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Introduction. Bifurcation theory and qualitative analysis originated in the works of Puankare, Lyapunov, and

Andronov. Elements of bifurcation theory can be found in a number of modern studies [1, 4–7, 9–13]. In [4], it was proposed to

use variational equations with coefficients dependent on a partial solution in qualitative analysis. In the present paper, we will

also try to classify physical objects generatingmultidimensional attractors. The problem to be considered involvesmultistability.

In radio physics, multistability indicates that several attractors caused by certain initial conditions coexist in the phase space [2].

1. Problem Formulation. The following generalized equation of a generator consisting of a selective element (for

example, an oscillatory circuit) and an amplifier is given in [1]:

�� ( , , ) ( , , )x F x z F x z� � �
1 2

0� � , � ( , , )z F x z�
3

� ,

where x is the oscillating variable;� is a set of parameters; F
i
are, generally, nonlinear functions. The variable z t( ) is related to

the variable x t( ) by a differential operator of the first order, i.e., the response z t( ) to the variable x t( ) is inertial.

Consider a generator with quadratic inertial nonlinearity described by a dimensionless system presented in [1]:

dx

dt

mx xz y� � � ,
dy

dt

x� � ,
dz

dt

b z x� � �( )
2
, (1)

where mand b are positive constant coefficients. The oscillatory circuit is described by the equation

�� ( )� ( � )x m z x z x� � � � �1 0. (2)

The inertial transformer is represented by the operator � ( )z b z x� � �
2
.

A generator with exponential inertial nonlinearity described by a dimensionless system is presented in [2]:

dx

dt

mx xz y� � � ,
dy

dt

x� � ,
dz

dt

b z e
x

� � � �( )1 . (3)

Here the oscillatory circuit (2) takes place. The inertial transformer is represented by the operator � ( )z b z e
x

� � � � 1 .

The attractors associated with the mechanism of orbital instability in a system with two singular points have been

studied well. In the well-knowLorenz problem, the passage of unstable trajectories from one saddle-focus to another gives rise to

the obviousmechanism of orbital instability that generates a strange attractor. The Lorenz problemwas qualitatively described in
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the monograph [11]. A similar mechanism including two singular points occurs in a conservative system of a bistable oscillator

and a periodic force [4]. The Rikitake system also includes two center-nodes [10].

Let x x t� ( ) be a periodic solution of an n-dimensional autonomous system:

dx

dt

F x� ( ), (4)

where x t R
n

( )� is the state vector of the system at an instant t R� , F:U R
n

� is a smooth function defined on some subset

U R
n

� . We introduce a small deviation 	x
i

�x t x t
i i
( ) ( )� ( ,i �1 2,� , )n in the neighborhood of the solutions x i

i
( ,�1 2,� , )n .

Let 	x
i
be new coordinates. In the coordinates 	x

i
(linear), the system takes the form d x dt A x x	 	/ ( )� , 	x R

n
� , where

A x F x
x x

( ) / |� 
 

�

is a variational system [4]. By analyzing the roots of the characteristic equation of the matrix A x( ), it is

possible to plot a curve (separatrix) that separates qualitatively different domains of the phase section and to estimate the

parameters of an orbitally stable system.

In analytically defined systems of ordinary differential equations dx dt A t x/ ( )� , we introduce characteristic numbers

of nontrivial solutions: �
j

t
j

t x t j� ���
�

lim [ ln| | ( )| | ] ( ,
1

1 2,� , )n , where x t
j
( ) is the jth fundamental solution of the system,

| | | |0 is the norm. The numbers �
j
are called generalized characteristic numbers of an arbitrary system. For the vatiational system

describing the evolution of the perturbations 	x near a partial solution x t( ) of a nonlinear system, the set �
j
is called the

Lyapunov characteristic exponents (LCEs) of the solution x t( ) (or a phase path).

To describe the mechanism of occurrence of compound motions in a system with one singular point, we need to:

– plot separatrices that separate the field on the coordinate plane that is associated with the bifurcation process;

– analyze the trajectories of the generator for stability;

– prove the existence of the domain into which the trajectories of the generator are attracted [11];

– describe the phenomenon of multistability in terms of the qualitative results obtained.

The existence of the domain into which unstable trajectories are attracted [11] indicates that one sign in the signature of

the LCE spectrum is a minus (–). Since we are considering the oscillatory process in a three-dimensional dissipative system, the

signature of the LCE spectrum has two signs (0, –), i.e., the characteristic exponents are �
2

0� and �
3

0
 . An orbitally stable

trajectory is characterized by the inequality � � �
1 2 3

0� � 
 , and an orbitally unstable trajectory by the inequality

� � �
1 2 3

0� � � .

Proving the existence of the domain into which the trajectory is attracted is sufficient to state that an attractor exists,

provided that there is one singular point. The Lyapunov instability of the trajectory in this case may be identical to orbital

instability and is represented by a plus (+) in the signature of the LCE spectrum.

Let us outline another approach to proving the existence of an attractor in a three-dimensional system.

Assumption 1. System (4) is unstable in the neighborhood of zero. System (4) with n = 3 has one singular point. The

saddle-focus has characteristic exponents Re ,Re ,� � �
1 2 3

0 0 0� � 
 and saddle value � � � �� � � 
Re Re
1 2 3

0.

Assumption 2. On one coordinate plane and planes parallel to it, system (4) has a circular trajectory around a singular

point, representing the damped oscillations of an oscillator. On the other two planes and planes parallel to them, the trajectory

does not go to �.

Statement. Let the differential system (4) satisfy Assumptions 1 and 2. Then an attractor exists in the neighborhood of

the singular point (saddle-focus).

Proof. According to Assumption 1, the circular trajectory of system (4) around the singular point, which is a

saddle-focus, is unstable. According to Assumption 2, the existence of a damped circular trajectory on one of the coordinate

planes is indicative of the dissipative nature of the motion. Assumption 2 suggests that the trajectory does not go to infinity, but

rather remains in some neighborhood of the saddle-focus. Thus, in system (4), there is an attracting trajectory that does not go to

�, but can be orbitally unstable.

2. Bifurcations on Phase Planes. Each of systems (1) and (3) has one singular point O( , , )0 0 0 . Introducing small

deviations 	 	 	x y z, , from the partial solutions x t( ), y t( ), z t( ) in (1) and (3), we set up variational equations:

d x

dt

m z x y x z

	
	 	 	� � � �( ) ,

d y

dt

x

	
	� � ,

d z

dt

b z x x

	
	 	� � �( )2 , (5)
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d x

dt

m z x y x z

	
	 	 	� � � �( ) ,

d y

dt

x

	
	� � ,

d z

dt

b z e x
x

	
	 	� � �( ). (6)

The characteristic equation of system (5) is

� � �
3 2 2

2 1 0� � � � � � � � �( ) ( ( ) )b z m b z m bx b . (7)

The characteristic equation of system (6) is

� � �
3 2

1 0� � � � � � � � �( ) ( ( ) )b z m b z m be x b
x

. (8)

The roots of systems (7) and (8) corresponding to the singular point O( , , )0 0 0 can be found from the equation

� � �
3 2

1 0� � � � � � �( ) ( )b m bm b or ( )( )� � �� � � �b m
2

1 0. They are �
1 2

2
2 2 1

,
/ ( / )� � �m m and �

3
� �b. If

0 2
 
m , b � 0.2, (9)

then the roots �
1
and �

2
are complex. Let us show that there are points on the z-axis at which Eqs. (7) and (8) divide into two.

Equations (7) and (8) have the form ( )( )� � �� � � �b b
2

1 0 at the point A x y z m b( , , )� � � �0 0 . At this point A, the

characteristic numbers �
1 2

2
2 2 1

,
/ ( / )� � � �b b and �

3
� �b. At the point C x y z m( , , )� � �0 0 , Eqs. (7) and (8) have the

form ( )( )� �� � �b
2

1 0 and the characteristic numbers �
1 2,

� �i and �
3

� �b. The characteristic equations (7) and (8) do not

have the partial solution y t( ), which indicates that the bifurcation process is not related to the partial solution y t( ).

Thus, the real part of the two complex-conjugate roots reverses sign at the pointC. This facilitates the plotting of the

separatrix on the plane xz.We use the characteristic equation (8) to plot curves that divide the plane xz into domains with different

behavior of points.

Figure 1a shows the separatrix that divides the plane xz of an exponentially nonlinear generator. The points lying below

the separatrix correspond to the positive real part of the complex roots. The roots on the separatrix are Re
,

�
1 2

0� and �
3

0
 .

The dotted curves in Fig. 1b are those separatrices on which the complex roots become real. On the upper branch, we have

�
1 2

0
,


 and �
3

0
 (hereafter, ( , ) (m b � 1, 0.2)). The absolute values of the real roots increase on the curves from left to right; for

example, the characteristic numbers have the following values at some points: �
1 2

09761
,

.� � and �
3

02099� � . at x � �3,

z � 29621. ; �
1 2

1
,

� � and �
3

02� � . at x � 0, z � 3; �
1 2

37984
,

.� � and �
3

00139� � . at x � 3, z � 84107. . On the lower branch, we

have �
1 2

0
,

� and �
3

0
 . The absolute values of the real roots increase on the curves from left to right; for example, the

characteristic numbers have the following values at some points: �
1 2

09895
,

.� and �
3

02042� � . at x � �3, z � �09747. ; �
1 2

1
,

�

and �
3

�–0.2 at x � 0, z � �1; �
1 2

34293
,

.� and �
3

00170� � . at x � 3, z � � 604115. . The field on the plane xz is asymmetric. This

gives rise to an asymmetric domain into which trajectories can be attracted after the formation of an attractor.

3. Proving the Existence of the Domain intoWhich the Trajectories of a Quadratically Nonlinear Generator are

Attracted. Introduce a variable � � �z Km, where K is a positive number. Let us represent Eqs. (1) as
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dx

dt

mx x Km y� � � �( )� ,
dy

dt

x� � ,
d

dt

b Km bx

�
�� � � �( )

2
. (10)

Introduce a function

2
2 2 2

V bx by� � � � (11)

and define its total derivative along the solutions of system (10) as

dV

dt

bm K x b Km� � � � �( ) ( )1
2 2

� � . (12)

The variable ydoes not appear in (12). Let us show that the trajectory of system (10) is attracted into the ellipse defined

by the equation dV dt/ � 0.

Using Eqs. (12), we get

� � � � �
�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

� �bm K x b Km

Km

b

Km

( )1
2 2

2 2

2 2

� � 0

(where a constant has been added and subtracted), and, next,

m K x

Km Km

( )� � �
�

�

�

�

�

� �
�

�

�

�

�

�1
2 2

2

2 2

� . (13)

The ellipse is described by the equation

x

A

Km

B

2

2

2

2

2
1� �

�

�

�

�

�

� �� A

Km

m K

B

Km

�

�

�

�

�

�

�

�

�

�

�
2 1 2( )

, .

Its center is at the point x Km� � �0 2, /� . The domain inside ellipse (13) attracts the trajectory of system (10). This

domain generates an attractor. The existence of a regular attractor can be proved using the symmetry principle.

4. Symmetry Theorem. The principle of symmetry in three-dimensional systems is to find a coordinate plane onto

which a spatial integral curve is projected as a closed symmetric curve. On two other coordinate planes, the process must be

stable and can be accompanied by symmetry.

Let us transfer the origin of coordinates to the pointC and introduce a new coordinate systemwithCx-,Cy-, andCz-axes

parallel to the Ox-, Oy-, and Oz-axes. The system of equations (1) becomes

dx

dt

xz y� � � ,
dy

dt

x� � ,
dz

dt

b z m x� � � �( )
2
.

The system of three differential nonlinear equations is represented as

dx dt xz y/ � � � , dy dt x/ � � , dz dt b z m f x/ ( ( ))� � � � , (14)

where m and b are positive parameters.

Assume that the function f x( ) is defined, continuous, and satisfies the uniqueness condition for solutions at each point

x. Let a closed trajectory lie on a surface and possess some type of symmetry. It is possible to identify a plane onto which the

trajectory is projected as a closed curve. The closed trajectory has certain projections onto the other two planes. The last two

projections onto the coordinate planes can be symmetric and nonclosed. Another assumption is related to the instability of

system (14) in the neighborhood of zero. Since two-dimensional projections allow predicting geometrical symmetry and

stability, what has been said above can be formulated as a theorem.

Theorem. Consider system (14) under the following assumptions:

(i) system (14) has an unstable solution in the neighborhood of zero;

(ii) the motion of system (14) on the plane xz is described by the system
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dx dt xz/ � � , dz dt b z m f x/ ( ( ))� � � � , (15)

which contains two stable symmetric equilibrium positions. Then a closed integral curve exists in the three-dimensional system

(15).

Proof. The motion of system (14) on the plane xy is described by the system

dx dt y/ � , dy dt x/ � � , (16)

which has a symmetric closed trajectory: the singular point is a center; the trajectory on the plane is symmetric about the x- and

y-axes. The motion of system (14) on the plane yz is described by the system

dy dt/ � 0, dz dt bz m/ � � � . (17)

The singular point of system (17) has characteristic numbers �
1

0� and �
2

� �b. Let the initial conditions of system

(14) generate a closed symmetric trajectory of system (16). Then system (15) is perturbed, and trajectories tending to the singular

points ( , )�x
0
0 form. The oscillations of system (15) become a stable process characterized by an integral curve symmetric in the

space xyz. The projection of system (17) onto the plane yz does not counteract this process. The theorem is proved.

Consider the motion of system (14) on the plane xz described by the system of equations

dx dt xz/ � � , dz dt b z m x/ ( )� � � �
2
. (18)

Let us find the singular points of system (18). Let z � 0. System (18) has two singular points with coordinates x m� �

and z � 0. The singular points C m
1

0( , ) and C m
2

0( , )� have characteristic numbers �
1 2

2 1 1 8
,

/ ( / )� � � �b m b . The

occurrence of a closed trajectory in system (14) is associated with the initial perturbation of the variable x, which perturbs the

variable y. Since all the conditions of the theorem are satisfied, it may be stated that a closed curve exists in system (14).

Let us apply the comparison method to prove the instability of system (1). Let us introduce functions

V x V y V x z
1

2

2

2

3

2 2
2 2 2 2� � � �/ , / , / / . The derivatives of the functionsV j

j
( , , )�1 2 3 along the solutions of system (1)

can be estimated as

dV

dt

mx x z xy mx y x z x
1 2 2 2 2 2 2 4

2 2 2 2� � � � � � � �/ / / / ,

dV

dt

xy x y
2 2 2

2 2� � � �/ / ,

dV

dt

bx z mx x z xy bz m b x y b x
3 2 2 2 2 2 2

2 2 2 1� � � � � � � � � �( / ) / / ( )(
2 2 4

2 1 2� � �z b x) / ( ) / .

Here derivatives of two variables are replaced by sums:

� � � � � � � � �bx z bx bz xy x y x z x z
2 4 2 2 2 2 4 2

2 2 2 2 2 2/ / , / / , / / .

Consider the system of equations

d

dt

m

�

� � � � � � � �
1

1 2 3 1

2
2 2 ,

d

dt

�

� � � �
2

1 2
,

d

dt

m b b b

�

� � � � � � � � � � �
3

1 2 3 1

2
2 1 2 1( ) ( ) ( ) . (19)

If b 
1, then the comparison system (19) shows that the trajectory goes away from zero. Let ( , ) (m b � 1, 0.2).

227



The symmetry theorem is of geometrical nature. Consider the mechanism of formation of a periodic three-dimensional

curve with symmetry. In analyzing motions on the coordinate planes, the basic goal is to find a plane on which a closed curve

symmetric about two axes forms (plane xy). The other two coordinate planes stabilize the qualitative pattern and symmetry when

the singular points of systems (15) and (17) are stable.

Figure 2a shows a section of the limit cycle of the generator and the boundary of the domain into which the cycle (K �

2.5, A �1.53,B �1.25) is attractedwhen ( , ) (m b � 1, 0.2). The initial perturbation x
0

�–2.5. Figure 2b illustrates the limit cycle.

5. Proving the Instability of the Trajectory of an Exponentially Nonlinear Generator. Let us analyze the trajectory

of system (3) for stability using the comparison method. Recall some principles and a theorem used for this purpose. The

comparison method involves setting up comparison equations (Wazewski-type equations) that are quasimonotonic. Major

references and results on the stability of monotonic systems are presented in [3, 8].

Consider the system

d

dt

q
j

j k

�

� � �( , , )
1

� , j k�1, ... , , (20)

under the following assumptions:

1. System (20) is a Wazewski system, i.e., the components of the vector function q( )� are quasimonotonically

increasing functions. For the function q( )� to quasimonotonically increase, it is necessary and sufficient that 
 
� �q
j i
/ 0 for

j i� .

2. The right-hand side of system (20) is continuous and the solution of the Cauchy problem for any� �
0

R
k
is locally

unique.

Theorem on Instability ofWazewski System in a Cone K (see [3, 8]). If theWazewski system satisfies Assumptions

1 and 2 and there exists a sequence of points� �
m

K ,� �
m

0asm� �, such that the following inequalities hold for eachm:

q j k
j m
( ) , ,... ,� � �0 1 , (21)

and at least for one j the inequality is strict and there exists a neighborhoodV of zero such that the vector field is not equal to zero

on the set K V

m
�

� , then the zero solution of system (20) is unstable in the cone.

Let us introduce functions x
2

2/ , y
2

2/ , z
2

2/ . The derivatives of these functions along the solutions of system (3) can

be estimated as

x

dx

dt

mx x z xy m x y z x� � � 
 � � � �
2 2 2 2 2 4

1 2 2 2 2( / ) / / / ,

y

dy

dt

xy x y� � � �
2 2

2 2/ / ,

228

a b

Fig. 2

z

0.9

0

0.6
–1

1

–2 –1 0 1 2 x

z

y

x

0.95

1.0

1.05

–0.4

–1.4

0.6

–0.4

–1.4



z

dz

dt

bz be z bz b z b e b
x x

� � � � 
 � � � �
2 2 2 2

1 2 2 2( ) / / ( ) / , (22)

where the products of two variables x z
2
, xy e z

x
, are replaced by a sum of squares, such as � � �x z x z

2 4 2
2 2/ / . Also

� 
 �e z e z
x x

( ) / /
2 2

2 2and � 
 �bz b z
2 2

2 2/ / .

Consider the system

d

dt

m

�

� � � � � � � � �
1

1 2 3 1

2
2 1 2 2( / ) ,

d

dt

�

� � � �
2

1 2
,

d

dt

b b e b

�

� � � � � �
�3

3

2 2 2
1 2 21( ) / ( ) / . (23)

If the functions on the right-hand side of (23) satisfy the conditions of the instability theorem, then system (3) is

unstable.

6. Proving the Existence of the Domain intoWhich the Trajectories of an Exponentially NonlinearGenerator are

Attracted. Introduce a variable � � � �z Km b( ), where K is a positive number. If the nonlinearity is represented by a power

series e x x
x

� � �1 2
2
/ , then Eqs. (3) become

dx

dt

mx x Km b y� � � � �( )� ,

dy

dt

x� � ,

d

dt

b Km b bx bx

�
�� � � � � �( ) /

2
2. (24)

We introduce the function

V

bx by

� � �

2 2
2

2 2
� .

The total derivative of the functionV along the solutions of system (24) is defined by

dV

dt

b m K b x b b Km b bx� � � � � � � �( ( ) ) ( )1 2 2 2
2 2

� � � . (25)

The variable y does not appear in (25).

The derivatives of two variables 2x� in (25) are replaced by a sum of squares because �2x� � x
2 2

� � . Then the

derivative of the function can be estimated as

dV

dt

b m K b x b b Km b� � � � � � � �( ( ) ) ( )1 1 2
2 2

� � . (26)

The right-hand side of inequality (26) is continuous for x � 0and � �� such that the comparison equation

d

dt

b m K b x b b Km b

�
� � � � � � � �( ( ) ) ( )1 1 2

2 2
� � (27)

has a unique solution satisfying the initial condition� � � (x
0
, �

0
) at each point in the domain of definition.

It is easy to show that the trajectories lie inside the ellipse defined by the equation d dt� �/ 0. Using Eq. (27), we get
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( ( ) ) ( )m K b x Km b� � � � � � �1 1 2 0
2 2

� � ,

( ( ) ) ( ( )) ( )m K b x Km b Km b� � � � � � � �1 1
2 2 2

� .

The ellipse is described by the equation

x

A

Km b

B

2

2

2

2
1�

� �
�

( ( ))�

A

Km b

m K b

B Km b�
�

� � �

� �

�

�

�

�

�

�

�

�
( ( ) )

,

1 1

. (28)

Its center is at the point x Km b� � � �0, ( )� . The domain inside ellipse (28) attracts the trajectories of system (3). For

this domain, d dt� 
/ 0. This domain is approximate because the nonlinear term is represented by a power series. System (3)

describes an oscillatory process in the neighborhood of zero, and the function exp
x
is bounded ( )�� 
 
 ��x . Therefore, the

Lyapunov unstable trajectory does not go to � if there is an initial perturbation in x. Thus, it has been proved that the domain into

which the trajectory of system (3) is attracted exists. This domain gives rise to an attractor.
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0.1 Strange attractor
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–0.5 Strange attractor

�1 Limit cycle

�1.5 Limit cycle

2.5 Strange attractor

–2.5 Limit cycle



The symmetry theorem does not state whether a regular attractor exists in system (3) or not. A regular attractor may

form if the bifurcation process makes the separatrices symmetric (Fig. 1a, b). It may be assumed that weak asymmetry in the

neighborhood of zero still allows the trajectory to close. The parameter m in (2) defines the level of negative dissipation.

Decreasing the value of m in (3) may cause the trajectory to close. As the parameter of negative dissipation is increased, the

system becomes orbitally unstable. Let at m m
k

� the process be stable and, as an experiment shows, a closed trajectory exist in

system (3). Figure 3a shows the trajectory for ( , )m b � (0.7, 0.2). As the parameter m is increased, the representative point slows

down and the trajectory displays period multiplication. The slowing down is associated with the bifurcations on the plane xz

(Fig. 1). Figure 3b shows the boundary of the approximate domain for ( , )m b � (0.92, 0.2) and the projection of the attractor onto

the plane xz. Thus, the way to the strange attractor lies through period multiplication.

On Multistability. The physical phenomenon of multistability is associated with the asymmetry of the field about the

z-axis and is that the asymmetric function appearing in the inertial transformer generates an asymmetric field (Fig. 1a, b) that

forms an asymmetric attracting domain. Limit cycles are born in one case (if negative dissipation is relatively weak) and a limit

cycle and a strange attractor are born in the other case (if negative dissipation is strong). Table 1 demonstrates that the sign and

value of the initial perturbation (x
0
) affect the behavior of the attractor (( , ) (m b � 1, 0.2)).

Figures 4a and 4b show the limit cycle and the strange attractor represented in Table 1. The regular and strange

attractors are shown against the separatrices that separate the field of the plane xz (Fig. 1).

Thus, when m m
k

� , a limit cycle (Fig. 4a) and a strange attractor (Fig. 4b) generated by orbital instability can exist.

In summary, it should be pointed out that the qualitative analysis of bifurcations for three-dimensional systems can also

describe the mechanism of occurrence of compound motions.

REFERENCES

1. V. S. Anishchenko, Complex Oscillations in Simple Systems [in Russian], Nauka, Moscow (1990).

2. S. A. Koblyanskiy, A. V. Shabunin, and V. V. Astakhov, “Forced synchronization of periodic oscillations in a system

with phase multistability,” Rus. J. Nonlin. Dyn., 6, No. 2, 277–289 (2010).

3. A. A. Martynyuk and A. Yu. Obolenskii, “Stability of solutions of Wazewski’s autonomous systems,” Diff. Uravn., 16,

No. 8, 1392–1407 (1980).

4. N. V. Nikitina, Nonlinear Systems with Complex and Chaotic Behavior of Trajectories [in Russian], Feniks, Kyiv

(2012).

5. V. S. Anishchenko, S. V. Astakhov, and T. E. Vadivasova, “Diagnostics of the degree of noise influence on a nonlinear

system using relative metric entropy,” Regul. Chaot. Dynam., 15, No. 2–3, 263–276 (2010).

6. V. A. Krys’ko, T. V. Yakovleva, V. V. Dobriyan, and I. V. Papkova, “Wavelet-analysis-based chaotic synchronization

of vibrations of multilayer mechanical structures,” Int. Appl. Mech., 50, No. 6, 706–720 (2014).

7. G. A. Leonov, Strange Attractors and Classical Stability Theory, University Press, St. Peterburg (2008).

231

a b

Fig. 4

C

–4 –3 –2 –1 0 1 2 3 x –4 –3 –2 –1 0 1 2 3 x

z

–6

z

–4

–2

0

2

4

6

8

–4

–2

0

2

4

6

8



8. A. A. Martynyuk, “Asymptotic stability criterion for nonlinear monotonic systems and its applications (review),” Int.

Appl. Mech., 47, No. 5, 475–534 (2011).

9. A. A. Martynyuk and N. V. Nikitina, “Bifurcation processes in periodically perturbed systems,” Int. Appl. Mech., 49,

No. 1, 114–121 (2013).

10. A. A. Martynyuk and N. V. Nikitina, “Stability and bifurcation in a model of the magnetic field of the Earth,” Int. Appl.

Mech., 50, No. 6, 721–729 (2014).

11. Yu. I. Neimark and P. S. Landa, Stochastic and Chaotic Oscillations, Kluwer, Dordrecht (1992).

12. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua,Methods of Qualitative Theory in Nonlinear Dynamics,

Part I, World Scientific (1998).

13. L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, and L. O. Chua,Methods of Qualitative Theory in Nonlinear Dynamics,

Part II, World Scientific (2001).

232


	Abstract
	Keywords
	Introduction
	1. Problem Formulation
	2. Bifurcations on Phase Planes
	3. Proving the Existence of the Domain into Which the Trajectories of a Quadratically Nonlinear Generator are Attracted
	4. Symmetry Theorem
	5. Proving the Instability of the Trajectory of an Exponentially Nonlinear Generator
	6. Proving the Existence of the Domain into Which the Trajectories of an Exponentially Nonlinear Generator are Attracted
	On Multistability

	References

