.67), (2.68). In

the general case, the boundary conditions on the crack faces are

� � �Q P
j j3

, y S
k
?

1
, (2.87)

where S
1
denotes the domains occupied by the cracks. For problems of compression along cracks, it is necessary to set � 
P

j
0in

the boundary conditions (2.87). These conditions should be supplemented with the boundary conditions for the stresses and/or

displacements on the surface of the material (for finite bodies) and the conditions of regularity (decay) of the stress and

displacement fields at infinity (for infinite bodies). The above general problem formulation is specified for each system of forces

and arrangement of cracks.

We will use the following procedure to solve the spatial linearized problems formulated. The general solutions (2.77),

(2.80) of the linearized equilibrium equations are used to reduce the boundary conditions for problems originally formulated for

513

a b

Fig. 8

O

y1

O
y2

y1

y2

y3 y3

S S
0

11

0

22
� S S

0

11

0

22
�



stresses and displacements to boundary-value problems for unknown harmonic potential functions (9 9 9
1 2 3
, , for unequal roots

and 9 9, , ,F +
3
for equal roots of the characteristic equation). Next, the unknown harmonic potential functions are expanded

into Fourier series in the circumferential coordinate with coefficients in the form of Hankel transforms in the radial coordinate of

the order corresponding to the harmonic for nonaxisymmetric problems and in the form of Hankel transforms in the radial

coordinate of zero order for axisymmetric problems. The boundary conditions on the plane y
3

�const allow reducing the

number of unknown functions in the Hankel transforms by the number of conditions. The remaining boundary conditions lead to

a system of dual integral equations for the unknown functions appearing in the Hankel transforms.

The next stage is to solve the system of dual integral equations by reducing them to Schlomilch’s integral equations by

the substitution method [50]. Solving the Schlomilch equations, we obtain a closed-form solution of the problem in terms of

potential functions (for isolated cracks in an infinite body) or governing inhomogeneous Fredholm equations of the second kind

(for interacting cracks). This procedure is applied separately to the cases of equal and unequal roots of the characteristic

equation.

Using the solutions for the harmonic potential functions, we can find the distribution of stresses and displacements in

the material and derive the expressions for the stress intensity factors and crack opening displacements by analyzing the

asymptotic stress distribution near the crack. The stress intensity factors, as in classical fracture mechanics without prestresses

[135], are the coefficients of the singularities in the distribution of stresses near the crack.
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1
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1 3
2A

:

, (2.88)

where r
1
is the distance from the crack tip.

According to the combined approach described in Sec. 1.4, the critical compressive loads that cause local buckling of

the material near the crack are determined by numerically solving the above-mentioned inhomogeneous linearized problems of

the fracture of prestressed bodies to find the initial compressive stresses at which the stress–strain state and the stress intensity

factors change abruptly (resonantly) near the crack. There is no need to additionally solve eigenvalue problems using the

three-dimensional linearized theory of stability.

The generality of the above formulation of linearized problems for different material models is determined by the

following aspects [24, 28]. The initial stress–strain state is statically determinate and homogeneous. The general solutions of the

linearized equilibrium equations (2.77), (2.80) for homogeneous initial states are formally represented in a universal form for

different material models (compressible and incompressible hyperelastic materials with arbitrary elastic potential, composite

materials). The coefficients appearing in the general solutions depend on the material model. The chosen model is specified at

the final stage at which the governing equations obtained in general form are solved. We will use the theory of finite (higher)

initial deformations to study hyperelastic bodies and the second theory of small initial deformations to study composite

materials, determining their initial stress–strain state with the geometrically linear theory.

Thus, a single general approach can be used to solve linearized boundary-value problems of the fracture of materials

with initial (residual) stresses acting in parallel to crack planes and the fracture of bodies compressed along cracks, for various

material models.

2.5. Failure Criteria for Materials under Loads Acting along Cracks. Following [23, 28, 34], we will briefly discuss

brittle-fracture criteria that allow for the effect of initial (residual) stresses acting along cracks on the critical loads and generalize

the Griffith and Irwin criteria and discuss a failure criterion for bodies compressed along cracks.

Failure Criteria for Bodies with Prestresses Acting along Cracks. To determine the critical loads for prestressed bodies,

it was proposed in [23, 28, 87, 88] to use an energy failure corresponding to the Griffith–Irwin criterion [80, 130] for materials

without prestresses and a stress-based criterion corresponding to the Irwin criterion [131] for materials without prestresses.
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Consider a crack located in the plane y Oy
1 3

( y j
j
, ,�1 3, are the Cartesian coordinates of the initial state induced by the

prestresses) and occupying the domain (| | , ,y a y y
1 2 3

0� � �� � � ��) (Fig. 9). According to the energy criterion [80], fracture

begins when

� �

�

U A
0

0� �

B

( )e
, (2.89)

where � �B � 2 l is the change in the surface area of the crack per unit length of theOy
3
-axis;U

0
is the internal energy determined

by the surface energy; �
�

A
B

( )e
is the energy flow to the crack tip related to the decrease in the strain energy with increase in the

crack length by �l (U
0
and �

�

A
B

( )e
are normalized to length along theOy

3
-axis).

The change of the surface energy is expressed as

� � �U d l
0

2� �B ,

where � is the surface energy density. In the classical fracture mechanics of materials without prestresses, it is usually assumed

that � �const [53, 80]. In the mechanics of brittle fracture of prestressed materials, it is, apparently, necessary to assume that,

generally, � depends on the prestresses.

The energy flow to the crack tip �

�

A
B

( )e
is determined by the stresses applied along the imaginary continuation of the

crack. For example, in the case of uniaxial tension, we have the following energy flow at infinity of theOy
2
-axis [23, 28]:
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,

where �Q
ij
and u

j
are determined by the initial and additional loads resulting from the solution of linearized problems. On the

crack line, we have
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, (2.90)

where r
1
is the distance from the crack tip; K

I
, K

II
, and K

III
are the stress intensity factors resulting from the solution of

linearized problems. Thus, criterion (2.89) is related to the factorsK K K
I II III
, , and the surface energy density �. Taking (2.90)

into account, we will consider criterion expressions (2.89) for some materials in the problem formulation under consideration.

Material with Bartenev–Khazanovich potential (incompressible body; the parameters are determined from (2.48),

(2.84)). For this material, the failure criterion follows from (2.89), (2.90) [23, 28]:
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If there are no prestresses (�
1

1� ), expression (2.91) becomes

K K K
I II III

2 2 2
2 8� � � -�, (2.92)

which coincides with the classical Griffith–Irwin criterion for materials without prestresses [53] if - � E / 3 and 
 � 1/2 for

incompressible bodies.

Material with Treloar potential (incompressible body; the parameters are determined from (2.49), (2.85)). For this

material, the failure criterion is as follows [23, 28]:
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which coincides with the classical criterion (2.92) if 2 3
10
c E� �- / .

For different types of cracks in prestressed materials, simplest stress-based failure criteria can be represented as follows

[23, 28]:

K K
I I

�
c
, K K

II II
�

c
, K K

III III
�

c
, (2.94)

whereK K K
I II IIIc c c
, , are the critical stress intensity factors for prestressedmaterials, which are determined experimentally and,

in the general case, depend on the prestresses.

Failure Criterion for Materials Compressed along Cracks. The classical Griffith–Irwin failure criteria are inapplicable

to bodies compressed along cracks (see Sec. 1.3). According to the criterion proposed in [23, 33, 83, 84] based on the

three-dimensional linearized theory of stability of deformable bodies, fracture of a body with cracks begins with local buckling

of the material near the cracks.

In this connection, the theoretical ultimate compressive strength for the fracture mechanism under consideration is the

stresses (or the shortening along the coordinate axes) induced by the critical compressive load causing local buckling around

cracks [112].

3. Results for Specific Classes of Spatial Problems. Here we will discuss results obtained with the combined

approach applied to nonaxisymmetric and axisymmetric spatial problems of the fracture of materials loaded along cracks for the

following arrangements of cracks: isolated internal crack in an unbounded body; an internal near-surface crack parallel to the

boundary of the half-space; two parallel internal cracks in an unbounded body; a periodic array of internal parallel coaxial cracks

in an unbounded body.

The solutions found were used to analyze the asymptotic stress distribution near crack tips and to derive expressions for

the stress intensity factors for such material models as hyperelastic materials with Bartenev–Khazanovich, Treloar, or harmonic

potential and composite materials (composite laminates with isotropic plies and composites reinforced with short ellipsoidal

fibers). The combined approach described in Sec. 1.4 was used to determine, for these materials, the critical compressive loads

that cause local buckling near cracks. The effect of the initial stresses, geometrical parameters (the crack radius and the distance

between cracks or between the crack and the surface of the material), and material characteristics on the stress intensity factors

and critical compressive loads was analyzed.

3.1. Isolated Penny-Shaped Crack in an Unbounded Material. We will discuss spatial problems for an unbounded

material containing a penny-shaped crack of radius a. Equal initial (residual) stresses S S
0

11

0

22
� act along theOy

1
- andOy

2
-axes

(Fig. 10) and induce a homogeneous initial stress–strain state ((2.62), (2.71) (hereafter, we use the Lagrangian coordinates y
j
,

j �1 3, , of the initial stress–strain states and the circular cylindrical coordinates r y, ,:
3
or r z

j
, ,: , where z n y

j j
�

�1 2

3

/
, j �1 3, ,

derived from them).

We will separately consider nonaxisymmetric and axisymmetric problems for mode I cracks and for mode II and III

cracks. As an example, we will detail the procedure for solving a nonaxisymmetric problem for a mode I crack. The other

problems are solved in a similar way.

3.1.1. Nonaxisymmetric Problem for a Mode I Crack.Amode I crack, as in the fracture mechanics of materials without

prestresses [53, 135], is a crack to which a normal load * :( , )r is applied symmetrically about the plane y
3

0� . Since the
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geometry and system of forces of the problem are symmetric, we have the following boundary conditions on the boundary y
3

0�

of the upper half-space y
3

0D :

� � �Q r r
33

0( , , ) ( , ): * : , � � � �Q r Q r
r3 3

0 0 0( , , ) ( , , ): :
:

( )0 E Er a ,

u r
3

0 0( , , ): � , � � � �Q r Q r
r3 3

0 0 0( , , ) ( , , ): :
:

( )a r� � � , (3.1)

(hereafter 0 2E E: A).

If an unbounded body is compressed along an internal penny-shaped crack (Fig. 10b), the boundary conditions on the

crack faces are the following (the first row in (3.1)):

� �Q r
33

0 0( , , ): , � � � �Q r Q r
r3 3

0 0 0( , , ) ( , , ): :
:

( )0 E Er a .

We will separately consider the cases of equal and unequal roots of the characteristic equation (see Sec. 2.3) in common

form for compressible and incompressible bodies. Using the general solutions (2.77), (2.80) of the linearized equilibrium

equations, we represent the boundary conditions (3.1) in terms of potential functions. According to (3.1), the components �Q
r3

and �Q
3:

of the stress tensor are equal to zero on the plane y
3

0� (z j
j
� �0 1 3, , ). We have
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for unequal roots and
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for equal roots.

Next, we will consider only the case of unequal roots because the derivations for equal roots are similar.

The normal load on the crack faces * :( , )r is expanded into a Fourier series in the circumferential coordinate ::

* : * :( , ) ( )cos
( )

r r n
n

n

�

�

�

, 1

0

,

*

A

* : :

A

1

0

0

1( )
( ) ( , )r r d�

C
,

*

A

* : : :

A

1

0

2( )
( ) ( , )cos

n
r r n d�

C
. (3.4)

Expressions (3.4) represent the case where the function * :( , )r is even in :. If this function is odd in the circumferential

coordinate, expression (3.4) should be replaced by

* : * :( , ) ( )sin
( )

r r n
n

n

�

�

�

, 2

1

,

*

A

* : : :

A

2

0

2( )
( ) ( , )sin

n
r r n d�

C
. (3.5)

All the other derivations are similar. In the general case, it is necessary to use a superposition of (3.4) and (3.5).

The harmonic potential functions 9
j
j, ,�1 3, appearing in (3.2) are also expanded into Fourier series in the coordinate :

with coefficients in the form of Hankel transforms in the radial coordinate r of order equal to the order of the circumferential

harmonic:
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00
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00

3( , , ) sin ( ) ( )r z n C e J r
d

n

z

n

n

�

�

�

�

�

C,
, (3.6)

where the perturbations of stresses and displacements decay with distance from the crack.
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Substituting (3.6) into the second and third equations in (3.2) defined on the plane y
3

0� , we obtain

A
d n

d n

B
n n

� �

�

�

2 2

1 2

1 1

1 2

/

/
, C

n
� 0. (3.7)

Substituting (3.7) into the first and fourth equations in (3.2), we get
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n D B J r d r
n n
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�

C,
� , r a� (3.8)
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1 2
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� /
, >k l n

2 2 1

1 2
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� /
. (3.9)

As the coefficients of the harmonics cos n: are equated to zero, Eqs. (3.8) decompose into dual integral equations for

each nth harmonic in ::

D B J r d r
n n

n( ) ( )
( ) ( ) ( )

1

1

0

� � � � *�

�

C
, r aE , n � 0 1 2, , ,� ,

D B J r d
n n
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( ) ( )

2

0

0� � � � �

�

C
, r a� , n � 0 1 2, , ,� . (3.10)

It is expedient to solve the system of dual integral equations (3.10) by the substitution method [50], representing the

unknown functions B
n
( )� (n � 0 1 2, , , …) in the form

B t t J t dt
n n n

a

( ) ( ) ( )
/

� A� F 2 ��
�C

2
1 2

0

, (3.11)

where 2
n
t( ) (n � 0 1 2, , , …) are unknown functions continuous together with their first derivatives on the interval [0, a].

Using the expression of the discontinuous Weber–Schafheitlin integral
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A

J r J t d

t r

r
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r tn n
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$

%

&

%

(3.12)

we see that the second equation in (3.10) (valid for r a� ) holds identically.

Next, substituting expression (3.11) into the first equation (3.10) and using the formulas

5 6� � �J r r
d

dr
r J r

n

n n

n
( ) ( )�
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1 1

1
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we obtain
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Integrating the last equation over r from 0 to r and substituting t r� sin : into it, we arrive at the Schlomilch equation

r r d

D

d
n n

n

n n� � �

C
�

1

0

2

1

1

1

1

0

1
A F

: 2 : : G * G G(sin ) ( sin ) ( )
( )

( )

r

C
,

which has the following solution [50]:
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Substituting (3.14) into (3.11) and taking (3.7) into account, we obtain the following expressions for the functions A
n
,

B
n
,C

n
in (3.6):
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Using expressions (3.15), we can determine the potential harmonic functions 9
j
j, ,�1 3, from (3.6) and the distribution

of stresses and displacements from (2.77). For example, in the plane y
3

0� we have
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Performing similar derivations for the case of equal roots, we obtain the components of the stress tensor and the

displacement vector in the plane y
3

0� :
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As can be seen from (3.16) and (3.17), the components of the tress tensor in the crack plane are the same in the cases of

unequal and equal roots and do not depend on the prestresses. The components of the displacement vector are different in the

cases of unequal and equal roots and depend on the prestresses because the material parametersC
44
, k, d

i
, l
i
, n

i
(i �1 2, ) depend

on the coefficient of initial elongation (shortening) �
1
.

Comparing the expressions for the components of the displacement vector in (3.16), (3.17) with the respective

expressions in [135, pp. 10–11] for a linear elastic body without prestresses, we can represent these components for y
3

0� as
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where u r
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:( , , )0 are the components of the displacement vector in a prestressed elastic body;
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for unequal roots and
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for equal roots.
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Consider the asymptotic distribution of stresses and displacements near the tip of the crack in its plane y
3

0� . We

introduce the following notation:
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1
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�� . (3.21)
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discontinuous integral (3.13) by parts, and taking into account the first relation in (3.21), we obtain
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whereO r( )
1

0
denotes terms that do not have singularities as r

1
0@ .

Then from formulas (2.88), (3.22) and the second and third relations in (3.16), we obtain
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where the Fourier coefficients *
1

( )
( )

n
x (n � 0 1 2, , , …) are determined in terms of the normal load applied to the crack faces from

the second and third relations in (3.4). The first, second, and third relations in (3.17) indicate that the SIFs in the case of equal

roots are defined by (3.23).

Thus, the stress intensity factors in the nonaxisymmetric problem for a penny-shaped mode I crack in an unbounded

prestressed body do not depend on the prestresses and coincide (up to notation) with those obtained by solving the

nonaxisymmetric problem for a penny-shaped mode I crack in a linear elastic body without prestresses (see [135, formula

(1.44)]).

If the load on the crack faces * :( , )r is an odd function in the coordinate :, it is necessary to expand it into a Fourier

series (3.5). Performing similar derivations, we obtain the following expression for the SIFs:
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01A
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� 0, K
III

� 0. (3.24)

In the general case of an arbitrary normal load on the crack faces * :( , )r , the SIFs are expressed as
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, K
II

� 0, K
III

� 0. (3.25)

Let us now determine the crack-tip opening displacement for y
3

0� . With (3.18), (3.19), we have the following

formulas in the case of unequal roots:

� :

A

� -

- � -

� � �

�

�

�2 0 2 2
2

2

2
2

3 2

3

3

0 2 3
u r K u

r
K K

r

I
( , , )

( )

( ) ( ) ( ) 2

2A
K K

I
, (3.26)
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44 1 2 1
1 1( ) ( )( )(
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�

�

�

�

�l n )

. (3.27)

Proceeding in a similar way in the case of equal roots, we obtain from (3.18) and (3.20) the crack-tip opening

displacement for y
3

0� (3.26), where K characterizes the effect of the prestresses:
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K
d d

C d d n l l

m m

C m m n
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� �

2 1 2

1 1

1 2

44 1 2 1 1 2

1 2

44 1 2 1
( ) ( )( ) ( )l l

1 2
�

. (3.28)

Thus, it follows from (3.26)–(3.28) that the opening displacement for amode I crack in a prestressedmaterial is strongly

dependent on the prestresses, unlike the stress intensity factors. Let us analyze this relationship for hyperelastic materials with

certain elastic potentials.

Material with Treloar potential (incompressible body; unequal roots) [146]. The parameters appearing in (3.27) for this

potential are determined from (2.85). Substituting these parameters into (3.27), we get

K

c

�

�

� � �

� �

� � �

1

4

1

3

10 1

9

1

6

1

3

1

2 3 1

( )

( )

. (3.29)

Figure 11 shows 4
10
c K versus �

1
for this material. It can be seen that the curve has a vertical asymptote as K tends to

infinity (and the crack opening displacement � � 2
3 2

u r( , A, )0 increases abruptly, resonantly) when �
1

*
�0.666 and the bracketed

expression in the denominator of (3.29) vanishes, i.e., when

� � �
1

9

1

6

1

3
3 1 0� � � � . (3.30)

According to the approach described in Sec. 1.4, this resonant phenomenon is associated with the critical load �
1
that

causes local buckling (in a symmetric mode) in an unbounded elastic body with Treloar potential compressed along an isolated

penny-shaped crack. Indeed, the critical value �
1

*
� 0.666 is in agreement with that obtained in [33] by solving the spatial

nonaxisymmetric problem of the fracture of a Treloar material compressed along an internal penny-shaped crack. Note also that

the value �
1

*
� 0.666 corresponds to surface instability of a body with Treloar potential [23, 24].

Material with Bartenev–Khazanovich potential (incompressible body; equal roots) [3]. The parameters appearing in

(3.28) for this potential are determined from (2.84). Substituting these parameters into (3.28), we get

K �

�

�

- �

1

7 2

1

3
3 1

/

( )

. (3.31)

Figure 12 shows -K versus �
1
for this material. It follows from (3.31) that K tends to infinity as the initial shortening

tends to the critical level

�
1

3
1 3

*
/� " 0.693, (3.32)

that causes local buckling of the Bartenev–Khazanovich material compressed along an internal penny-shaped crack [33] and

surface instability of this material.
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3.1.2. General Nonaxisymmetric Problem for a Mode II or III Crack. Tangential loads are applied to a crack of radius a

in the plane y
3

0� antisymmetrically about the crack plane (Fig. 4). In view of symmetry, we have the following boundary

conditions on the boundary y
3

0� of the upper half-space y
3

0D :

� �Q r
33

0 0( , , ): , � �Q r q r
r3 1

0( , , ) ( , ): : , � �Q r q r
3 2

0
:

: :( , , ) ( , ) ( )0 E Er a ,

u r u r
r
( , , ) ( , , ): :

:

0 0 0� � , � �Q r
33

0 0( , , ): ( )a r� � � , 0 2E E: A. (3.33)

Assume that the right-hand sides in (3.33) can be expanded into Fourier series:
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,
. (3.34)

Using a procedure similar to that used in the previous subsection, we obtain the following expressions for the stress

intensity factors at the crack tips [28]:
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where +
1
( )a and +

2
( )a are functions defined by
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The parameters -
1
and 


1
appearing in (3.35) and (3.36) depend on the prestresses:

2
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for unequal roots and

2
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C
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l m l m

l l m m

( ) ( )
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for equal roots.

Thus, the stress intensity factorsK
II
andK

III
in the spatial nonaxisymmetric problem for a mode II or III crack depend

on the prestresses. This is what differs the nonaxisymmetric problem for a mode II or III crack from the nonaxisymmetric

problem for a mode I crack in which the SIFs do not depend on the prestresses.

Figure 5 shows the dependence of the SIFs on the prestresses in a compressible isotropic material with harmonic elastic

potential (compressible body; equal roots) [132]. In Sec. 1.4, comments are also made on the observable resonant phenomena

occurring as the prestresses tend to the level at which local buckling (in a flexural mode) occurs in a compressed unbounded body

with a penny-shaped crack.
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3.1.3. Axisymmetric Problem for a Mode I Crack. The boundary conditions are

� � �Q r r
33

0( , ) ( )* , � �Q r
r3

0 0( , ) ( )0 E Er a ,

u r
3

0 0( , ) � , � �Q r
r3

0 0( , ) ( )a r� � � . (3.37)

The solution of this problem can be found as a special case of the solution of the nonaxisymmetric problem for a mode I

crack (Sec. 3.1.1) for n � 0. For example, substituting the second relation in (3.4) into (3.25), we obtain the expressions for the

stress intensity factors:
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x x

a x
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a

�

�

C

2

2 2
0

A

*( )
, K

II
� 0, K

III
� 0, (3.38)

which are the same as the stress intensity factors for a body without prestresses [135]. It follows from (3.38) that, as in the

nonaxisymmetric problem for a mode I crack in a prestressed body, the stress distribution near the tip of the crack in its plane

y
3

0� in the axisymmetric problem does not depend on the prestresses and coincides with the stress distribution in a linear

elastic body without prestresses.

The components of the displacement vector for y
3

0� are represented as

u r K u r
3

3

3

0
0 0( , ) ( , )

( ) ( )
� , u r K u r

r
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r
( , ) ( , )

( ) ( )
0 0

0
� , (3.39)

where u r
3

0
0

( )
( , ) and u r

r

( )
( , )

0
0 are the components of the displacement vector in a linear elastic body without prestresses; the

coefficients K
( )3

and K
r( )
characterizing the effect of the prestresses are defined by (3.19) for unequal roots and by (3.20) for

equal roots. The crack-tip opening displacement for y
3

0� , r a r
2

� � is given by

�

A

� 2
2

2
r

K K
I

, (3.40)

where K
I
is defined by (3.38); K is defined by (3.27) for unequal roots and by (3.28) for equal roots.

The conclusions on the effect of the prestresses on the distribution of displacements at the crack tip and on the resonant

phenomena occurring as the prestresses tend to the level causing local buckling of the material compressed along the crack in the

axisymmetric problem are the same as those in the nonaxisymmetric problem for a mode I crack (Sec. 3.1.1).

3.1.4. Axisymmetric Problem for a Mode II Crack. As in the mechanics of brittle fracture of materials without

prestresses [53, 135], a mode II crack is meant a crack to which a radial tangential load is applied antisymmetrically about the

crack plane. In view of symmetry, we have the following boundary conditions on the boundary y
3

0� of the upper half-space

y
3

0D :

� �Q r
33

0 0( , ) , � � �Q r r
r3

0( , ) ( )� ( )0 E Er a ,

u r
3

0 0( , ) � , � �Q r
r3

0 0( , ) ( )a r� � � . (3.41)

The solution of this problem is detailed in [23, 28]. The stress intensity factors in this problem are expressed as
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, K

III
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which are the same as the stress intensity factors for a body without prestresses [135]. It follows from (3.42) that the stress

distribution near the tip of a mode II crack in its plane in a prestressed material does not depend on the prestresses and coincides

with that in a linear elastic body without prestresses.

The components of the displacement vector for y
3

0� are represented as

u r K u r
3

3

3

0
0 0( , ) ( , )

( ) ( )
� , u r K u r

r

r

r
( , ) ( , )

( ) ( )
0 0

0
� , (3.43)
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where u r
3

0
0

( )
( , ) and u r

r

( )
( , )

0
0 are the components of the displacement vector in a linear elastic body without prestresses; K

( )3

and K
r( )

are coefficients describing the effect of the prestresses,
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for unequal roots and
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for equal roots.

Material with Treloar Potential. For this material, we have
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It follows from (3.46) that K
( )3

and K
r( )
tend to infinity and, consequently, the displacements increase resonantly as

the initial shortening reaches the critical value �
1

*
�0.666 at which condition (3.30) is satisfied. As indicated in Sec. 3.1.1, at this

value of �
1
, local buckling of the material around an internal penny-shaped crack occurs under compression along the crack.

Material with Bartenev–Khazanovich Potential. For this material, we have
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� -
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�

. (3.47)

It follows from (3.47) that K
( )3

and K
r( )

tend to infinity and, consequently, the displacements increase resonantly

when the initial shortening reaches the critical level (3.32) which causes local buckling of a material with

Bartenev–Khazanovich potential compressed along an internal penny-shaped crack and surface instability of this material.

The conclusions on the effect of the prestresses on the distribution of displacements at the crack tip and on the resonant

phenomena occurring as the prestresses tend to the level causing local buckling of the material compressed along the crack in the

problem for a mode II crack are the same as those in the problem for a mode I crack.

3.1.5. Torsion Problem. Consider a crack to which a tangential circumferential load is applied antisymmetrically about

the crack plane. The boundary conditions on the boundary y
3

0� of the upper half-space y
3

0D are the following:

� � �Q r r
3

0
: :

�( , ) ( ) ( )0 E Er a ,

u r
:

( , )0 0� ( )a r� � � . (3.48)

The solution of this problem was found in [23, 28]. The stress intensity factors in this problem are expressed as

K
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a

x x

a x
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III
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�
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C

2

3 2

2

2 2
0

A

�
:

/

( )
(3.49)

which are the same as the stress intensity factors for a body without prestresses [135]. It follows from (3.49) that the stress

distribution in the crack plane in a prestressedmaterial under torsion does not depend on the prestresses and coincides with that in

a linear elastic body without prestresses.

The displacement for y
3

0� is expressed as

u r K u r
:

:

:

( , ) ( , )
( ) ( )

0 0
0

� , K

n

C

( ):
-�

3

44

. (3.50)
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Considering (2.78) and (2.79), it is possible to show [23, 28] that K
( ):

defined by (3.50) cannot tend to infinity in the

range of prestresses in which internal buckling of the material does not yet occur. Thus, no resonant phenomena are observed in

the spatial problem for a mode III crack and, hence, no local buckling occurs in the material compressed along the crack.

3.1.6. Conclusions. The following conclusions can be drawn on problems for isolated cracks in an unbounded material

with initial (residual) stresses.

In all problem formulations for free cracks (only stresses act on their faces), except for the general nonaxisymmetric

problem for a mode II or III crack, the stress intensity factors do not depend on the prestresses and coincide with those in the

classical mechanics of brittle fracture of materials without prestresses. The effect of the prestresses on the stress–strain state near

cracks is manifested as strong dependence of the crack opening displacement on the prestresses.

The stress intensity factors K
II

and K
III

in the general nonaxisymmetric problem for a penny-shaped mode II or III

crack depend on the prestresses even if the crack is “free.”

As the initial compressive stresses tend to the level causing surface instability of the half-space, resonant phenomena

occur: the stresses and displacements near the tip of a mode I or II crack change abruptly. Such resonant phenomena are absent in

the problem for a mode III crack under torsion.

3.2. Near-Surface Penny-Shaped Crack in a Half-Space. Consider an elastic body occupying the half-space y h
3

D �

and having prestresses S S
0

11

0

22
� acting along a near-surface crack of radius a located in the plane y

3
0� and center on theOy

3
:

{0 E �r a, 0 2E �: A, y
3

0� }(Fig. 13).

We will discuss the results separately for the general nonaxisymmetric problem and for axisymmetric problems for

mode I, II, and III cracks. The solutions of these problems were found in [2, 5, 38, 60 – 63, 66, 123, 139].

3.2.1. General Nonaxisymmetric Problem [63]. Let additional (to the prestresses) fields of normal tensile and shear

stresses act on the crack faces, and the boundary of the half-space be free from loads (Fig. 13a). The boundary conditions are:

� � �Q r
33

* :( , ), � � �Q r
r3

� :( , ), � � �Q r
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33
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0, � �Q
3

0
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( , )0
3

E � � � �r y h , (3.51)

where 0 2E �: A.

If the half-space is compressed along a near-surface crack (Fig. 13b), the boundary conditions on the crack faces are the

following (the first row in (3.51)):

� �Q
33

0, � �Q
r3

0, � �Q
3

0
:

( , )0 0
3

E � � 8r a y .

Next, we will consider only the case of equal roots because the derivations for unequal roots are similar. The right-hand

sides in (3.51) are expanded into Fourier series in ::
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r r n
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n
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,
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Representing the general solutions of the linearized equilibrium equations in terms of harmonious potential functions as

in (2.80) and expanding these potential functions into Fourier series in the circumferential coordinate with coefficients in the

form of Hankel transforms over the radial coordinate, we reduce the problem posed to six dual integral equations for each

harmonic in : (see [63] for more details):
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Hereafter we assume that n D1because the axisymmetric case n � 0is special (there are only four dual equations in this

case) and addressed separately below.

Using the substitution method [50], we reduce the system of dual equations (3.53) to a governing system of Fredholm

equations of the second kind:
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The kernels in (3.55) have the form
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1 4 are Legendre functions of the second kind).

Solving the system of integral equations (3.55), we can obtain expressions for the potential functions in (2.80) and,

hence, describe the distribution of stresses and displacements in the material. Analyzing the asymptotic stress distribution in the

crack plane y
3

0� and taking expressions (2.88) into account, we obtain the stress intensity factors for the nonaxisymmetric

problem under consideration:
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where the functions f
1
( )H , f

2
( )H , f

3
( )H are determined by solving Eqs. (3.55).

It follows from (3.57) that the crack and the free surface of the material qualitatively change the asymptotic stress

distribution near the crack tip, compared with the case of an isolated crack in an unbounded material. Namely, this leads to

nonzero stress intensity factors K
II

and K
III

if only normal tensile stresses act on the near-surface crack (i.e., * :( , )r � 0,

� :( , )r � 0, � :
:

( , ) )r � 0 (recall thatK
I

� 0,K
II

� 0,K
III

� 0for an isolatedmode I crack in an unbounded body (see Sec. 3.1.1))

and nonzero stress intensity factor K
I
if only tangential forces act on the crack faces (* :( , )r � 0, � :( , )r � 0, � :

:

( , )r � 0)

(K
I

� 0, K
II

� 0, K
III

� 0for an isolated crack in an unbounded body (see Sec. 3.1.2)).

Moreover, all the three stress intensity factors depend on the prestresses because the parametersC s q k k l n
i i i44

, , , , , , ,

i �1 2, , in (3.57) and (3.55) depend on the initial elongation (or shortening) �
1
caused by the prestresses S S

0

11

0

22
� .

Let us examine the limiting case where the distance between the crack and the boundary of the half-space tends to

infinity: h @ � (� @ �). An analysis of the expressions for the kernels of the Fredholm equations (3.55) reveals that
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Thus, if the distance between the crack and the free surface tends to infinity, the expressions for the SIFs are the same as

those in the nonaxisymmetric problem of the fracture of a prestressed unbounded bodywith an isolated penny-shaped crack (Sec.

3.1.1, formulas (3.23)).

We will now discuss numerical results for some hyperelastic materials [63] with a crack subject to a normal tensile load

defined by

* : * :( , ) cosr �
1

. (3.58)

Material with Harmonic Potential. Figures 14, 15, and 16 show the variation in K K
I I
/

�

, K K
II I

/
�

, and K K
III I

/
�

,

respectively, with �
1
for Poisson’s ratio 
 � 0.3 and different values of � � h a/ . Here K

I

�

is the SIF in the nonaxisymmetric

problem for a mode I crack in an unbounded body determined from (3.23), (3.58):

K a
I

�

�

1

2
1

A * :cos .

It can be seen that the stress intensity factors are strongly dependent on the prestresses, the effect of the compressive

prestresses being stronger than that of the tensile prestresses. The vertical asymptotes represent the resonant phenomena

occurring when the initial compressive stresses reach the level at which thematerial near the near-surface crack loses stability (in

a buckling mode symmetric about the crack plane).

For this material, Fig. 17 shows K K
I I
/

�

versus � � h a/ for 
 � 0.3 and for �
1
� 0.9 (initial compression), �

1
� 1.2

(initial tension), and �
1
�1.0 (no prestresses). It can be seen that the closer the distance between the crack and the free boundary

of the body, the stronger the interaction between them. For example, if �
1
�0.9, then the value of K K

I I
/

�

for� �0.5 is greater

by a factor of 1.7 than the value of K K
I I
/

�

for � � 2.0. As the distance between the crack and the boundary of the half-space

increases, the interaction between them weakens and the corresponding SIFs tend to those for an isolated crack in an unbounded

body. The interaction between the crack and the free surface can be neglected, with accuracy sufficient for practical calculations,

when the distance between them exceeds two crack radii.

Figure 18 illustrates the dependence K K
I I
/

�

on the prestresses �
1
for� �0.5 and different values of 
. It can be seen

that the compressibility of a material with harmonic potential characterized by Poisson’s ratio has a strong effect on the SIFs. For

example, the value of K K
I I
/

�

for 
 � 0.5 exceeds the value of K K
I I
/

�

for 
 � 0.1 by 12% when �
1
� 0.95, � � 0.5 and by a

factor of 2.2 when �
1
� 0.9, � � 0.5.

Material with Bartenev–Khazanovich Potential. For this material, Figs. 19, 20a, and 20b show the dependence of

K K
I I
/

0
, K K

I I
/

�

, and K K
III I

/
�

, respectively (K
I

0
is the stress intensity factor for a mode I crack in a material without

prestresses) on �
1
for different values of � � h a/ . As can be seen, the stress intensity factors for this material are also strongly

dependent on the prestresses and the geometrical parameters of the problem (the distance between the crack and the boundary

and the crack radius). The vertical asymptotes indicate that the SIFs sharply increase as the initial compressive stresses tend to

the level that causes local buckling of the material near a crack under compression along it.

531

Fig. 16 Fig. 17

K K
III I

/
�


 = 0.3

1

0.8 1.0 �1 0.5 1.0 1.5 �

2

3


 = 0.3

� = 1.0

� = 0.5

� = 0.75

3

2

1

0

K K
I I
/

�

�1 = 1.0

�1 = 0.9

�1 = 1.2

0



3.2.2. Axisymmetric Problem for a Mode I Crack [2, 5, 61, 123]. Let normal stresses of intensity *( )r symmetric about

the crack plane y
3

0� be applied to the crack faces. In the case of equal roots, the stress intensity factors are defined by
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where the functions f and g can be found by solving the system of Fredholm equations of the second kind
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The kernels in (3.60) have the form
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It can be seen from (3.60) that the value of K
II
in the problem for a mode I crack is nonzero (K

II
� 0for an unbounded

prestressed bodywith amode I crack, according to (3.38)) because of the interaction between the crack and the free surface of the

material. Note that a similar mechanical effect was discovered in the problem of the fracture of materials without prestresses

[135]. Moreover, both K
I
and K

II
depend on the prestresses and the distance between the crack and the boundary of the

half-space because the functions f ( )H and g ( )H following from (3.60) also depend on these parameters.

We will now discuss numerical results for specific materials with a crack under uniform normal load * *( )r � �const

applied to its faces.
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TABLE 1

� � h a/ 0.1 0.25 0.5 0.75 1.0 2.0 5.0 10.0

�
1
� 0.9

— — — 3.0238 1.7378 1.1332 1.0115 1.0015

— — — 1.5481 0.4526 0.0485 0.0018 0.0001

�
1
� 1.0

8.4045 3.0817 1.7374 1.3770 1.2223 1.0482 1.0040 1.0005

5.1692 1.2098 0.3609 0.1592 0.0816 0.0109 0.0004 0.0000

�
1
� 1.2

2.2809 1.5696 1.2459 1.1288 1.0744 1.0146 1.0011 1.0001

0.2219 0.1186 0.0523 0.0248 0.0125 0.0015 0.0001 0.0000



Material with Treloar Potential. Figures 21a and 21b show the variation in K K
I I
/

�

and K K
II I

/
�

, respectively (K
I

�

is the SIF for a mode I crack in an unbounded bodywithout prestresses) with �
1
for different values of the dimensionless distance

� � h a/ between the crack and the boundary of the body. It can be seen that K
I
and K

II
are strongly dependent on the

prestresses. The vertical asymptotes in the range of compressive prestresses (�
1

1� ) represent the resonant phenomenon

occurring when the initial compressive stresses (and the parameter �
1

1� ) reach the critical level at which local buckling occurs

(in a mode symmetric about the crack plane) under compression. This phenomenon allows us to use the combined approach to

determine the critical compressive stresses.

Table 1 summarizes the values of K K
I I
/

�

(upper numbers) and K K
II I

/
�

(lower numbers) for different values of the

dimensionless distance between the crack and the boundary of the half-space normalized to the crack radius and for �
1
� 0.9

(compressive prestresses), �
1
�1.0 (no prestresses), and �

1
�1.2 (tensile prestresses). As can be seen, the interaction between the

crack and the free boundary increases the SIFs compared with that for a mode I crack in an unbounded body. As this distance

increases, the interaction between the crack and the boundary of the body rapidly weakens and the SIFs tend to those for an

isolated crack. Note that these curves are similar to those for a near-surface crack parallel to the free surface of a semibounded

material without prestresses ([135, pp. 225–226]).

Laminated Two-Component Composite with Isotropic Plies. As indicated in Sec. 2.2, the continuum approach is to

model such a composite by a transversely isotropic material with effective macrocharacteristics. Figure 22a shows the variation

in K K
I I
/

�

with the ratio E E
( ) ( )

/
1 2

of elastic moduli of the plies with equal Poisson’s ratios 
 


( ) ( )1 2
� � 0.3, the volume

fraction of the component with E
( )1

being c
1
� 0.3, for �

1
� 0.99 (compressive prestresses; curves 1 and 1�), �

1
� 1.0 (no

prestresses; curves 2 and 2�), �
1
�1.05 (tensile prestresses; curves 3 and 3�), for� �0.25 (solid lines) and� �0.5 (dashed lines).

As the ratio E E
( ) ( )

/
1 2

increases, K K
I I
/

�

decreases monotonically and quickly. For example, if the ratio of elastic moduli

changes from 1 to 30 (for �
1
� 1.05 and � � 0.25), the ratio K K

I I
/

�

decreases by 34%. Moreover, the shorter the distance

between the crack and the boundary, the greater the value of K K
I I
/

�

.

Figure 22b shows the dependence of K K
I I
/

�

on 
 for a composite with 
 
 


( ) ( )1 2
� � , E E

( ) ( )
/

1 2
3� , and c

1
� 0.3.

Solid lines 1, 2, and 3 correspond to � �0.25, and dashed lines 1�, 2�, and 3� to � �0.5. Curves 1 and 1� correspond to �
1
�0.99,

curves 2 and 2� to �
1
� 1.0, and curves 3 and 3� to �

1
� 1.1.

3.2.3. Axisymmetric Problem for a Mode II Crack [60–62, 122, 123, 139]. Let tangential radial stresses of intensity

�( )r symmetric about the crack plane y
3

0� be applied to the crack faces. The stress intensity factors are defined by (3.59), and

the functions f and g are determined by solving the system of integral equations
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where q a C n d( ) ( ( )) / ( )
/

H H� H�

�

44 1

1 2

1
, and the kernels are defined by (3.61).

In this problem, the interaction between the crack and the free surface is the cause of a new mechanical effect: nonzero

stress intensity factor K
I
(K

I
� 0 in the problem for an isolated mode II crack in a prestressed unbounded body (3.42)).

We will discuss numerical results for some materials with a crack subject to a uniform shear load � �( )r � �const on its

faces. Note that the dependence (Fig. 6) of the stress intensity factors on the prestresses in a Treloar material for this problemwas

analyzed in Sec. 1.4. Figure 23 shows, for the same material, the ratio K K
II II

/
�

(where K
II

�

is the SIF (3.42) for an isolated

mode II crack in a prestressed unbounded body) as a function of the normalized distance�between the crack and the boundary of

the half-space for different values of �
1
. As can be seen, the free surface causes an increase in the SIFs compared with the case of

a mode II crack in an unbounded material either with initial compressive (�
1
� 0.9) and tensile (�

1
� 1.1) stresses or without

prestresses (�
1
� 1.0).

Material with Bartenev–Khazanovich Potential. For this material, Fig. 24 shows the ratio K K
II II

/
�

as a function of �
1

for different values of�. It can be seen that the prestresses have a strong effect on the asymptotic stress distribution near the crack.

The vertical asymptotes represent the resonant phenomena occurring when the initial compressive stresses reach the level at

which the material near the crack loses stability (in a buckling mode either flexural or antisymmetric symmetric about the crack

plane). It is should be noted that for this material and a material with Treloar potential, the critical compressive loads that cause

flexural buckling near a mode II crack are the same as the critical compressive loads that cause symmetric buckling near a mode I

crack (see Sec. 3.2.2).

Composite Reinforced with Random Short Ellipsoidal Fibers in the Plane y
3

�const. The continuum approach models

such a composite by a transversely isotropic body with effective macrocharacteristics (see Sec. 2.2). Figure 25 presents results

for a composite reinforced with random elliptic carbon fibers with volume fraction c
1
�0.7. It can be seen that the ratioK K

II II
/

�

strongly depends on the prestresses and asymptotically tends to infinity as the parameter �
1
tends to the level causing local

buckling of the half-space near a near-surface crack. Moreover, the value of the SIFs is also noticeably dependent on the distance

between the crack and the free boundary. For example, for �
1
�0.98, the values ofK K

II II
/

�

for� �0.25 and� �1.0 differ almost

twofold.

3.2.4. Mode III Crack [38, 66, 123]. Consider a crack to which a tangential circumferential load of intensity �
:

( )r is

applied antisymmetrically about the plane y
3

0� . The stress intensity factors are defined by

K
I

� 0, K
II

� 0, K C n a f d
III

�

�

C

1

2
44 3

1 2

0

1

/
( )A I I , (3.63)

where the function f is determined by solving the Fredholm equation of the second kind
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�

44 3
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with kernel K I I( , ) [ ( , ) ( , )]H I H I � I �� �

�

2 2 2 1
1

1 3 1 3
; � �

3 3

1 2
�

�

n
/

, I
1
is defined by (3.61).

In the limiting case where the distance between the crack and the boundary of the half-space tends to infinity, the

expression for K
III

follows from (3.63), (3.64):

K

a a

t t dt

a t
III

a

�

�

�

C

2
2

2 2
0

A

�
:

( )
, (3.65)

which is the same as the expression derived in [135] for a linear elastic body without prestresses.

We will discuss numerical results for some materials with a crack subject to a load � �
:

( )r � �const on its faces.

Material with Bartenev–Khazanovich Potential. Figures 26a and 26b show the ratio K K
III III

/
�

(where K
III

�

is defined

by (3.65)) as a function of �
1
and � � h a/ , respectively.

It can be seen that the prestresses have a strong effect on K
III

. Here, however, we do not observe resonant effects,

unlike the cases of mode I and II cracks. This means that no local buckling occurs near a mode III crack in a compressed

Bartenev–Khazanovich material. The close free boundary of the body increases the SIF compared with the case of an isolated

crack. For example, if �
1
�0.9 and the distance between the crack and the boundary of the half-space is 1/16 of the crack radius,

then KIII exceeds K
III

�

by a factor of 1.92. As the distance between the crack and the boundary of the half-space increases, this

interaction rapidly weakens—it can be neglected for the purpose of engineering calculations if the distance is longer than two

crack radii.

Laminated Two-Component Composite with Isotropic Plies. Figure 27a shows K K
III III

/
�

versus �
1
for E E

( ) ( )
/

1 2
�

4, 
 


( ) ( )1 2
� � 0.3, c

1
� 0.3, and different values of � � h a/ . The curves are similar to those for the Bartenev–Khazanovich
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material. Figure 27b shows K K
III III

/
�

as a function of E E
( ) ( )

/
1 2

for �
1
� 0.97, �

1
� 1.0, and �

1
� 1.1. The solid lines

correspond to � � 0.25, and the dashed lines to � � 0.5.

3.2.5. Critical Loads for Compression along a Near-Surface Crack. In Secs. 3.2.1–3.2.3, it was shown that as the initial

compressive stresses in materials with various elastic potentials and in composites under nonaxisymmetric and axisymmetric

loading along near-surface mode I and II cracks tend to a certain critical level, the stress distribution near the cracks displays

asymptotic behavior—an abrupt increase in the stress intensity factors. The critical initial compressive stresses at which the SIFs

increase resonantly are equal for K
I
and K

II
. According to the combined approach outlined in Sec. 1.4, this phenomenon allows

us to determine the critical (limiting) compressive loads at which local buckling (in a nonaxisymmetric or axisymmetric mode)

of the material occurs near a near-surface crack along which the material is compressed (Fig. 13b). Such a phenomenon was not

observed in the problem of the torsion of a body with a near-surface crack, which suggests the absence of a buckling mode in a

material compressed along a mode III crack.

Figures 28 and 29 show the relative critical (limiting) shortening � �
1 1

1� � versus the relative distance � between the

crack and the boundary of materials with Bartenev–Khazanovich and harmonic potentials, respectively.

The solid lines represent the axisymmetric buckling mode (n � 0), and the dashed the nonaxisymmetric buckling mode

of the material near a near-surface crack (first circumferential harmonic, n �1). It can be seen that the interaction of the crack and

the boundary of the half-space substantially decreases the critical (limiting) shortening and, hence, the critical (limiting)

compressive stresses, compared with the case of an isolated crack in an unbounded material (Sec. 3.1) (in this case, �
1

*
�0.307

for the Bartenev–Khazanovich potential and formula � 

1

1 2
*

/ ( )� � (axisymmetric buckling mode) and � 

1

1 2
*

( ) /� �

(nonaxisymmetric buckling mode) for the harmonic potential). As the distance between the crack and the boundary of the

half-space increases, the interaction between them weakens and the critical loads tend to those for a crack in an unbounded

material.

Figure 30 shows the influence of the volume fraction c
1
of glass on the critical compressive stress divided by the

reduced elastic modulus E for a laminated two-component composite with isotropic plies (a composition of aluminoborosilicate

glass and maleic epoxy resin) for � � 0.25. Figure 31 shows the variation in � �
1 1

1� � with � for a composite reinforced with

random short ellipsoidal carbon fibers in the isotropy plane, the volume fraction of fibers c
1
� 0.7.
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The axisymmetric mode buckling (n � 0) is observed in all the materials, except for the material with harmonic

potential. A nonaxisymmetric buckling mode is observed in a material with harmonic potential when� �1.5, which is because,

according to [24], nonaxisymmetric surface instability occurs in this material. At great values of �, the critical (limiting)

compression loads in the problem for a near-surface become similar to those that cause surface buckling of a half-space without

crack. Also, the numerical results indicate that the critical (limiting) compressive loads depend on the mechanical characteristics

of the material and the geometrical parameters of the problem.

3.2.6. Conclusions. The interaction between the near-surface penny-shaped crack and the free surface of the prestressed

material leads to some newmechanical effects. For example, the stress intensity factors are strongly dependent on the prestresses

for all cracks considered (mode I, II, and III cracks) and for nonaxisymmetric and axisymmetric problem formulations. This is

what differs the problem for a semibounded body with a near-surface crack and the problem for an unbounded body with an

isolated crack (Sec. 3.1.1) where the stress intensity factors do not depend on the prestresses (except for the general

nonaxisymmetric problem for a mode II or III crack), while the crack opening displacements depend on the prestresses.

When normal and radial shear loads act on the crack faces, the stress intensity factors change resonantly as the initial

compressive loads tend to the critical level that causes local buckling of the material near the crack. However, when torsional

loads act on the crack faces, no resonant phenomena occur, which suggests the absence of buckling modes in the torsion

problem.

Moreover, the interaction between the crack and the boundary of the half-space results in nonzero values of K
II
and K

I
.

It should be noted that this effect is similar to that in the problem for a half-space with a near-surface crack solved using the

classical fracture mechanics of materials without prestresses [135].

If the distance between the crack and the boundary of the half-space is short, the interaction between the crack and the

free boundary is quantitatively manifested as an increase in the stress intensity factors compared with the SIFs for an isolated

crack in an unbounded body. As this distance increases, the interaction between the crack and the boundary of the body sharply

weakens and the SIFs tend to those for an isolated crack. Note that these effects are also similar to those observed in problems for

materials without prestresses [135].

By analyzing the resonant change in the stress intensity factors (obtained by solving problems of the fracture of

prestressedmaterials with amode I or II crack) occurring as the initial compressive loads tend to the level causing buckling of the

material near the crack, we have determined the critical (limiting) compressive loads for a half-space compressed along a

near-surface crack in certain materials. It has been shown that for all the materials considered, except for the material with elastic

harmonic potential, the compressive buckling mode is axisymmetric.

3.3. Two Parallel Coaxial Penny-Shaped Cracks in an Unbounded Body. Consider a prestressed unbounded elastic

bodywith two penny-shaped cracks of equal radius a located in parallel planes y
3

0� and y h
3

2� � and centered on theOy
3
-axis

(Fig. 32). The crack faces are loaded by additional (to the prestresses S S
0

11

0

22
� ) mutually balanced stresses (mode I, II, or III

(Fig. 32a)) or are free from stresses (as in the problem of the compression of a material along cracks; Fig. 32b). Since the

geometry and the system of forces are symmetric (antisymmetric) about the plane y h
3

� � equidistant from the cracks, the

problems can be reformulated for the half-space y h
3

D � with one crack. However, unlike the problems addressed in Sec. 3.2, the

boundary conditions on the boundary of the half-space are mixed.

Problems for two parallel coaxial cracks in prestressed bodies are solved in [4, 7, 8, 62, 72, 123].
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3.3.1. Nonaxisymmetric Problem [8]. Let normal tensile loads of equal intensity * :( , )r act on the crack faces. As

indicated above, the problem can be reformulated for the half-space y h
3

� � with a crack in the plane y
3

0� . The mixed

boundary conditions on the crack faces and on the boundary of the half-space are

� � �Q r
33

* :( , ), � �Q
r3

0, � �Q
3

0
:

( , )0 0
3

E � � 8r a y ,

u
3

0� , � �Q
r3

0, � �Q
3

0
:

( , )0
3

E � � � �r y h .

Representing the general solutions of the linearized equilibrium equations in terms of harmonious potential functions

(2.77), (2.80) and expanding these potential functions into Fourier series in the circumferential coordinate with coefficients in

the form of Hankel transforms over the radial coordinate and expanding the function * :( , )r into Fourier series (3.52), we reduce

the problem to a system of dual integral equations for each harmonic in : and then to a system of Fredholm equations of the

second order (see [8] for more details), which have the following dimensionless form in the case of unequal roots (all variables

are divided by the crack radius a):
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where u k C k a
n n

( ) ( / ) ( )
( )

H H * H�
1 44 2

, s n d d l d l� �

� �

2

1 2

2 2 2 1 1

1
1

/
( ( ) / ( )) , q n�

�

3

1 2/
; k

1
, k

2
, and k are determined from (3.9).

The stress intensity factors are defined by

K C s
k

k
a n f d

I

n

�

C,

�

�

1

4
44

1

3

0

1

0

A : I Icos ( ) ,

K C s
k

k
a n f f

II

n

� �

�

�

,

1

4
1 1

44

1

1 2

0

A :cos [ ( ) ( )] ,

K C q a n f f
III

n

� �

�

�

,

1

4
1 1

44 1 2

0

A :sin [ ( ) ( )] , (3.66)

whence follows that the interaction of two parallel cracks leads to qualitative changes in the asymptotic stress distribution near

the crack tip compared with an isolated crack in an unbounded material, namely, to nonzero values of the stress intensity factors

K
II

and K
III

for a near-surface crack loaded by normal tensile forces. Moreover, all the three SIFs depend on the prestresses

since the parameters appearing in (3.66) and in the Fredholm equations depend on the initial elongation (or shortening) �
1
caused

by the prestresses S S
0

11

0

22
� .

3.3.2. Axisymmetric Problem for Mode I Cracks [4, 62, 72, 123]. Let normal stresses of intensity *( )r symmetric about

the crack plane be applied to the crack faces. In the case of unequal roots, the stress intensity factors are defined by

K C d l a f
I

� �

1

2
1

44 2 2
A ( ), K C d n a g d

II
�

�

C

1

2
44 2 2

1 2

0

1

/
( )A H H, K

III
� 0, (3.67)

where the functions f and g can be found by solving the system of Fredholm equations of the second order

f
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, (3.68)

with the following kernels:
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K k I k I
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K k I I I I
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2

� I ,

5 6K k I I
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(� �
i i

n�

�1 2/
( , )i �1 2 , I

0
025 1 1� � �. ln( ) / ( )L L ; L, I

1
, and I

2
are defined by (3.61).

Formulas (3.67) indicate that the interaction of cracks with each other results in nonzero K
II
in the problem for mode I

cracks (it follows from (3.38) that K
II

� 0for a prestressed unbounded body with an isolated mode I crack). Note that a similar

effect was discovered in solving the axisymmetric problem for two parallel coaxial mode I cracks in a body without prestresses

[135]. Moreover, bothK
I
andK

II
depend on the prestresses and the distance between the cracks because the functions f ( )H and

g ( )H following from (3.68) also depend on these parameters.

We will now discuss numerical results for specific materials with cracks under uniform normal load * *( )r � �const

applied to their faces.

Material with Bartenev–Khazanovich Potential. Figures 33a and 33b show the variation in K K
I I
/

�

and �

�

K K
II I

/ ,

respectively (K
I

�

is the SIF for a mode I crack in an unbounded body without prestresses) with �
1
for different values of the

dimensionless distance � � h a/ between the cracks. It can be seen that K
I
and K

II
are strongly dependent on the prestresses.

The vertical asymptotes in Fig. 33b represent a resonant phenomenon occurring when the initial compressive stresses (and,

hence, the parameter �
1

1� ) reach the critical level at which local buckling occurs (in a mode symmetric about the crack plane

y h
3

� � ) under compression along the cracks.

Material with Treloar Potential. Figure 34 illustrates the variation in the ratios K K
I I
/

�

and �

�

K K
II I

/ with the

dimensionless semidistance between the cracks. It can be seen that the interaction of the cracks with each other leads to a

considerable decrease in the SIFs compared with the case of a mode I crack in an unbounded body either with compressive (�
1
�

0.8, �
1
�0.9) or tensile (�

1
�1.1, �

1
�1.2) prestresses or without prestresses (�

1
�1.0). For example, if �

1
�0.8 and the distance

between two parallel cracks is equal to quarter the crack radius, then K
I
is less than K

I

�

by 40%. As the distance between the

cracks increases, their interaction sharply weakens. When� � 4 (i.e., the distance between the cracks is greater than eight crack

radii), it can be neglected for the purpose of practical calculations because the values of K
I
for all examined values of �

1
differ

from K
I

�

by less than 2%, whileK
II
is almost zero. A similar effect was observed in problems for two parallel coaxial cracks in

a material without prestresses [50].

Laminated Two-Component Composite with Isotropic Plies. For a composition of aluminoborosilicate-glass andmaleic

epoxy resin plies (see Sec. 2.2), Fig. 35 shows the graph ofK K
I I
/

�

versus the volume fraction c
1
of glass for different values of

�
1
. It can be seen that the prestresses and the mechanical characteristics of the composite affect the values of the SIFs.
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3.3.3. Axisymmetric Problem for Mode II Cracks [62, 123]. Let tangential radial stresses of intensity �( )r antisymmetric

about the crack planes y
3

0� and y h
3

2� � be applied to the crack faces. The stress intensity factors are defined by (3.67), and

the functions f and g are determined by solving the system of integral equations
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�

44 2

1 2

2

(3.70)

with kernels (3.69).

In this problem, the interaction between the cracks is the cause of a new mechanical effect: nonzero stress intensity

factor K
I
(K

I
� 0 in the problem for an isolated mode II crack in a prestressed unbounded body, according to (3.42)).

We will discuss, as an example, numerical results for a Bartenev–Khazanovich material with cracks subject to a

uniform shear load � �( )r � �const on their faces. Figures 36a and 36b show the variation in K K
II II

/
�

and K K
I II
/

�

,

respectively (K
II

�

is the SIF for a mode II crack in an unbounded body without prestresses) with �
1
for different values of the

dimensionless distance � � h a/ between the cracks. It can be seen that the prestresses have a strong effect on the SIFs. The

vertical asymptotes in the range of compressive prestresses (�
1

0� ) represent a resonant phenomenon occurring when the initial

compressive stresses reach the critical level at which local buckling occurs (in a mode antisymmetric about the crack plane

y h
3

� � and a flexural mode) under compression along cracks. Note that the critical (limiting) compressive stresses �
1

1� for an

antisymmetric (flexural) buckling mode are higher (and the critical (limiting) tensile stresses are lower) than those obtained in

Sec. 3.3.2 (see Fig. 33) for a symmetric buckling mode.
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Similar graphs of K K
II II

/
�

and K K
I II
/

�

versus �
1
were obtained in [123] for a Treloar material.

3.3.4. Mode III Cracks [7, 123]. Let tangential torsional stresses of intensity �
:

( )r antisymmetric about the planes of the

cracks be applied to their faces. The stress intensity factors are defined by

K
I

� 0, K
II

� 0, K C n a f d
III

�

�

C

1

2
44 3

1 2

0

1

/
( )A I I , (3.71)

where the function f is determined by solving the Fredholm equation of the second kind
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n
/

.

We will discuss numerical results for some materials with a crack subject to a load � �
:

( )r � �const on its faces.

Material with Bartenev–Khazanovich Potential. Figure 37 shows the variation in K K
III III

/
�

with �
1
for different

values of �. It can be seen that the prestresses have a strong effect on the stress intensity factor K
III

. However, no resonant

changes in the SIF are observed here, unlike the problems for mode I and II crack, because, obviously, when a material with two

parallel cracks is compressed, no torsional buckling mode occurs.

Material with Treloar Potential. For this material, Fig. 38 illustrates the dependence of the SIFs on the relative

semidistance between the cracks normalized to the crack radius. It can be seen that the interaction of two parallel coaxial mode

III cracks decreases K
III

compared with K
III

�

for a body with an isolated crack, i.e., somewhat “hardens” the body. Note that a

similar behavior of twomode III cracks was observed in [142] in solving a similar problem for a material without prestresses. As

the distance between the cracks increases, their interaction gradually weakens and can be neglected when this distance is greater

than eight crack radii.

3.3.5. Critical Loads for Compression along Two Parallel Coaxial Cracks. According to the combined approach

outlined in Sec. 1.4, the critical (limiting) compressive loads causing local buckling of a material compressed along two parallel

coaxial cracks (Fig. 32b) are determined from the solution of the above inhomogeneous problems for a prestressed material with

two parallel coaxial cracks as the initial compressive stresses at which stress intensity factors increase sharply.

For example, the critical compressive loads causing symmetric local buckling of the material near the cracks can be

determined from the results obtained in Sec. 3.3.2 in solving the problem for a body with mode I cracks. Similarly, the critical
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compressive stresses that cause antisymmetric (flexural) local buckling of a material compressed along two parallel cracks can

be found from the numerical results obtained in Sec. 3.3.3 in solving the problem for a body with mode II cracks. It was shown in

Sec. 3.3.4 that no resonant effects occur in the problems for two mode III cracks, which suggests the absence of torsional

buckling mode for such an arrangement of cracks.

For a Bartenev–Khazanovich material, Table 2 summarizes the values of relative critical (limiting) shortening

� �
1 1

1� � at which local buckling occurs in a material compressed along two parallel coaxial cracks for different values of�(the

superscript “(1)” refers to a symmetric buckling mode, and the superscript “(2)” refers to an antisymmetric (flexural) buckling

mode). It can be seen that � �

1

2

1

1( ) ( )
� in the entire range of variation in�, i.e., the material buckles in a flexural mode. When the

spacing between cracks is small, they interact, thus considerably reducing the critical compressive loads. As the distance

between cracks increases, the relative critical shortening tends to �
1

*
�0.307 corresponding to the critical (limiting) compressive

stresses for an isolated crack in an unbounded body with Bartenev–Khazanovich potential (see Sec. 3.1.1).

It follows from [4, 62, 123] that other hyperelastic materials (including those with Treloar potential) and composites

buckle in a flexural mode. Therefore, we will omit below the superscript “(2)” for the flexural buckling mode.

Figure 39 shows the relative critical shortening � �
1 1

1� � versus� for a Treloar material. The behavior of this graph is

similar to that for the Bartenev–Khazanovich material.

For a laminated composite (composition of aluminoborosilicate glass andmaleic epoxy resin), Fig. 40 shows the critical

compressive stresses normalized to the reduced elastic modulus * � S E
0

11
/ versus the volume fraction c

1
of glass for different

values of�. As can be seen, the volume fractions of the components of the composite have a strong effect on the critical (limiting)

compressive stresses.

Figure 41 shows the variation in �
1
with the dimensionless semidistance�between the cracks in a composite reinforced

with random short ellipsoidal carbon fibers in the planes y
3

�const. When the spacing between the cracks is small, they interact

which considerably reduces the critical compressive loads. For example, when � �1/16, �
1
is less by a factor of almost 15 than

that for a material compressed along an isolated crack.

3.3.6. Conclusions. Based on the above results on problems for two parallel coaxial circular cracks in a prestressed

material, we may draw the following conclusions.

544

TABLE 2

� 0.0625 0.125 0.25 0.5 1.0 2.0 5.0 10.0

�

1

1( )
0.2643 0.3035 0.3070 0.3074 0.3069 0.3076 0.3067 0.3066

�

1

2( )
0.0080 0.0354 0.0894 0.1675 0.2420 0.2877 0.3048 0.3064
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The stress intensity factors are strongly dependent on the prestresses for all cracks considered (mode I, II, and III cracks)

and for nonaxisymmetric and axisymmetric problem formulations. This is what differs the problems for two parallel coaxial

cracks and the problem for an unbounded bodywith an isolated crack (Sec. 3.1.1) where the stress intensity factors do not depend

on the prestresses (except for the general nonaxisymmetric problem for a mode II or III crack), while the crack opening

displacements depend on the prestresses.

When normal and radial shear loads act on the crack faces, the stress intensity factors change resonantly as the initial

compressive loads tend to the critical level that causes local buckling of the material near the cracks. However, when torsional

loads act on the crack faces, no resonant phenomena occur, which suggests the absence of buckling modes under compression

along two parallel cracks in the torsion problem.

Moreover, the interaction between the cracks results in nonzero values ofK
II
andK

I
. It should be noted that this effect

is similar to that in the problem for two parallel coaxial cracks solved using the classical fracture mechanics of materials without

prestresses [135].

At short relative distances between the cracks, the interaction between them results in a decrease in K
I
, an increase in

K
II
, and a decrease in K

III
compared with the SIFs for an isolated mode I, II, and III cracks, respectively. These effects of

interaction between the cracks in a prestressed material are similar to those revealed in solving the same problems using the

classical fracture mechanics of materials without prestresses [50, 135, 142].

As the relative distance between the cracks increases, the interaction between them gradually weakens and the SIFs tend

to those for an isolated crack. The interaction of two parallel cracks can be neglected for the purpose of practical calculations

when the distance between them exceeds eight crack radii.

By analyzing the resonant change in the stress intensity factors (obtained by solving the problems for mode I and II

cracks) occurring as the initial compressive loads tend to the level causing local buckling of the material near the crack, we have

determined the critical (limiting) compressive loads for different materials compressed along two parallel coaxial cracks. It has

been shown that buckling occurs in an antisymmetric (flexural) mode in all examined materials under compression.

The stress intensity factors and critical (limiting) compressive stresses are strongly dependent on the geometry of the

problems (the distance between the cracks and crack radius) and the mechanical characteristics of the materials.

3.4. Periodic Array of Parallel Coaxial Penny-Shaped Cracks in a Space. Consider an unbounded elastic body with

prestresses S S
0

11

0

22
� acting along an infinite array of coaxial penny-shaped cracks of radius a located in parallel planes

y
3

�const: { , ,r a y hn� E � �0 2 2
3

: A , n � 8 80 1 2, , , }� (Fig. 42). The crack faces are loaded by additional (to the prestresses

S S
0

11

0

22
� ) mutually balanced stresses (mode I, II, or III (Fig. 42a)) or are free from stresses (as in the problem of the

compression of a material along cracks; Fig. 42b).

Since the geometry and system of forces of the problem are symmetric about the plane y
3

0� and the components of the

stress tensor and displacement vector are periodic (with period 2h) in y
3
, the original linearized problem for a body with a

periodic array of parallel coaxial cracks can be reduced to a mixed boundary-value problem for the layer 0
3

E Ey h.

Problems for a periodic array of parallel coaxial cracks in prestressed materials were addressed in [6, 64, 65, 68, 69,

123].
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3.4.1. Nonaxisymmetric Problem [6]. Let normal tensile loads of equal intensity * :( , )r act on the crack faces. As

indicated above, the problem can be reformulated for the layer 0
3

E Ey h with a crack in the plane y
3

0� . The boundary

conditions on the crack faces and the boundary of the half-space are the following (hereafter 0 2E E: A):

u
3

0� ( , )y r a
3

0� � ,

� � �Q r
33

* :( , ) ( , )y r a
3

0� � ,

� �Q
r3

0, � �Q
3

0
:

( , )y r
3

0 0� E � � ,

u
3

0� , � �Q
r3

0, � �Q
3

0
:

( , )y h r
3

0� E � � . (3.73)

For the problem of the compression of a material along cracks (Fig. 42b), it is necessary to replace the second boundary

condition in (3.73) by � �Q
33

0 ( , )y r a
3

0� � .

Representing the general solutions of the linearized equilibrium equations in terms of harmonious potential functions

(2.77), (2.80) and expanding these potential functions into Fourier series in the circumferential coordinate with coefficients in

the form of Hankel transforms over the radial coordinate and expanding the function * :( , )r into Fourier series (3.52), we reduce

the problem to a system of dual integral equations for each harmonic in : and then to a Fredholm equation of the second order

(see [6] for more details), which have the following form in the case of unequal roots:

~
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where - �
i i

n h�

�1 2/
(i �1 2, ); k

1
, k

2
, and k are determined from (3.9).
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Analyzing the asymptotic stress distribution near the crack, we obtain the following expressions for the stress intensity

factors:

K C d l
k

k
n a t dt

I

n

n

a

n

� �

� �

�

�

C,
A : 2

44 1 1

1

1 2

01

cos( )
~

( )
/

, K
II

� 0, K
III

� 0, (3.75)

where
~

( )2
n
t are determined from (3.74).

It is clear that K
I
depends on the prestresses since the parameters appearing in (3.75) and in the Fredholm equation

(3.74) depend on the initial elongation (or shortening) �
1
caused by the prestresses S S

0

11

0

22
� .

In the limiting case where the distance between the cracks tends to infinity, the expression for K
I
follows from (3.75),

(3.74):

K K
n

a

t
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h
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01A
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,
. (3.76)

If the load on the crack faces is defined by * : * :( , ) ( )cosr r�
1

, we normalize the variables to the crack radius and

introduce functions H 
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1
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to nondimensionalize the Fredholm equation:

f f K d d
1 1 1

0

1

1

0

2

2 2
( ) ( ) ( , ) ( sin )

/

H

A

I H I I

A

H H : :

A

� � �

C C
B , 0 1E EH , (3.77)

with kernel K R R R R
1

1
1 1( , ) { [ ( ) ( )] [ ( ) ( )]}H I H I H I H I H H� � � � � � � �

�

, where

R z
k

k iz k iz
( ) Re Re� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

1
1

2
1

2

1

1 1

2

2 2
�

�

� �

�

�

�

�

�

�

�

�

�

�

 

 

, (3.78)

Re ( / )� �1 2� iz
j
, j �1 2, , is the real part of the psi-function �( )z � ( ln ( )) /d z dzJ (J( )z is the gamma function).

Then we have K aC d l
k

k
f d

I
� �

C
A I I :

44 1 1

1

1

0

1

( ) cos .

We will discuss numerical results for some hyperelastic materials with a crack subject to a normal tensile force

* : * :( , ) ( )cosr r�
1

, * *
1
( )r � �const, on its faces.

For a Bartenev–Khazanovich material, Fig. 43a shows the variation in K K
I I
/

�

(where K
I

�

is the SIF for an isolated

mode I crack determined from (3.76)) with �
1
for different values of � � h a/ . It can be seen that the prestresses have a strong

effect on the SIF especially in the range where the prestresses are compressive.
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Figure 43b shows, for the samematerial, the variation inK K
I I
/

�

with�. It can be seen that the interaction of the cracks

in a prestressed body leads to a decrease (especially at short distances between the cracks) in K
I
compared with K

I

�

. For

example, for �
1
�0.9 and� �0.25, the K

I
is less than K

I

�

by a factor of 2.2. As the distance between the cracks increases, their

interaction weakens and the corresponding SIFs tend to K
I

�

.

Figures 44 and 45 show the dependence of K K
I I
/

�

on �
1
for, respectively, a material with Treloar potential (for

different values of�) and a material with harmonic potential (for� �0.25 and different values of Poisson’s ratio
). It can be seen

that the compressibility of the material considerably affects the stress intensity factors. For example, when �
1
�0.7, the value of

K
I
for the material with harmonic potential and Poisson’s ratio 
 � 0.1 exceeds by 20% the value of K

I
for the same material

with 
 � 0.5.

3.4.2. Axisymmetric Problem for Mode I Cracks [64, 68, 123]. Let normal stresses of intensity *( )r symmetric about the

crack plane be applied to the crack faces. The problem can be reformulated for the layer 0
3

E Ey h with a crack in the plane

y
3

0� with boundary conditions similar to (3.73).

Applying the Hankel transform to the potential harmonic functions, we can reduce the problem to dual integral

equations and then to the Fredholm equation of the second kind (see [68] for more details), which has the following

dimensionless form in the case of unequal roots:

f f K d s d( ) ( ) ( , ) ( sin )sinH
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I H I I
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H H : : :

A F
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C C

1 2
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, s
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kC d l
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* H


 �

1

44 1 1

(3.79)

with kernel K R R( , ) ( ) ( )H I H I H I� � � � , where R z( ) is defined by (3.78).

The SIFs are expressed by

K C d l
k

k
a f

I
� �

44 1 1

1

1A ( ), K
II

� 0, K
III

� 0, (3.80)

where f can be found by solving the integral equation (3.79).

It follows from (3.80) that the stress intensity factor K
I
depends on the prestresses. We will now discuss numerical

results for specific materials with cracks under uniform normal load * *( )r � �const applied to their faces.

Material with Bartenev–Khazanovich Potential. Figure 46a shows the dependence of K K
I I
/

�

on �
1
for � �0.25 and

� � 1.0. Hereafter the solid lines represent a periodic array of parallel coaxial cracks, and the dashed lines represent, for

comparison, two parallel coaxial cracks (Sec. 3.3). It can be seen that the stress intensity factors are strongly dependent on �
1
.

Moreover, the values ofK K
I I
/

�

for a periodic array of cracks are lower than those for two parallel coaxial cracks (for the same

values of �).

Figure 46b shows the variation in K K
I I
/

�

with� for �
1
�1.2 (tensile prestresses), �

1
�0.8 (compressive prestresses),

�
1
�1.0 (no prestresses). This demonstrates that the interaction among cracks in a periodic array of coaxial mode I cracks, as well
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as between two parallel coaxial mode I cracks, leads to a decrease in K
I
compared with K

I

�

for an isolated crack in an

unbounded material. As the distance between the cracks increases, the interaction between themweakens and the corresponding

SIFs tend to those for an isolated crack in an unbounded body.

Similar curves were drawn in [68] for materials with Treloar and harmonic potentials.

Laminated Two-Component Composite with Isotropic Plies. Figure 47 shows the substantial dependence of K K
I I
/

�

on the ratio of elastic moduli of the plies for
 


( ) ( )1 2
� �0.3, c

1
�0.3, �

1
�1.05 (tensile prestresses), and �

1
�0.99 (compressive

prestresses). The results are presented for a periodic array of cracks (solid lines), two parallel cracks (dashed lines), and a

near-surface crack (dash-and-dot lines) subject to a uniform normal load. The semidistance between the two parallel cracks is

equal to that between cracks in the periodic array and the distance between the crack and the free boundary � � 0.5.

3.4.3. Axisymmetric Problem for Mode II Cracks [65, 69, 123]. Let tangential radial stresses of intensity �( )r symmetric

about the crack planes be applied to the crack faces. The equivalent boundary conditions for the layer 0
3

E Ey hwith a crack in

the plane y
3

0� are

� � �Q r
r3

�( ) ( , )y r a
3

0 0� � E ,

u Q
r
� � �0 0

33
, ( , )y h r

3
0� E � � ,

u
r
� 0 ( , )y a r

3
0� � � � ,

� �Q
33

0 ( , )y r
3

0 0� E � � .

The problem posed is reduced to a Fredholm equation of the second kind [69], which has the following dimensionless

form in the case of unequal roots:

f f K d p d( ) ( ) ( , ) ( sin )H
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I H I I

A
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A F
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(3.81)
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with kernel 5 6 5 6K R R R R( , ) ( ) ( ) ( ) ( )H I HI H I H I H H H� � � � � � � �
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The SIFs are expressed by

K
I

� 0, K C d n
k

k
a f d

II
�

�

C44 1 1

1 2

2 0

1

/
( )A I I , K

III
� 0, (3.82)

where f can be found by solving Eq. (3.81).

It follows from (3.82) that the stress intensity factor K
II

depends on the prestresses. Numerical results are presented

below for some materials with cracks subject to uniform shear forces � �( )r � �const on their faces.

For a Bartenev–Khazanovich material, Fig. 48 shows the variation in K K
II II

/
�

with �
1
for different values of � (as

before, the solid lines correspond to a periodic array of cracks, and the dashed lines to two parallel cracks). It can be seen that the

stress intensity factors are strongly dependent on �
1
. Moreover, the values of K K

I I
/

�

for a periodic array of cracks are greater

than those for two parallel coaxial cracks (for the same values of �). The vertical asymptotes in the range of compressive

prestresses (�
1

1� ) represent a resonant phenomenon occurring when the initial compressive stresses reach the critical level at

which the material locally buckles (in a flexural mode) near the cracks.

Similar graphs of SIFs versus prestresses for other hyperelastic materials (material with Treloar and harmonic potential)

were obtained in [69, 123].

For a Treloar material, Fig. 49 shows the variation in K K
II II

/
�

with� for different values of �
1
. It can be seen that the

interaction of mode II cracks increases the stress intensity factorK
II
compared with an isolated crack in an unbounded body. As

the spacing between cracks increases, K
II

decreases, tending to K
II

�

. When � � 3, the interaction of cracks can be neglected in

practical calculations because the difference between the stress intensity factors for a periodic array of cracks and for one crack in

an unbounded body is less than 3%.

3.4.4. Mode III Cracks [123]. Let tangential circumferential load �
:

( )r antisymmetric about the planes of the cracks be

applied to their faces. The stress intensity factors are defined by

K
I

� 0, K
II

� 0, K C n a f d
III

� �

�

C44 3

1 2

0

1

/
( )A I I , (3.83)

where f can be found by solving the Fredholm equation
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We will discuss numerical results for some materials with a crack subject to a load � �
:

( )r � �const on its faces.

Material with Treloar Potential. Figures 50a and 50b show the dependence ofK K
III III

/
�

on �
1
and�, respectively (the

solid lines correspond to a periodic array of cracks, and the dashed lines to two parallel cracks).

It can be seen that the prestresses have a strong effect on the stress intensity factors. However, unlike the problems for a

prestressed body with a periodic array of mode I and II cracks, no resonant change in the SIF is observed here.

Figure 50b demonstrates that the interaction of the cracks leads to a decrease (especially at small values of �) in K
III

compared with K
III

�

for an unbounded body with an isolated crack under a torsional load. As the distance between cracks

increases, the value of K
III

tends to the value of K
III

�

. When the distance between the cracks exceeds six crack radii, the

difference between these SIFs is so small that can be neglected.

Laminated Two-Component Composite with Isotropic Plies. Figure 51a illustrates the dependence of K K
III III

/
�

on

E E
( ) ( )

/
1 2

for� �0.25 and different values of �
1
. It can be seen thatK K

III III
/

�

monotonically increases withE E
( ) ( )

/
1 2

. Figure

51b shows the variation in K K
III III

/
�

with �
1
for E E

( ) ( )
/

1 2
4� and different values of �. As can be seen, the SIF does not

display resonant behavior because, obviously, there is no torsional buckling mode in a material with a periodic array of coaxial

penny-shaped cracks in compression.
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3.4.5. Critical Loads for Compression along a Periodic Array of Parallel Coaxial Cracks. According to the combined

approach outlined in Sec. 1.4, the critical (limiting) compressive loads causing local buckling of a material compressed along a

periodic array of parallel coaxial cracks (Fig. 42b) are determined from the solution of the above inhomogeneous problems for a

prestressedmaterial with a periodic array of parallel coaxial cracks as the initial compressive stresses at which the stress intensity

factors increase resonantly.

For example, the critical compressive stresses that cause antisymmetric (flexural) local buckling of a material

compressed along a periodic array of parallel cracks can be found from the results obtained in Sec. 3.4.3 in solving the problem

for a body with mode II cracks. It was shown in Sec. 3.4.4 that no resonant effects occur in the problems for a periodic array of

mode III cracks, which suggests the absence of torsional buckling mode for such an arrangement of cracks.

Figure 52 presents the values of the critical (limiting) shortening � �
1 1

1� � calculated using the above approach for a

Bartenev–Khazanovich material. The figure illustrates dependence of �
1
on � � h a/ for a periodic array of parallel cracks

(Fig. 42b) (solid line), two parallel coaxial cracks (Fig. 32b) (dashed line), a near-surface crack parallel to the free surface of the

material (Fig. 13b) (the dash-and-dot line), and an isolated crack (Fig. 10b) (dashed line). The parameter � is the semidistance

between cracks divided by the crack radius for a periodic array of cracks and two cracks and is the distance between the crack and

the boundary of the body divided by the crack radius for a near-surface crack. The results for a periodic array of cracks and two

cracks are presented for the flexural buckling mode because the value of �
1
for the symmetric mode is much greater than the

value of �
1
for the flexural mode [33, 68, 69]. In the case of a near-surface crack, the values of �

1
for the flexural and symmetric

modes coincide (Sec. 3.2).

It can be seen that the interaction of cracks with each other (for a periodic array of parallel cracks and two parallel

cracks) or with the free boundary of the material (for a near-surface crack) leads to a substantial decrease in the critical (limiting)

shortening �
1
(and, hence, to a decrease in the critical compressive load) compared with the case of an isolated crack in an

unbounded body (�
1

*
�0.307).Moreover, in the entire range of variation in�, the values of �

1
for a periodic array of cracks appear

greater than those for two parallel cracks and a near-surface crack, but less than those for an isolated crack, which is physically

consistent.

Similar graphs of �
1
versus � for a Treloar material were drawn in [123].

Table 3 gives values of �
1
< 1 (versus different values of � and 
) corresponding to the flexural buckling mode of a

material with harmonic potential compressed along a periodic array of parallel coaxial cracks. When� is great, the value of �
1
is

equal to the critical value � 

1

1
2

*
( )� �

�

for an isolated crack in an unbounded material.

For a laminated two-component composite with isotropic plies, Fig. 53 shows the dimensionless critical compressive

stresses * � S E
0

11
/ (the stresses divided by the reduced elastic modulus) versus the ratio of the elastic moduli of the plies (the

solid line represents a periodic array of cracks). For comparison, the figure also shows * versus E E
( ) ( )

/
1 2

for two parallel

cracks (dashed line) and a near-surface crack (dash-and-dot line). Note that the critical compressive stresses for a periodic array

of cracks and for two parallel cracks correspond to the flexural buckling mode (determined from the solution for mode II cracks)

because the values of * corresponding to the symmetric buckling mode (determined from the solution for mode I cracks)

appeared much higher than those for the flexural mode [33, 64, 65].
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3.4.6. Conclusions.Based on the above results on problems for a periodic array of parallel coaxial penny-shaped cracks

in a prestressed material, we may draw the following conclusions.

The stress intensity factors are strongly dependent on the prestresses for all cracks considered (mode I, II, and III cracks)

and for nonaxisymmetric and axisymmetric problem formulations.

When a radial shear load acts on the crack faces, the stress intensity factors change resonantly, tending to infinity as the

initial compressive loads tend to the critical level that causes local buckling of the material near the cracks. However, when

torsional loads act on the crack faces, no resonant phenomena occur, which suggests the absence of buckling modes under

compression along a periodic array of parallel cracks in the torsion problem.

At short relative distances between the cracks, the interaction between them results in a decrease in K
I
, an increase in

K
II
, and a decrease in K

III
compared with the SIFs for an isolated mode I, II, and III cracks, respectively.

As the relative distance between the cracks increases, the interaction between them gradually weakens and the SIFs tend

to those for an isolated crack. The interaction of cracks in an array of parallel cracks can be neglected for the purpose of practical

calculations when the distance between them exceeds six crack radii.

By analyzing the resonant increase in the stress intensity factors (obtained by solving the problems for mode II cracks)

occurring as the initial compressive stresses tend to the level causing local buckling (in a flexural mode) of the material near the

cracks, we have determined the critical (limiting) compressive loads for different materials compressed along a periodic array of

parallel coaxial cracks.

The stress intensity factors and critical (limiting) compressive stresses are strongly dependent on the geometry of the

problems (the distance between the cracks and crack radius) and the mechanical characteristics of the materials.

4. Conclusions.We have reviewed studies on spatial problems of the brittle fracture of materials with prestresses acting

in parallel to crack planes and the fracture of bodies compressed along cracks solved using a combined approach proposed by the

authors of the present paper and based on three-dimensional linearized solid mechanics. The basic equations, problem

formulations, and governing equations have a universal general form for compressible and incompressible isotropic elastic

bodies with arbitrary elastic potential and composites modeled by transversely isotropic materials.

The approach was used to solve nonaxisymmetric and axisymmetric problems for isolated and interacting cracks in

prestressed bodies and to analyze the effect of the prestresses, mechanical characteristics of materials, and geometry of problems

on the stress–strain distribution around the cracks. Analyzing the resonant increase in the stress intensity factors and/or crack

opening displacement (determined from linearized equations) as the initial compressive stresses tend to the critical level causing

local buckling of thematerial near the cracks, we have determined the critical (limiting) shortening along the coordinate axes and

the critical compressive stresses in problems of the compression of bodies along cracks.

Analyzing the results, we may draw the following conclusions.

1. In problems for isolated free cracks, the initial stress–strain state does not affect the stress intensity factors, but has a

strong effect on the crack opening displacement for all systems of forces (except for the general nonaxisymmetric problem for a
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TABLE 3




�

0.0625 0.125 0.25 0.50 0.75 1.00 2.00 5.00 10.00

0.1 0.0159 0.0529 0.1377 0.2631 0.338 0.3842 0.4565 0.4756 0.4762

0.2 0.0145 0.0481 0.1247 0.2399 0.3107 0.3562 0.4312 0.4538 0.4545

0.3 0.0133 0.0439 0.113 0.2182 0.2849 0.3291 0.4067 0.4337 0.4347

0.4 0.0123 0.0401 0.102 0.1974 0.2597 0.3023 0.3822 0.4151 0.4166

0.5 0.0114 0.0365 0.0916 0.1769 0.2343 0.2749 0.3567 0.3975 0.3999



penny-shapedmode II or III crack). In all the problems for prestressed bodies with interacting cracks, the prestresses acting along

the cracks have a strong effect on the stress intensity factors at the crack tips.

2. In all the problems considered (except for the torsion problem), the stress and displacement fields change abruptly,

resonantly as the initial compressive stresses tend to the levels at which the material undergoes local buckling near the cracks.

This makes it possible to determine the critical (limiting) compressive loads directly by solving the corresponding

inhomogeneous problems of the fracture of prestressed materials.

3. The interaction between cracks (periodic array of cracks, two parallel cracks) or between the crack and the free

boundary of the half-space (near-surface crack) quantitatively changes (especially for small distances between cracks or between

the crack and the half-space boundary) the stress intensity factors compared with those for an isolated crack in an unbounded

material. At the distance between cracks (or between the crack and the half-space boundary) increases, this interaction gradually

weakens and the stress intensity factors near the cracks tend to those for a crack in an unbounded material.

4. The interaction between two parallel coaxial cracks and between the near-surface crack and the free surface of the

prestressed material introduces qualitative changes into the stress distribution near the crack such as nonzero values of K
II

and

K
I
. These effects are similar to those in the problems of the fracture of bodies without prestresses with interacting cracks.

5. The stress intensity factors are strongly dependent on the mechanical characteristics of materials.

6. The critical (limiting) compressive loads that cause local buckling of the material near cracks depend on the

geometrical parameters (crack radius, distance between cracks and between the crack and the boundary of the material) and the

mechanical characteristics of the material.

Further studies on the brittle fracture of materials with prestresses acting in parallel to cracks and the fracture of bodies

compressed along cracks using the combined approach may develop along the following lines:

– formulation and solution of problems for more complex arrangements of cracks in prestressed materials such as

nonperiodic arrays of parallel cracks (by now, problems for prestressed bodies with isolated cracks, a near-surface crack, two

cracks, and a periodic array of parallel coaxial internal cracks have been solved). Note that problems of the compression of

composite laminates with cracks located at interfaces between plies and shifted relative to each other (see, e.g., [149]) have been

solved recently;

– solution of problems of the fracture of prestressed materials with cracks and the fracture of bodies compressed along

cracks that are noncircular in plan;

– formulation and solution of problems of the fracture of materials with prestresses using piecewise-homogeneous

models of composites, which is important for a more detailed description of their structure;

– formulation and solution of spatial problems taking into account the asymmetry of the initial stress–strain state caused

by the prestresses (by now, the cases of equal prestresses along theOy
1
- andOy

2
-axes (Fig. 8) have been studied);

formulation and solution of problems for inhomogeneous initial stress–strain states;

– analysis of the asymptotic behavior of the solutions to problems for prestressed bodies with cracks as the distance

between parallel coaxial cracks or between the crack and the surface of the body tends to zero (the asymptotic behavior of the

solutions to spatial problems of the compression of bodies with interacting cracks was studied in, e.g., [113]).
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