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The general solution to the problem of the nonaxisymmetric electromechanical vibrations of a

piezoceramic ring plate is found. The effect of boundary conditions (clamped edge–free edge, free

edge–clamped edge, free edge–free edge) on the natural frequency spectra (for the first circumferential

harmonics) of plates with radially cut electrode coating is numerically analyzed
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Introduction. Thin piezoelectric planar transducers with thickness polarization are widely used in modern

electromechanical converters of various functionality [2–4, 6–8, 10–12, etc.]. Disk- and ring-shaped vibrators with solid

electrodes on the faces undergo axisymmetric vibrations [4, 9]. The vibrations will be nonaxisymmetric with respect to the

circumferential coordinate if the electroelastic sectors of a ring plate with radially cut electrodes are excited in antiphase. The

circumferential vibration modes and the associated frequencies are determined by the number of radial cuts in the electrodes [2,

3, 11, 12]. Here we will compare the frequency spectra of a plate with boundary conditions of three types.

1. Problem Formulation. Basic Equations. Consider a piezoceramic plate ( )r r r
0 1
� � of thickness h. To describe the

plate, we will use a cylindrical coordinate system r z, ,� with the plane z � 0 coinciding with the midsurface of the plate. This

thickness-polarized thin plate with electroded faces z h� � / 2 is in plane stress state ( ( , , )u r t
r

� , u r t
�

�( , , ),

� � �
�zz z zr

� � � 0, E E
r
� �

�
0, E r t

z
( , , ))� . As shown in [2, 5, 7, 10, 13], the displacements u

r
and u

�
can be expressed in

terms of potentials �( , , )r t� and�( , , )r t� :
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The functions �( , , )r t� and�( , , )r t� can be determined from wave equations:
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The mechanical stresses can be found from the formulas
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The electric potential for a plate with solid electrodes on the faces z h� � / 2is given by � �
�

h zV t
1

0
( ), the edge effect

being neglected. This potential corresponds, according to [2, 8], to an electric field with E E
r
� �

�
0, E h V t

z
�

�1

0
( ); hence, as

shown in [7–9, 12, 13], the term ( )1
31


 
E z

d E in Eq. (3) should be omitted.

The homogeneous boundary conditions for displacements and stresses (at r r�
0
and r r�

1
) in a circular piezoceramic

plate of radius r
1
with a hole of radius r

0
are taken one from each of the following two pairs ( j � 0 1, ):

u r t r t
r j rr j
( , , ) ( , , )� � �� �0 0� ,

u r t r t
j r j� �
� � �( , , ) ( , , )� �0 0� . (4)

The initial conditions for steady-state harmonic vibrations are not formulated.

2. Problem-Solving Method. Let the electrode coating on the faces z h� � / 2 be cut into 2N sectors, and adjacent

sectors be connected in antiphase so that E V h
z

n

a
� �

�
( ) /1

1

0
, n N�1 2, ,� . If vibrations are harmonic,

f r t f r i t( , , ) Re ( , )exp� � ��
a

, where�is the angular frequency, then a candidate solution to Eqs. (2) (the term ( )1
31


  d E
z
in

the first equation should be equated to zero [3, 10]) in polar coordinates r, � can be chosen in the form of series:

�( , , ) Re { ( ) ( )}sin exp
, ,

r t R A J k r A Y k r m i
m m m m

m

� � �� 
�
2

1 1 2 1
t,

�( , , ) Re { ( ) ( )}cos exp
, ,

r t R A J k r A Y k r m i
m m m m

m

� � �� 
�
2

3 2 4 2
t, (5)

where J k r
m j
( ) and Y k r

m j
( ) are mth-order cylindrical functions of the first and second kinds [1]; k s

E
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( ) �� ; A

m i,
are dimensionless constants.

From (1) and (3), we can find, according to [9, 12], the displacements
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and the stresses

� �


rr

E

E
m m m m

r t

s

a k r A a k r A( , , ) Re

( )

( ) ( )
, ,

� �

�



1

1
2

11

1 1 1 2 1� 2

m

�

 

!

"

#
 
 
 
a k r A a k r A m V d

N

m m m m E3 2 3 4 2 4 0 13

4
1( ) ( ) sin ( )

sin (

, ,
�

$


2 1

2 1
1

n

n

i t

n

�

�

%

&

'

(
'�

)

�
)

exp
�

� ,

� �


��

( , , ) Re

( )

( ) ( )
, ,

r t

s

b k r A b k r A

E

E
m m m m

� �

�



1

1
2

11

1 1 1 2 1� 2

m

�

 

!

"

#
 
 
 
b k r A b k r A m V d

N

m m m m E3 2 3 4 2 4 0 13

4
1( ) ( ) sin ( )

sin (

, ,
�

$


2 1

2 1
1

n

n

i t

n

�

�

%

&

'

(
'�

)

�
)

exp
�

� ,

188



� �


�r

E

E
m m m m

r t

s

c k r A c k r A( , , ) Re

( )

( ) ( )
, ,

�





 

1

1
11

1 1 1 2 1 2� c k r A
m m

m

3 2 3
( )

,�

#
 c k r A m i t
m m4 2 4

( ) cos exp
,

� � , (7)

where

� #a k r k rJ k r k r m m J k
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2 2
1 1 1( ) ( ) ( ) ( ) ( ) (� � 
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 * +1
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na
� �

� �
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1
(n N�1 2 2, , ,� ) and the electric-field strength E E i t

z z
� Re exp

a
� can be expanded into a

Fourier series in the angular coordinate �:
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we have m N n� �( )2 1 , n �1, 2, …, in formulas (6)–(8).

In the resonance case, the concept of complex moduli [2, 9] has to be used, i.e., the material constants should be

considered complex (
~ Im
s s is
ij

E

ij

E

ij

E
� � ,

~ Im
d d id
ij ij ij
� � ,

~ Im
, , ,
ij

T

ij
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ij
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i� � ).

189



To determine the resonant frequencies, it is possible to neglect the loss tangents as small and to use the real values of the

material constants.

When N � 0, the electroelastic vibrations are radial and azimuthal:
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The natural frequencies of electroelastic radial vibrations (11) are analyzed in [12]. Azimuthal vibrations (11), which

cannot be excited electrically, are addressed for a fuller analysis of the results.

For N - 0, the frequencies of radial (problem (10)) and azimuthal (problem (11)) vibrations will be called quasiradial

and quasiazimuthal, respectively.

Consider a ring plate with the inner edge (r r�
0
) clamped and the outer edge (r r�

1
) free:

u r t
r
( , , )
0

0� � , u r t
�

�( , , )
0

0� , � �
rr

r t( , , )
1

0� , � �
�r
r t( , , )
1

0� (12)

with the inner edge (r r�
0
) free and the outer edge (r r�

1
) clamped:
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and with the inner (r r�
0
) and outer (r r�

1
) edges free:
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Using expressions (6), (7) and boundary conditions (12), we obtain block systems of algebraic equations for the

dimensionless constants A
N n i( ),2 1�

(n �1 2, ,�, i �1, . . ., 4):
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The resonant frequencies can be determined by equating the fourth-order determinants of the homogeneous (atV
0

0� )

systems of algebraic equations (15) to zero:
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u k r u k r u k r u k r

l k r l k

m m m m

m m

1 1 0 2 1 0 3 2 0 4 2 0

1 1 0 2

( ) ( ) ( ) ( )
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Using the boundary conditions (13) and the expressions for the displacements and stresses, we obtain block systems of

algebraic equations for the dimensionless constants:
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The formulas to determine the resonant frequencies for the boundary conditions (14) follow from the existence

condition for the nontrivial solutions of the homogeneous (V
0

0� ) systems of equations (17):

a k r a k r a k r a k r

c k r c k

m m m m

m m

1 1 0 2 1 0 3 2 0 4 2 0

3 1 0 3

( ) ( ) ( ) ( )

( ) (
1 0 1 2 0 2 2 0

1 1 1 2 1 1 3 2 1

r c k r c k r

u k r u k r u k r u

m m

m m m

) ( ) ( )

( ) ( ) ( )
m

m m m m

k r

l k r l k r l k r l k r

4 2 1

1 1 1 2 1 1 3 2 1 4 2 1

( )

( ) ( ) ( ) ( )

.

.

.

.

..

.

.

.

.

..

� 0. (18)

The boundary conditions (14) yield block systems of algebraic equations for the dimensionless constants A
N n i( ),2 1�
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The resonant frequencies can be determined by equating the fourth-order determinants of the homogeneous (atV
0

0� )

systems of algebraic equations (20) to zero:
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In (16)–(20), m N n� �(2 1) (n �1 2, , …, N is the number of radial cuts in the electrode coating).

The following general properties of the theoretical frequency spectrum of a plate with different number (N) of radial

cuts can be found from the boundary conditions (12)–(14), formulas (6) and (7), and the frequency equations (16), (18), and (20):

if N �1(two electrodes), then resonances occur at frequencies f
k1,
, f

k3,
, f

k5,
, …;

if N � 2(four electrodes), then f
k2,
, f

k6,
, f

k10,
, …;

if N � 3(six electrodes), then f
k3,
, f

k9,
, f

k15,
, …;

if N � 4 (eight electrodes), then f
k4,
, f

k12,
, f

k20,
, …;

if N � 5(ten electrodes), then f
k5,
, f

k15,
, f

k25,
, …;

if N � 6(12 electrodes), then f
k6,
, f

k18,
, f

k30,
, …;

if N � 7(14 electrodes), then f
k7,
, f

k21,
, f

k35,
, …;

if N � 8(16 electrodes), then f
k8,
, f

k24,
, f

k40,
, … .

In the notation of frequencies f
m k,

, the subscript “m” is the harmonic number with respect to the azimuth �

(circumferential mode number) and the subscript “k” is the root sequence number of the frequency equation.

3. Analysis of Numerical Results.The dimensionless resonant frequencies �  ��� �( )1
2

11 1E

E
s r calculated fromEqs.

(17), (19), and (21) for TsTS-19 piezoceramic [2] with characteristics r r
0 1
/ �0.4,� �7740 kg/m

3
, s

E

11

12
152 10� /

�
. m

2
/N, s

E

12
�

� /
�

58 10
12

. m
2
/N, d

31

12
125 10� � /

�
C/N are summarized in Tables 1, 2, and 3, respectively.

When N � 0(axisymmetric vibrations) and one (inner or outer) of the edges is clamped (boundary conditions (12) and

(13)), the second, fifth, and seventh frequencies represent radial vibrations (10) and the first, third, fourth, and sixth frequencies

represent azimuthal vibrations (11).When the edges are free, the first, third, and sixth frequencies represent radial vibrations and

the second, fourth, fifth, and seventh frequencies represent azimuthal vibrations. When one edge is clamped (boundary

conditions (12) and (13)), the natural frequencies approach each other with increasing mode number. This is also true for the

boundary conditions (14) (free edges), but the associated frequencies are lower.

Depending on the boundary conditions for the piezoceramic plate and the number N of cuts in its electrode coating, the

first natural frequencies, both quasiradial and quasiazimuthal, for conditions (13) and (14) are considerably different (sometimes
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TABLE 1

k

N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 0.77405 1.2108 1.85491 2.31119

2 2.7658 2.70754 2.87211 3.50261

3 4.24997 4.61023 5.4193 6.40551

4 7.211044 7.05481 6.88761 6.87753

5 7.93913 8.24799 8.85883 9.53872

6 10.14251 10.15934 10.23068 10.43583

7 13.06489 13.04537 13.09362 13.22587



two- or three-fold) from those for condition (15). As the frequency number increases, the difference decreases to approximately

10% for the seventh frequency.

With increase in the number N of cuts in the electrode coating of the plate (even with only one edge clamped), the

frequencies corresponding to small k become higher, and the frequency spectrum becomes more crowded in the high-frequency

range.

It is of interest to analyze the dependence of the frequency spectrum on the geometry of the ring. Tables 4, 5, and 6 give

the values of the first frequency as a function of the ratio r r
0 1
/ for different values of N and the following boundary conditions:

clamped edge–free edge, free edge–clamped edge, and free edge–free edge, respectively.

The tables indicate that the frequencies strongly depend on the ring geometry and the number of cuts. The frequency is

maximum for N �1and decreases with increasing radius of the hole for N � 2, 3, 4. With such a geometry of the ring, the

frequency of vibrations increase with the number of cuts. As the ratio r r
0 1
/ is increased, the natural frequencies determined from

(16) and (18) can differ severalfold from those determined from (20). The greater the ratio r r
0 1
/ , the more the difference.
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TABLE 2

k

N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 2.31578 2.46586 2.70391 3.14207

2 3.20884 3.3252 3.93292 4.80765

3 4.81907 5.20747 6.05161 6.743159

4 7.56991 7.377518 7.278965 7.747007

5 8.04387 8.391521 8.976372 9.558131

6 10.40329 10.43448 10.56156 10.88514

7 13.20124 13.1704 13.22125 13.38097

TABLE 3

k

N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 1.42334 1.6265 0.69281 1.54389

2 3.31746 3.85103 2.34721 3.18735

3 5.49151 5.20302 4.85053 4.97488

4 6.05803 6.53165 5.05288 6.17078

5 8.896337 8.88278 7.294018 7.983204

6 10.59329 10.72654 8.93175 9.28126

7 11.76887 11.81621 11.049 11.42551



Conclusions. Nonaxisymmetric planar electroelastic vibrations can be excited in thin piezoceramic ring plates with

radially cut electrode coating. The general solution to the relevant problem has been found. The natural frequency spectra for

lower circumferential harmonics have been numerically analyzed for three types of boundary conditions, different number of

radial cuts in the electrode coating, and different ratios of inner and outer radii of the plate. The dependence of the quasiradial and

quasiazimuthal natural frequencies on the frequency number and the number of cuts in the electrode coating has been

established. It has been established that the natural frequencies of the plate with one edge clamped are higher than those of the

194

TABLE 4

r r
0 1
/

N � 1,

�
1 1,

N � 2,

�
2 1,

N � 3,

�
3 1,

N � 4,

�
4 1,

0.1 0.71165 1.34364 2.00921 2.61817

0.2 0.87091 1.45357 2.03302 2.62141

0.3 1.02743 1.62725 2.1194 2.6486

0.4 1.21076 1.85491 2.31119 2.75133

0.5 1.45919 2.12615 2.64278 3.01045

0.6 1.84263 2.46673 3.10797 3.52854

0.7 2.5143 3.02277 3.6822 4.32559

0.8 3.91731 4.2612 4.77424 5.39814

0.9 8.23944 8.40371 8.67026 9.02956

TABLE 5

r r
0 1
/

N � 1,

�
1 1,

N � 2,

�
2 1,

N � 3,

�
3 1,

N � 4,

�
4 1,

0.1 1.95992 2.75578 3.79396 4.56191

0.2 2.06778 2.50631 3.55341 4.4994

0.3 2.23762 2.50406 3.22194 4.15698

0.4 2.46665 2.70391 3.14207 3.81339

0.5 2.7481 3.08122 3.36569 3.78359

0.6 3.11977 3.60247 3.93426 4.18378

0.7 3.74549 4.21597 4.81566 5.20081

0.8 5.0915 5.42034 5.92438 6.5546

0.9 9.3562 9.51646 9.77759 10.13163



plate with all edges free. The natural frequencies of a plate with such boundary conditions can be changed by varying the

geometry of the plate or the number of cuts.
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TABLE 6

r r
0 1
/

N � 1,

�
1 1,

N � 2,

�
2 1,

N � 3,

�
3 1,

N � 4,

�
4 1,

0.1 1.56127 1.23169 2.00392 2.618

0.2 1.58725 1.05552 1.95461 2.61131

0.3 1.61479 0.86562 1.79267 2.55171

0.4 1.62666 0.69304 1.54389 2.35656

0.5 1.61051 0.54047 1.27326 2.04243

0.6 1.56808 0.4038 1.00296 1.67866

0.7 1.50873 0.28052 0.73471 1.28545

0.8 1.44201 0.17266 0.4703 0.8614

0.9 1.37384 0.07913 0.22072 0.41876
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