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Introduction. Problems of the resonant and forced vibrations of piezoelectric bodies have been in the focus of attention

of scientists for many decades due to the high efficiency of electromechanical energy conversion [1–5, 7–9, 11–16, 18–30, etc.].

In tests on piezoelectric vibrators, the mass, static capacitance, dimensions, characteristic (resonant and antiresonant)

frequencies of and the voltage drop across the piezoelectric element and/or the pull-up resistor are directly measured [7–9,

11–15, 19–23, etc.] to determine, by various methods, the components of admittance and the active (real) and reactive

(imaginary) components of the material constants. There are no methods for the direct measurement of the active and reactive

components of admittance; therefore, they have to be determined indirectly, i.e., calculated by various approximate formulas.

The recent studies [28–30] show that the behavior of piezoelectric vibrators at high power strongly depends on the type

of electric loading. The admittance–frequency response at voltage of constant amplitude is essentially nonlinear, including

abrupt drops and jumps. Such nonlinearity is absent if the current is of constant amplitude [30].

The quest for ways to measure the electroelastic and viscoelastic coefficients of piezoelectric vibrators is still ongoing.

A method for determining the Q-factor and piezoelectric modulus by differentiating the frequency-dependent active component

of the admittance with respect to frequency is described in [5]. An interesting combined experimental/numerical procedure was

proposed in [1] where the active components of the electroelastic material constants of piezoceramics are determined by

measuring the resonant frequencies of various vibration modes of a rectangular rod from which a square plate is then cut out. In

[25, 26], it was shown that the values of the Q-factor at resonance (Qa) and antiresonance (Qb) are different, and Qa � Qb.

Here we further develop experimental methods by searching ways of studying phase–frequency responses in some

frequency range, generalizing and comparing resonance/antiresonance methods, and assessing the accuracy of values of some

most frequently used parameters. For example, we will show that the classical two-port network (Mason circuit) provides

tolerable errors only at characteristic frequencies, whereas in frequency ranges below resonance and between neighboring

resonances there are considerable phase shifts between the current and the voltage drop across the piezoelectric element. An

advanced Mason circuit with an additional switch allows reducing the effect of phase shifts. Combining the

resonance–antiresonance [4, 14, 21] and piezotransformer transducer [8, 13, 18, 19] methods considerably simplifies

experiments and improves their accuracy.

1. Response of a Piezoceramic Element to an External Electric Load. There are several methods to measure the

resonant frequencies of piezoelectric structural elements. All of them are approximate. Most popular is the passive two-port
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network (so-called Mason circuit) in which the piezoelectric element is connected in series with a pull-up resistor (Fig. 1a). The

advantages and disadvantages of this method are detailed in [7, 8, 14, 20].

The admittance–frequency response of a thin piezoceramic half-disk in a frequency range 20–100 kHzwere obtained in

[21] using aMason circuit (Fig. 1b) modified so as to switch the grounding point of the measuring circuit. This makes it possible

to measure the voltage drop across either the piezoelectric element or the load.

To excite mechanical vibrations of the piezoelectric element, it is necessary to apply to its electrodes some voltage from

an external ultrasonic generator. Resulting from the inverse piezoelectric effect, the electric field causes mechanical deformation

of the piezoelectric element. The frequency of electromechanical vibrations is equal to that of the exciting field. The voltageU
pe

applied to the piezoelectric element causes a current I
pe
. It is well known that a voltage drop can be measured with a voltmeter,

while a current with an ampermeter [6, 10, 12]. A voltmeter is always connected in parallel to the electric circuit of interest, while

an ampermeter is connected in series. Neither of them must affect the measured result. For this reason, the internal resistance of

the voltmeter must be many times higher than the resistance of the circuit of interest not to distort the measured value of the

current. The ampermeter, vice versa, must have very low resistance not to distort the measured voltage drop. The current/voltage

ratio is, by definition, admittance Y
på
,

Y I U
pe pe pe

� / . (1)

It is impossible to directly measure the voltage drop across and the current through the piezoelectric element because

there are no ultrasonic ampermeters and voltmeters. The current through the piezoelectric element is measured indirectly from

the voltage drop across a special resistor connected in series. TheMason circuit usually includes two voltmeters [3, 8, 11, 13, 19],

one parallel to the piezoelectric element, and the other parallel to the pull-up resistor.

As the generator is tuned, the readings of both voltmeters change, but their vector sum is always equal to the voltage

drop UR2 across the output resistor R2 of the matching divider. For this reason, one of the voltmeters is sometimes connected in

parallel to the resistor R2, and the voltage drop across the piezoelectric element is equal to the difference between the voltage

drop across the resistor R2 and the voltage drop across the pull-up resistor. As the frequency increases, the current through the

piezoelectric element increases too and so does the voltage drop across the pull-up resistor. Far from the resonance (at low

frequency), the current through the piezoelectric element is related to its static recharge and to the increase in the capacitive

susceptance with increasing frequency. The static capacitance of the piezoelectric element is due to its basic electrodes, which

are often on its main faces. The closer the generator frequency to one of the resonances of the piezoelectric element, the sharper

the changes in the readings of the voltmeters. At the frequency f
m
of the maximum input admittance Y

m
, which is close to the

resonant frequency f
r
, the voltage drop U

m
across the resistor R3 reaches a maximum many times higher than the capacitive

component. At the frequency f
n
of the minimum admittance Y

n
, which is close to the antiresonant frequency f

a
, the voltage drop

U
n
across the resistor R4 reaches a minimum. The admittance of the piezoelectric element at any frequency results from the

combination of the piezoelectric effect and static capacitance. The frequency of the maximum voltage drop across the pull-up

resistor differs a little from the resonant frequency because of the effect of the static self-capacitance of the piezoelectric element.

The admittance Y of the piezoelectric element consists of real G (active) and imaginary B (reactive) components. For

example, before the first radial resonance, the capacitive susceptance (of the equivalent capacitor Ñ
0
) of the piezoelectric

element makes the predominant contribution to the admittance of the thin piezoceramic disk with solid electrodes on the main
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faces (Fig. 2), and only near the resonance, the active component (conductivity) induced by mechanical stresses is vectorally

added to it [14]. At some point, the reactive component is maximum and equal to the active component. Then the active

component continues to increase, while the reactive component decreases. At the resonant frequency, the active component

becomes maximum, whereas the reactive drops to zero. After that, the reactive component reverses sign, reaches a negative

maximum, and decreases to zero. The active component decreases to zero as well. The admittance reaches a minimum at the

point where the reactive component becomes zero for the second time and then again the contribution of the capacitive

susceptance becomes predominant. The figure also indicates that the points of maxima of the conductance and admittance

practically coincide with each other and with the first point at which the susceptance becomes zero. Also, the points of minima of

the conductivity and admittance coincide with the second point at which the susceptance again becomes zero. The maximum of

the admittance is much sharper than its minimum. For that very reason (for more accurate detection of minima), the pull-up

resistors R3 and R4 in the Mason circuit have different resistances. Usually, the resistance of R3 is several Ohms, while the

resistance of R4 can reach several hundreds of Ohms.

The voltage drop across the piezoelectric element canmost easily be determined indirectly as the difference between the

voltage drop across the output resistor R2 of the matching divider (the input potential difference of the measuring circuit) and the

voltage drop across the pull-up resistor:

U U UR Rpe
� �

2
. (2)

Thus, the admittance of the piezoelectric element at any frequency can be determined from the approximate formula

Y U R U UR R Rpe
(� �/ )

2
. (3)

This formula ensures adequate accuracy at characteristic (resonant and antiresonant) frequencies, but beyond these

frequencies, considerable phase distortions are possible.

If the advanced Mason circuit is used, formula (1) becomes

Y U U RRpe pe
� / ( ). (4)

The phase differences between the current through and the voltage drop across the piezoelectric element are the same,

but they do not affect the accuracy of measurements.

Replacing the pull-up resistor with a capacitor C
ld

produces good results. In this case, the admittance Y
pe

of the

piezoelectric element at a frequency f is determined in terms of the ratio of the voltage drops across the capacitor (U
ñ
) and the

piezoelectric element (U
pe
):

Y fC U U U
pe ld c pe pe

� 2� / . (5)

The capacitance C
ld
can be added to the measuring section of the Mason circuit or its modifications, as well as the

pull-up resistor, through either a load or a transfer element. The voltage drops across the capacitor and the piezoceramic half-disk

were measured for several values ofC
ld
: equal to, much lower, and much higher than the static capacitanceÑ

0
. If the capacitor is
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a transfer element and the voltage drop across the piezoelectric element is measured, the admittance is calculated by the

approximate formula

Y fC U U URpe pe pe
� �2

2
� ( ) / . (6)

2. Admittance–Frequency Response of Piezoelectric Elements with Resistive and Capacitive Loads. When an

electric current of ultrasonic frequency passes through a piezoelectric element and a series-connected resistor or capacitor, a

phase shift occurs between current and voltage, affecting the results of measurements. The interaction of the capacitive and

mechanical components of the voltage drop across elements of the measuring section of the advanced Mason circuit is well

observed in multiresonance systems, such as a piezoceramic half-disk [21] where several electromechanical resonances of

different intensity occur (Fig. 3) within a relatively narrow frequency range (20–100 kHz). Figure 3a shows the voltage drops

across a pull-up resistor of 110� (solid lines) or a fixed capacitor of 15,830 pF equal to the static self-capacitance of the semidisk

(dashed lines). Figure 3b illustrates the admittance–frequency response of a half-disk with a resistor of 55 � or a capacitor of

15,830 pF [21]. A voltage of 100 mVwas maintained at the input of the measuring circuit at all frequencies. Seven resonances of

different intensity can be observed. The admittance peaks correspond to the peaks of the voltage drop. Increasing the capacitance

of the load capacitor severalfold (to 105,840 pF) reduces the amplitude of the resonances, but does not change either the

frequency response or the magnitude of the admittance. Moreover, the values of the admittance at different frequencies

calculated with formulas (4) and (5) are practically equal (Fig. 3b).

Let us split the frequency range into two subranges: 20–60 kHz (Fig. 3c) and 60–100 kHz (Fig. 3d), and plot the

admittance–frequency responses for three measuring circuits: (i) a pull-up resistor 110 � in the conventional Mason circuit

(dash-and-dot line), (ii) a limiting resistor of 1000 � (dashed line), (iii) a pull-up resistor of 55 � (solid line) in the advanced

Mason circuit. In case (i), the voltage drop across the piezoelectric element is determined approximately as the difference
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between the input voltage and the voltage drop across the pull-up resistor. The admittance is calculated by the approximate

formula (3). In case (ii), the voltage drop across the limiting resistor is determined approximately as the difference between the

input voltage and the voltage drop across the piezoelectric element:

U U UR R� �
2 pe

(7)

and the admittance is determined by the approximate formula

Y
U U

RU

R
�

�
2 pe

pe

. (8)

In case (iii), use is made of formula (4) because the voltage drop across the piezoelectric element and the pull-up resistor

was measured in a circuit with a switch independently, sequentially, and with equal high accuracy.

Comparing Figs. 3c, d with Fig. 3b, it is easy to see that both the refined formula (4) and the approximate formulas (3)

and (8) calculate the admittance of the piezoelectric element with satisfactory accuracy. The minimum admittances calculated

with the different formulas are practically equal. The maximum difference produced by the formulas is between neighboring

resonances. At many frequencies, formula (3) overestimates the admittance by almost 50%, whereas formula (8) underestimates

the admittance at the same points by 10–15%. In frequency ranges near the resonances, except for the first, very weak one,

formulas (4) and (8) yield very similar results.

Figure 4 shows the admittance–frequency response of a piezoceramic half-disk in two special cases of capacitive load:

(i) a transfer capacitor of 600 pF (Fig. 4a) and (ii) a capacitor of 105,840 pF connected in parallel to the piezoelectric element

with a pull-up resistor of 3 � (Fig. 4b). The approximate formulas (6) and (8) were used, respectively. Compared with other

methods of excitation, a capacitor of low capacitance (much lower than the static self-capacitance) connected in series with the

piezoelectric element reduced the amplitude of resonance by 30–50%, and the minima became shaper. Connecting a capacitor of

high capacitance in parallel to the piezoelectric element increased the admittance of the resulting circuit severalfold, and the

contribution of the capacitive component became predominant. The weak first resonance is detected poorly. The other

resonances keep their positions and relative intensity. Thus, resonant phenomena in piezoceramics are determined by its

electromechanical properties and it is difficult for external passive elements to affect them.

3. Phase Shifts between Voltage Components. As indicated above, introducing an additional switch to the Mason

circuit allows measuring the voltage drop U
pe

across the piezoelectric element Pe and the pull-up resistor R
ld
or capacitor C

ld

with equally high accuracy at any frequency f. The voltage drop U
in
= UR2 across the resistor R2 of the matching divider is

supplied to the input of the measuring circuit. We have, thus, three voltage components:U
in
,U

pe
, andUR orUñ

. With three side

lengths of a triangle known, we can use the cosine rule to calculate the vertex angles. For example, the angle opposite to the side

U
in
characterizes the phase shift between the voltage drop across the piezoelectric element and the voltage drop across the

series-connected resistor or capacitor:

cos ( ) / ( )� � 	 �U U U U UR Rpe in pe
2

2 2 2
. (9)
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Table 1 summarizes the results of measurement and calculation for the piezoceramic half-disk at eight arbitrarily

chosen frequencies (in kHz) near its first strong resonance. The calculated angles are negative at all frequencies, which means

that they are measured from 180°, i.e., are obtuse. The angle � is formed by the sidesU
pe
andUR of the triangle. It is opposite to

the side U
in
and characterizes the phase shift between the voltage drop across the piezoelectric element and the electric current

through it. The current through and the voltage drop across a resistor are known to be in phase. The angle
 is formed by the sides

U
in
and UR of the triangle. It is opposite to the side Upe and characterizes the phase shift between the input voltage and the

current through the piezoelectric element. The angle � is formed by the sidesU
in
andU

pe
of the triangle. It is opposite to the side

UR and characterizes the phase shift between the input voltage and the voltage drop across the piezoelectric element.

The asterisk indicates the angles measured with a protractor after geometrical construction. The difference between the

results obtained by graphical measurement and calculation does not exceed 10%. The calculated value of cos � at one point

appears greater than unity, which is meaningless and due to the errors of measurement of voltage drops. It is the frequency of the

maximum admittance at which there are no phase shifts. The admittance was calculated by formula (4). The two bottom rows of

Table 1 give the sums of calculated and measured angles which are equal or close to 180°.

It can be seen from Table 1 that as the frequency tends to the resonance at 38,846 kHz, the phase angle between the

voltage drops U
pe

and UR increases and tends to 180° rather than to zero suggested by physical reasoning. The reason is that

changing the switch in the advanced circuit from the first position to the second one reverses the direction of the current through
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TABLE 1

Frequency 35.967 37.933 38.479 38.742 38.846 39.027 39.188 39.686

Upe, mV 94 86 73 42 34 64 84 98

UR, mV 25 36 50 65 64 45 26 3

Uin, mV 100 100 100 100 100 100 100 100

Y, mS 4.83 7.61 12.45 28.14 34.22 12.78 5.63 0.487

cos � –0.1147 –0.2112 –0.2974 –0.7346 –1.0910 –0.6711 –0.5192 –0.6633

� –83°20� –77°50� –72°40� –42°40� — –47°50� –58°30� –48°50�

�
*

–78° –77° –73° –40° — –44° –54° –55°

cos
 0.3578 0.5417 0.7171 0.9585 — 0.8811 0.6962 0.68


 69° 57°10� 44°10� 16°40� — 28°10� 45°50� 47°30�



*

62° 58° 44° 18° — 26° 45° —

cos � 0.9687 0.9360 0.8787 0.8975 — 0.8430 0.975 0.9996

� 14°10� 20°30� 28°30� 26°10� — 19°20� 13° 1°40�

�
*

16° 21° 29° 25° — 18° 13° —

� 
 �	 	 179°50� 179°50� 180° 180°10� — 179°20� 180°10� 180°40�

� 
 �
* * *

	 	 180° 182° 180° 183° — 180° 184° —



the piezoelectric element and the resistor. This fact by no means affects the electromechanical processes in the piezoelectric

element, but it should be taken into account when interpreting the results.

Table 2 summarizes the results of measurement and calculation for the same half-disk in the same frequency range after

replacement of the pull-up resistor of 55 � by a capacitor of 15,830 pF. The admittance was calculated by formula (5). Dashes in

some table cells represent cases where the sum of two side lengths of the triangle is less than the length of the third side or one of

the sides is much shorter than the other two. Eight frequencies were selected arbitrarily near the maximum and minimum

admittances. After the replacement of the resistive load by the capacitive load, additional phase shifts occur between the voltage

drops across the piezoelectric element (U
pe
), capacitor (U

c
), and the output resistor of the matching divider (U

in
).

In both tables, the calculated and measured values are very similar, though both calculations and geometrical

constructions are approximate procedures. The main source of errors is the voltmeter that measures the voltage drop. We used a

V3-38 millivoltmeter of precision class 4. This means that if its full scale is, for example, 100 mV, then the error is 
4 mV. If the

voltage measured on this scale is 30 mV, then the relative error (
4 mV/30 mV) 100% = 13.3%. The accuracy of measurement

can be enhanced by either timely switching between voltmeter scales or measuring such levels of voltage at which the pointer of

the device is near the scale edge.

The tables are supported by the phase–frequency responses of the piezoceramic self-disk (Fig. 5) obtained by

geometrical construction. Curves a, b, and g correspond to angles �, 
, and �, respectively.
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TABLE 2

Frequency 38.551 38.749 39.035 39.112 39.270 39.377 39.450 39.698

Upe, mV 20 12 44 105 200 170 140 96

Uñ, mV 79 90 132 175 210 100 60 12

Uin, mV 100 100 100 100 100 100 100 100

Y, mS 15.14 28.89 11.6 6.493 4.094 2.302 1.678 0.493

cos � –1.0629 –0.8129 0.8492 0.8612 0.8821 0.85 0.7857 –0.2783

� — –35°40� 31°40� 30°30� 28° 31°50� 38°20� –79°40�

�
*

— –27° 38° 30° 27° 32° 42° –75°

cos
 1.0026 0.9976 0.9655 0.8457 0.3357 –0.4451 –0.5 0.387


 — 4° 15°10� 32°30� 70°20� –65°30� –60° 67°10�



*

— 4° 18° 33° 68° 116° 118° 69°

cos � 1.0397 0.8517 –0.6236 –0.4671 0.1405 0.850 0.9286 0.9933

� — 31°40� –51°25� –62°50� 81°50� 31°50� 21°50� 6°40�

�
*

— 25° 127° 117° 82° 35° 25° 9°

� 
 �	 	 — 180° 177° 180° 180° 180° 180° —

� 
 �
* * *

	 	 — 186° 183° 183° 177° 183° 186° —



The curves demonstrate that the phase shift between the voltage drop across the piezoelectric element and the electric

current through it (curve a) between neighboring resonances tends to 100°. Between a resonance and the corresponding

antiresonance, the phase shifts sharply change from 180 to 120° and again to 180°. The angles 
 and � pass through nearly zero

minima between resonances and respective antiresonances. Between neighboring resonances, these angles tend to 65–70° and

10–15°, respectively.

The measured voltages U
in
, U

pe
, UR and the respective frequencies were entered into the computer to then display the

admittance components, cosines of phase angles, angles themselves, and components of active, reactive, and instantaneous

power. It appeared that the presence or absence of nonlinearity mentioned in [27–29] is due to an increase or a decrease in

instantaneous power as a resonance is approached. However, this is beyond the scope of the present paper and should be studied

separately.

4. Sequential Measurement of Amplitudes and Phases of Voltage. The cosine rule and formula (9) can also be used

in sequential measurement of the voltage drops across the piezoelectric element and the pull-up resistor. The series-connected

piezoelectric element and resistor were connected to the output resistor of thematching divider in the conventionalMason circuit

so that either the resistor or the piezoelectric element was grounded. The voltage–frequency response was first recorded on one

of them and then on the other.

These curves were then plotted on the same frequency axis. The figure was printed out, and the ordinates U
pe

and UR

were measured at specially chosen frequencies. The third side U
in
of the triangle was kept at constant amplitude during the

measurements. The experimental data were treated in the same way as for the advanced Mason circuit. Table 3 and Fig. 6

illustrate the above-said for the piezoelectrically strong third resonance of a 22.2�18.2�15.8 mm thin-walled cylindrical shell

made of TsTBS-3 piezoceramics.

Here, as in the piezoceramic half-disk, the phase shifts change most sharply at resonant and antiresonant frequencies.

Between these points, the phase shift between the voltage drop across the piezoelectric element and the current through it is the

same as between neighboring resonances. This phase shift is caused by the self-capacitance and is close to 90°.

The amplitudes of the admittance of piezoelectric elements at resonant frequencies can also be determined using the

shunting effect [20]: the input impedance of the piezoelectric element somewhat shunts the output resistorR2 of the divider when

they are connected in parallel. The shunting effect of the piezoelectric element is the most noticeable at the resonant frequencies,

and the voltage drop across it decreases by a factor ofK compared with low frequencies at which the shunting effect is very weak.

The resonant admittance Y
r
can be determined by the approximate formula

Y K R
r
mS[ ] ( ) / [ ]� �10 1 2

3
� ,

which is derived from Ohm’s law.

Neither the shunting method nor the piezotransformer transducer method [13, 14] can be used to determine the

admittance of the piezoelectric element at an antiresonance.

Conclusions. Studying the forced electromechanical vibrations of a thin piezoceramic half-disk in some frequency

range using several circuits for electric excitation of vibrations, we have drawn the following conclusions.
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1. The sequential measurement of the voltage drops across the piezoelectric element and the pull-up resistor or the

capacitor in the advanced Mason circuit with a switch allows determining the admittance components and phase shifts at any

frequency with accuracy sufficient for engineering purposes.

2. The circuit with a limiting resistor quite accurately measures the admittance components in the frequency range

between a resonance and the respective antiresonance and near a resonance.

3. Using a capacitor of low capacitance as a transfer element improves the accuracy of measuring antiresonant

frequencies.

4. The resonant properties of piezoceramics are determined by the internal electromechanical processes and are

independent of the effect of external passive elements.
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