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The stress–strain state of flexible orthotropic cylindrical shells with a reinforced circular hole under

static loading is analyzed numerically. The incremental-loading procedure, modified

Newton–Kantorovich method, and finite-element method are used. The effect of geometrical

nonlinearity, the orthotropy of the material, and the stiffness of the reinforcement in a shell subject to

uniform internal pressure on the distribution of stresses, strains, and displacements along the hole edge

and in the zone of their concentration is studied
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Introduction. Traditionally, a shell with a reinforced hole is considered as a structure that consists of the shell proper

and a one-dimensional thin rod reinforcing it. The stress–strain state (SSS) of each of these components is described by an

applied theory and has its peculiarities. Therefore, the development of a theory that describes the SSS of shells with reinforced

holes involves difficulties associated with the necessity of describing the combined action of components with different

dimensionality and satisfying the interface conditions [4, 7]. Note that the same difficulties are encountered in studying the SSS

of ribbed shells [3, 6, 12, 17].

Most results on stress concentration in isotropic and anisotropic shells with reinforced holes were obtained by solving

linear elastic problems with analytic, variational, and numerical methods and are reviewed in [4, 7, 11, 16].

Much fewer studies are concerned with nonlinear boundary-value problems of stress concentration, but mainly for

shells of revolution under an axisymmetric load [4, 10, 13].

Very few publications report on solution of nonlinear two-dimensional problems for shells with reinforced holes. For

example, the effect of plastic strains and finite deflections on the SSS of isotropic shells with a reinforced curved hole was

analyzed in [7, 20]. A nonclassical approach to the design of thin composite shells with reinforced curved holes that employs the

same formulas for the shell and the reinforcement was proposed in [14], where some numerical results on the nonlinear

deformation of a flexible orthotropic cylindrical shell with a reinforced circular hole under uniform internal pressure are

presented.

It is of considerable interest to study the effect of a reinforced hole on the stability of composite shells [9, 18, 19].

In what follows, we will use the approach described in [14] to formulate geometrically nonlinear problems for thin

orthotropic cylindrical shells with a reinforced circular hole, outline a numerical method for solving this class of problems, and

study the effect of geometrical nonlinearity, the orthotropy of the material, and the stiffness of the reinforcement on the

distribution of displacements, strains, and stresses in the zone of their concentration.

1. Problem Formulation. Basic Nonlinear Equations. Consider a thin cylindrical shell of radius R and thickness h
0

made of an orthotropic material and having a circular hole of radius r
0
. The shell is described in a curvilinear orthogonal

coordinate system ( , , )x y � with the origin at the center of the hole (x, y, and � are the longitudinal, circumferential, and normal (to
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the coordinate surface) coordinates). The shell is under surface, { } { , , }p p p p
T

�
1 2 3

, and boundary, { } { , , , }m T S Q M
k k k k k

T
� ,

forces. Let the midsurface ( )�
0

be a coordinate surface (reference surface � � 0). On the developed coordinate surface, we

introduce a polar coordinate system ( , )r � (Fig. 1) with one coordinate line ( )r r�
0

coinciding with the boundary of the hole.

Let the hole be reinforced with a curved rod. The reinforcement is modeled by a fragment of a cylindrical shell whose

midsurface is equidistant from the midsurface of the shell. Let the equidistant surface ( )�
1

that is in contact with the midsurface

of the shell be the coordinate surface. This makes it possible to use the same equations to model both the shell and the curved rod

and to describe the behavior of the latter in tension (compression), torsion, and bending in two planes. Such an approach to the

design of ribbed shells was proposed in [1] in the late 1960s. Later, a similar approach was used to develop a geometrically

nonlinear theory of shallow and deep shells of discretely variable thickness [2, 3].

High loads cause large (finite) deflections in the elastic shell and the reinforcement. To describe the deformation of such

a shell and a thin reinforcement rod, we will use the second-order geometrically nonlinear theory of deep shells based on the

Kirchhoff–Love hypotheses [4].

The membrane ( )�
ij

and bending ( )�
ij

strains have the following vector expressions [14]:
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where
� � � �

u ue ve wn
x y

� � � is the displacement vector of particles of the coordinate surface of the shell (reinforcement);
�

e
x
,
�

e
y
,
�

n

are the unit vectors of the curvilinear orthogonal coordinate system ( , , )x y � ;
� � �

� � �� �
x x y y
e e is the vector of angles of tangents

to the coordinate lines; the superscripts “0” and “*” refer to the linear and nonlinear components of strains.

Let the axes of orthotropy of the material at each point of the shell (reinforcement) coincide with the coordinate axes

( , , )x y � ; then the constitutive equations have the form of Hooke’s law (the coordinate surface being arbitrary):
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where E
xx

and E
yy

are the longitudinal and circumferential elastic moduli, respectively; G
xy

is the shear modulus in a plane

parallel to the coordinate surface; h is the thickness of the shell or the height of the reinforcement; e is the deflection of the

midsurface from the coordinate surface.

2. A Method for Solving Geometrically Nonlinear Problems for Orthotropic Cylindrical Shells with a

Reinforced Hole. The system of governing equations can be derived using the principle of virtual displacements, modified

Newton–Kantorovich method, and finite-element method (FEM) [7]. The total energy of a flexible cylindrical shell with a

reinforced hole is given by
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where { } { , , }u u v w
T

0
� and { } { , , , }u u u w

k m m

T
� �

�
� are the displacement vectors of the shell’s midsurface and boundary;

{ } { , , , , , }ý
Ò

� � � � � � �
11 22 12 11 22 12

2 is the strain vector; { } { , , , , , }m T T T M M M
Ò

�
11 22 12 11 22 12

is the vector of internal forces

and moments; ( )�
p

is the portion of the domain ( )�
0

on which surface forces are set; ( )Ã
k

is the portion of the boundary of the

midsurface on which boundary forces are set; �f and f denote the increment of the function f over the nth step of loading and its

value at the end of the previous step, respectively; { }�ý
l

are the components of strain increments linear with respect to the

increments of the components of the vectors of displacements and rotation angles; [ ]S is the symmetric matrix of accumulated

tangential forces; { }�T are the increments of the components of the vector of internal forces; [ ]�A
L

and { }�� are the matrix and

vector of increments of rotation angles; [ ]D is the stiffness matrix of the shell (reinforcement).

At each iteration of the modified Newton–Kantorovich method, the problem is solved with an FEM in which the vector

of angles
�

� of tangents to the coordinate lines is not determined by formulas (1), as is the case with the classical FEM for thin

shells, but is approximated by biquadratic serendipity polynomials, with the Kirchhoff–Love hypotheses satisfied only at the

nodes of finite elements [7].

Such an approach to determining the vector of rotation angles, in essence, implements the Kirchhoff–Love hypotheses

in discrete form. The method of discretizing the Kirchhoff–Love hypotheses was first proposed in [8] and was then widely used

in designing thin plates and shells [5, 7, 15].
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Using the stationarity conditions for the discrete analog of functional (4) and allowing for finite deflections, we arrive at

a system of governing equations for a thin cylindrical composite shell with a reinforced hole, which has the following matrix

form at the nth step of loading:

� �[ ] [ ] [ ] { } { } { } { }K K K q P
0

� � � � �
� �

� � �� �� , (5)

where[ ]K
0

is the stiffness matrix of the linear elastic shell and reinforcement; [ ]K
�

and[ ]K
�

are the influencematrices of initial

angles and stresses; { }�q is the vector of increments of nodal degrees of freedom; { }�P is the load vector; { }�� is the vector of

nonlinearities; { }�� is the vector of residuals of the equilibrium equations at the end of the ( )n �1 th step of loading.

3. Nonlinear Deformation of a Cylindrical Shell with a Circular Hole Reinforced with a Ring with Varying

Stiffness. Let us analyze the effect of the elastic modulus of the reinforcement material on the SSS around a circular hole in a

flexible orthotropic organic-plastic cylindrical shell.

The shell has the following characteristics:

R h/
0

400� , r h
0 0

30/ � , E
xx

� 25.3 GPa, E
yy

� 38.4 GPa,G
xy

� 7.6 GPa, �
yx

� 0.238. (6)

The hole is reinforced with a ring of rectangular cross-section of height h h
r

� 3
0
, width b h

r
� 3

0
, and eccentricity

e
r

� 0. The ring is made of a homogeneous isotropic material with Poisson’s ratio �
r

� 0.3.

The shell is subject to internal pressure q q� 	
0

5
10 Pa, axial tensile forces T qR

k
� / 2 at the ends, and shearing force

Q qr r b
k c

� �
0

2

0
2/ ( ) applied to the reinforcement axis.

For reasons of geometrical and mechanical symmetry, we can consider a quarter the shell. Symmetry conditions are

specified on the lines x � 0and y � 0, boundary conditions are specified at the interface between the shell and the reinforcement,

and the stress state far from the hole (x r� 6
0
and y r� 6

0
) is assumed membrane.

The tables and figures below present the solutions (distribution of displacements, strains, and stresses) of the linear (LP)

and geometrically nonlinear (GNP) problems for cylindrical shells with a reinforced circular hole under internal pressure q
0

2�

for the following Young’s moduli of the reinforcement material: (1) E
r

� 0 (N = 1; free hole), (2) E
r

�10 GPa (N = 2;

reinforcement of low stiffness), (3) E
r

� 67GPa (N = 3; AMg-6 alloy), (4) E
r

�110GPa (N = 4; nearly optimal reinforcement),

(5) E
r

�10
3
GPa (N = 5; reinforcement of high stiffness), (6) E

r
� 	67 10

5
GPa (N = 6; rigid inclusion).

Figures 2 (N = 1, 2, 3) and 3 (N = 4, 5, 6) shows the variation in the relative deflection
~

/w w h�
0
along the boundary of

the hole. The dashed and solid lines represent the LP and GNP, respectively.

It can be seen that the deflection is maximum at the point � �90° on the boundary of the free hole (N = 1) or the hole with

reinforcement of low or moderate stiffness (N = 2, 3, 4) and in the section � �90° at a great distance (r r� 4
0
for the LP and r r� 6

0

for the GNP) from the hole with reinforcement of high stiffness or a rigid inclusion (N = 5, 6). Reinforcing the hole with a rod of

certain stiffness decreases the maximum deflection. The rigid inclusion reduces the maximum deflection on the hole boundary

maximally (by 96% and 83% for the LP and GNP, respectively). As the stiffness of the reinforcement is increased, the maximum

deflection monotonically decreases. Allowing for geometrical nonlinearity decreases the maximum deflection in the first four
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TABLE 1

Problem �
~
�

e
r
	10

2

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

LP

0°

0.5 –0.2331 –0.4048 0.0505 0.1064 0.1468 0.0042

–0.5 –0.4895 0.1893 0.3503 0.3999 0.5075 0.4273

45°

0.5 –0.7507 –0.1607 0.1742 0.1993 0.2065 0.1277

–0.5 –0.2818 –0.3055 –0.0575 0.0343 0.2734 0.4195

90°

0.5 –0.1930 0.1755 0.1358 0.1093 0.0790 0.2300

–0.5 0.2023 –0.1912 –0.0080 0.0667 0.2328 0.2549

GNP

0°

0.5 –0.2609 –0.2108 0.0898 0.1355 0.1959 0.0470

–0.5 –0.2582 0.0357 0.2773 0.3487 0.4796 0.4115

45°

0.5 –0.4321 –0.1570 0.1557 0.1994 0.2471 0.1930

–0.5 –0.2876 –0.2126 –0.0370 0.0358 0.2554 0.3823

90°

0.5 –0.1145 0.0329 0.1297 0.1404 0.1475 0.2688

–0.5 –0.0090 –0.0661 –0.0025 0.0375 0.1770 0.2425

TABLE 2

Problem �
~
�

e
�
	10

2

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

LP

0°

0.5 0.9249 0.8765 0.2409 0.1485 –0.0017 0.0001

–0.5 2.0691 1.0793 0.3632 0.2390 0.0113 0.0001

45°

0.5 1.4289 0.7852 0.2448 0.1647 0.0219 0.0001

–0.5 0.9888 0.5671 0.2360 0.1675 0.0248 0.0001

90°

0.5 1.2440 0.6237 0.2679 0.1954 0.0458 0.0000

–0.5 –1.3152 –0.1814 0.0904 0.0867 0.0357 0.0000

GNP

0°

0.5 1.0578 0.7769 0.2721 0.1758 0.0014 0.0002

–0.5 1.0709 0.7495 0.3037 0.2081 0.0114 0.0002

45°

0.5 0.9446 0.6104 0.2360 0.1653 0.0235 0.0001

–0.5 0.7272 0.4961 0.2250 0.1632 0.0255 0.0001

90°

0.5 0.6992 0.4435 0.2201 0.1685 0.0450 0.0000

–0.5 0.0315 0.1111 0.1309 0.1093 0.0363 0.0000



cases of reinforcement and increases the maximum deflection on the hole boundary in the fifth and sixth cases. It can be seen that

nonlinearity has the strongest effect on the maximum deflection of the shells with free and weakly reinforced holes and the

weakest effect in the fourth case of reinforcement. For example, in these cases, the maximum deflections in the GNP differ from

those in the LP by 64%, 47%, and 5%, respectively.

Tables 1 and 2 collect the values of the radial (e
r
) and circumferential (e

�
) strains at several nodal points (� �0°, 45°,

90°) on the hole boundary on the outside (
~

/� �� �h
0

0.5) and inside (
~
� � –0.5) surfaces of the shell.

The maximum magnitudes are achieved by the circumferential strains at the point � � 0° on the boundary of the hole

with no reinforcement (N = 1), reinforcement of low stiffness (N = 2), and reinforcement made of AMg-6 alloy (N = 3) and by the

radial strains at the same nodal point � �0° on the inside surface of the shell with more stiffer reinforcement (N = 4, 5, 6). As the

stiffness of the reinforcement is increased, themaximum strains change nonmonotonically: first they considerably decrease, then

slightly increase, and, finally, slightly decrease. Themaximum decrease (by 82 and 72% for the LP andGNP, respectively) in the

maximum strains is caused by the reinforcement made of AMg-6 alloy. Allowing for finite deflections decreases the maximum

strains in all cases of reinforcement. The stiffer the reinforcement, the weaker the effect of geometrical nonlinearity on the

maximum strains. For example, the difference between the maximum strains obtained by solving the LP and GNP is 48% for the

free hole, 16% for AMg-6 reinforcement, and 3.5% for the rigid inclusion.

The values of the radial (� �
r r

� 	
0 5
10 Pa) and circumferential (� �

� �
� 	

0 5
10 Pa) stresses calculated at the same points

as the respective strains are summarized in Tables 3 and 4.

The solutions of the LP and GNP suggest that the maximum stresses are observed at the point � � 0° of the hole

boundary on the inside surface of the shell in all cases of reinforcement. The exception is the rigid inclusion because it makes the

stresses in the LP reach their maximum at the point (r r�
0
, � �45°) on the inside surface. Themaximummagnitudes are achieved

by the circumferential stresses in the shells with no, low-stiffness, and moderate-stiffness reinforcement and by the radial

stresses in the shells with high-stiffness reinforcement and rigid inclusion. As the stiffness of the reinforcement is increased, the

maximum stresses change nonmonotonically.

Let us identify the optimal reinforcement using a minimax criterion to minimize the maximum stress:

�  N N x y
N N x y

opt
arg�

! !

min max , ( , , )
[ ] ( , , )�

� �
�

, (7)

where [ ]N is a set of feasible stiffnesses of the reinforcement rod; � is the range of variation in the curvilinear coordinates

( , , )x y � .

Applying the minimax criterion (7), we reveal that the optimal reinforcement is the rigid inclusion in the LP and the

fourth case of reinforcement in the GNP.

Thus, the optimal reinforcement of the hole causes the maximum decrease in the maximum stresses (by 74 and 85% in

the GNP and LP, respectively).

Note that for a spherical shell with a reinforced circular hole under uniform internal pressure, the minimax criterion (7)

requires the maximum radial and circumferential stresses to be equal (� �
�r

max max
� ).

Allowing for finite deflections decreases the maximum stresses in all cases of reinforcement. Geometrical nonlinearity

manifests itself when the hole is not reinforced or reinforced with a ring of low stiffness. The higher the stiffness of the

reinforcement, the weaker its effect on the stress state of the shells. For example, allowing for finite deflections reduces the

maximum stresses by 48% in the case of no reinforcement, by 17% in the case of reinforcement made of AMg-6 alloy, and by

7.5% in the case of rigid inclusion.

4. Effect of the Orthotropy of the Material on the Nonlinear Deformation of a Cylindrical Shell with a

Reinforced Hole. By changing the orientation of the axes of orthotropy of composites relative to the midsurface coordinate

system ( , )x y , we can analyze the effect of orthotropy on the SSS of shells. Let us compare the SSS of a cylindrical shell made of a

material with
~

/E E E
xx yy

� � 0.659 (Sec. 3) and the SSS of the same shell but with a different orientation of the axes of

orthotropy such that
~
E � 1.518.

Table 5 compares themaximum deflections, strains, and stresses for shells with free (N = 1) and reinforced (N = 3) holes

and with a rigid inclusion (N = 6).

The table indicates that as the elastic modulus is increased in the longitudinal direction, the maximum deflections

increase by 3, 25, and 54% in the LP and by 16, 34, and 59% in the GNP. It can be seen that in the GNP, the orthotropy of the

material has a stronger effect on the deflections than in the LP. Themaximum strains increase by 21, 8, and 19% in LP and by 26,
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TABLE 3

Problem �
~
�

�
r

0

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

LP

0°

0.5 –33 –515 283 373 385 11

–0.5 9 1173 1148 1201 1341 1123

45°

0.5 –7 556 848 824 668 381

–0.5 –11 –128 222 390 853 1170

90°

0.5 10 1091 710 558 344 918

–0.5 –17 –877 25 320 951 1017

GNP

0°

0.5 –23 –67 406 466 516 123

–0.5 –8 563 919 1047 1268 1082

45°

0.5 –17 329 778 819 779 560

–0.5 –10 24 241 371 802 1071

90°

0.5 –18 409 655 666 617 1072

–0.5 –19 –194 719 218 729 968

TABLE 4

Problem �
~
�

�
�

0

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

LP

0°

0.5 3544 3243 993 659 85 3

–0.5 7949 4422 1668 1204 363 268

45°

0.5 3306 1994 955 771 387 187

–0.5 1921 1199 668 592 475 533

90°

0.5 3150 1749 789 582 170 144

–0.5 –3330 –597 233 270 240 160

GNP

0°

0.5 4059 2967 1142 786 128 30

–0.5 4109 3012 1385 1048 346 258

45°

0.5 2075 1495 900 767 440 267

–0.5 1533 1101 639 565 453 490

90°

0.5 932 1186 660 531 211 168

–0.5 1766 251 343 311 206 152



10, and 12% in the GNP. The effect of orthotropy on the stress state depends on the stiffness of the reinforcement and is opposite

in two limiting cases: free hole and rigid inclusion. For example, the maximum stresses in the shells with free and reinforced

holes decrease by 21 and 22% in the LP and by 17 and 23% in the GNP, and themaximum stress in the shell with a rigid inclusion

increases by 17% in the LP and by 22% in the GNP, which is due to the stronger reinforcing effect of the stiffer portion of the

shell on its less stiff portion.

Conclusions. We have formulated geometrically nonlinear problems for thin orthotropic cylindrical shells with a

reinforced curved hole and outlined a numerical method for solving them based on the incremental-loading procedure, a

modified Newton–Kantorovich method, and the finite-element method. A distinguishing feature of the method is that the same

equations are used to describe the deformation of both the shell and the reinforcement and that the Kirchhoff–Love hypotheses

used have discrete form. The method and associated software have been used to analyze the effect of finite deflections,

orthotropy, and the stiffness of reinforcement on the stress–strain state of a cylindrical shell with a reinforced circular hole under

uniform internal pressure. The numerical results have been presented as tables and graphs and analyzed.
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