
EXPERIMENTAL STUDY OF THE VIBRATIONS OF A COMPOSITE CYLINDRICAL

SHELLWITH A FILLER SUBJECT TO TWO-FREQUENCY EXCITATION
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Experimental results on the nonlinear dynamic deformation of the elastic wall of a glassfiber-reinforced

plastic cylindrical shell (either “dry” or filled) during beating caused by kinematic two-frequency

loading are discussed. It is revealed that the nonlinear deformation of a shell undergoing beating,

especially at the two close frequencies of the modes n = 3 and n = 5, can be accompanied by the alteration

of amplitude and deformationmode between onemode n = 3 and combinedmode (n = 3) + (n = 5) and the

alternation of one mode n = 3 between a traveling wave and a standing wave
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Introduction. The deformation of elastic cylindrical shells is strongly dependent on major factors (external periodic

loading) and other factors. For example, the presence of a filler (fluid or loose material) in thin-walled cylindrical shells may

result in compound multimode or multiwave dynamic deformation under certain conditions (free vibraions or external periodic

loads). Many theoretical and experimental studies [2, 3, 6–9, 12–14] address the deformation of shell structures and nonlinear

and resonant phenomena caused by the imposition and nonlinear interaction of several flexural vibration modes, which create

preconditions for the occurrence of complex deformation modes (such as traveling circumferential waves, chaotic processes,

etc.) under single-frequency excitation. It was established that even the mode shape a shell takes under purely harmonic loads

can affect its dynamic instability domains (DID) [4]. For example, the principal DID of a cylindrical shell is located lower on the

frequency axis and is considerably wider than the DID of a shell with alternating curvature. Such a situation is typical for

composite shells [1, 8]. Therefore, experimental studies of the vibratory and wave processes in composite shell structures

interacting with a fluid are of current importance. As indicated in [5], experimental methods not only give a true picture of the

behavior of mechanical structures under varying loads, but also make it possible to identify the limits of validity of theoretical

models. This fact was confirmed by holographic interferometry studies of the natural frequencies andmodes of isotropic circular

cylindrical shells.

An important task of solid mechanics is to study the nonlinear vibrations (with large deflections) of thin-walled

laminated shells under combined vibratory loading. When in service, real shell structures with fluid used in aircraft and rocket

technology, chemical engineering, etc. are subjected to combined vibratory loading of various types. The dynamic behavior of

shells filled with a fluid is more intensive under combined two-frequency vibratory loading [10, 11] than under single-frequency

loading [8, 12].

Here we will discuss test data on the nonlinear dynamic deformation of a glassfiber-reinforced plastic shell (empty or

filled) subjected to longitudinal kinematic two-frequency vibrational excitation. Our primary task is to establish and analyze the

relationship between the two excitation frequencies and the natural frequencies of the shell and the amplitude of the kinematic

loading that cause the most intensive deformation of the shell and to analyze the effect of the filler and the way the excitation

frequency varies on these processes.
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1. Test Specimen, Equipment, and Procedure. The test specimen was an elastic composite cylindrical sandwich shell

with length H
sh
= 900 mm, inside diameter D

sh
= 320 mm, and wall thickness �

sh
� 0.68 mm. A VEDS-100 electrodynamic

shaker was used for longitudinal kinematic excitation. The shell was fixed on the shaker table vertically, with its upper end free

and lower end inserted into a ring groove in a disk filled with epoxy resin to provide a clamped boundary condition after its

curing. To produce two-frequency vibrational excitation, we used a generator built in the frame of the shaker and an external

Robotron generator (one of them was used for single-frequency excitation). The vibroaccelerations of the shaker table and the

shell wall were measured with IS-318 and D-14 transducers operating with the measuring unit of the shaker and an AD-1

microtransducer (with a mass of about 1 g) with a VShV-3 device. The signals (amplitudes, frequencies) from the transducers

were analyzed and measured with a Bruel & Kjaer type 2031 low-frequency analyzer and V3-56 millivoltmeter. A measured

wedge [1, 11] was used to measure the amplitude of the vibrating end of the shell in the antinode zone.

The shell with mass m
sh
= 0.9 kg was filled with plastic-foam balls 15–20 mm in diameter. The mass of this filler was

less than the mass of the water to maintain the integrity of the thin-walled shell.

The test shell either empty (H
f
= 0) or filled to H

f
= (0.3; 0.5)Nsh was subjected to vibrational excitation with

frequencies �f
e

� 50–200 Hz and excitation amplitude g
e
= 2–20g

0
.

To assess the effect of two-frequency excitation on the deformation of the shell, either with or without filler, the shell

was first subjected to single-frequency kinematic excitation. The earlier tests [1, 8, 11] showed that the single-frequency

excitation of thin-walled composite shells (mainly dry) causes maximum deformation amplitudes at resonant frequencies,

especially when traveling circumferential waves are generated. The dynamic instability domains in which the deformation of the

shell is the most intensive at lower amplitudes of external excitation and the frequency ranges in which the deformation of the

shell is a traveling wave were identified. Also the amplitudes g
e
of external vibrational excitation at which such processes occur

and the effect of the filler levelH
f
on themwere assessed.What types of two-frequency excitation should be used were identified

based on the information on the nonlinear processes under single-frequency axial parametric vibrational excitation.

2. Analysis of Experimental Data. 2.1. Deformation of the Elastic Wall of a Shell under Single-Frequency

Kinematic Excitation. Before studying the deformation of a cylindrical shell, the boundaries of the DID in which parametrical

vibrations were excited were identified. Such domains for various glassfiber-reinforced plastic shells subject to external loading

of relatively low amplitude were determined in [1, 8].
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TABLE 1

ge f
e
, ��

f
e
, Hz

2Àmax

F
st

1
(n = 3) �F

st

1 F
tr F

st

2
(n = 3) �F

st

2

5

� 79.0–79.8 0.8 — 81.8–82.1 0.3 4

� 77.0–79.1 2.1 — 79.1–81.2 2.4 6

10

� 78.2–79.8 1.6 — 79.8–82.7 2.9 10

� 75.2–78.9 3.7 79.0–79.3 79.4–82.8 3.4 12

15

� 77.9–79.5 1.6 — 79.5–84.0 4.5 11

� 74.9–78.5 3.6 78.6–79.1 79.2–84.0 4.8 13

20

� 77.2–79.0 1.8 79.1–79.3 79.4–84.0 4.6 15

� 74.2–77.8 3.6 77.9–79.0 79.1–84.0 4.9 17



The experiments revealed that two circumferential modes (n = 3 and n = 5) are excited in the shell. Circumferential

vibration modes of the shell wall were excited by kinematic loading of several amplitudes: g
e
= (5, 10, 15, 20)g

0
. These loads

excited the circumferential mode n = 3 of the “dry” shell. The shell lost stability twice because of the effect of the initial

imperfections at parametrical resonance: (i) in the fundamental flexural mode at the lowest natural frequency and (ii) in the

conjugate mode. Experiments showed that at certain levels of external excitation g
e
and filler H

f
and, especially, depending on

the direction of scanning the excitation frequency f
e
, two DIDs overlap in this mode (n = 3), which causes the shell to lose

stability in two conjugate modes simultaneously. The superposition and interaction of these modes result in a deformation wave

traveling in the circumferential direction [1, 8, 11]. The vibrations of the “dry” shell with n = 5 are excited when g
e
= (10, 15,

20)g
0
. When this mode was excited, the shell lost stability twice, but only in one circumferential mode, i.e., there was no

traveling wave.

Studies showed that, due to the hysteresis effect [1, 8], the position and width of the domains in which parametrical

vibrations are excited depend on the direction of scanning the excitation frequency f
e
and the amplitude g

e
.

Tables 1 and 2 summarize the frequency ranges for standing and traveling waves and the maximum amplitudes 2A of

vibrations of the dry shell at the antinodes of the modes n = 3 and n = 5, respectively, for increasing (�) and decreasing (�)

excitation frequency f
e
. The DIDs were detected at amplitudes g

e
of axial kinematic excitation indicated above.

As is seen fromTables 1 and 2, the radial vibrations of the free end of the shell withmaximumamplitude 2A occur at n= 3.

Figure 1 shows the amplitude–frequency response (AFR) of the shell undergoing parametrical vibrations in mode n = 3

for g
e
= 15g

0
(Fig. 1a) and g

e
= 20g

0
(Fig. 1b) and for increasing (open circles) and decreasing (full circles) excitation frequency

f
e
. As is seen, the shell loses stability twice at parametrical resonance due to the initial imperfections. For example, as the

excitation frequency is increased from f
e
= 76 Hz (g

e
= 15g

0
), the shell loses stability at f

e
= 77.9 Hz for the first time, and the

first principal circumferential mode at the lowest natural frequency (F
sh
= f

2
/2) is excited (Fig. 1a). With further increase in the

excitation frequency by f
e
= 79.5 Hz, the vibrations stop and, in 1–2 sec, the amplitude of vibrations abruptly increases and a

conjugate mode is excited, i.e., the shell loses stability for the second time. Note that experiments with axial single-frequency

vibrational excitation at g
e
= (5, 10, 15)g

0
showed that the dynamic instability domains do not overlap if the excitation frequency

is increased. Therefore, the conjugate modes do not interact and traveling waves are not generated (Table 1). At g
e
= 20g

0
, the

domains overlap so that as the excitation frequency is increased, the shell loses stability in two modes simultaneously in some

frequency range (�f
e

� 79.1–79.4 Hz), which leads to the excitation of a traveling wave (Fig. 1b, Table 1).

As the excitation frequency f
e
is decreased, a hysteresis occurs [8], accompanied by growth of the domains of the

primary and secondary parametrical resonances. This causes the two DIDs to overlap at lower amplitudes of external kinematic

loading. In the dry shell, this was observed at g
e
= (10, 15, 20)g

0
, which was accompanied by the interaction of the conjugate

modes of the mode n = 3 and the excitation of a traveling wave (Fig. 1, Table 1).

169

TABLE 2

ge f
e
, ��

f
e
, Hz

2Àmax, mm

F
st

1
(n = 5) �F

st

1

10

� 85.0–85.6 0.6 2.5

� 85.0–85.6 0.6 2.5

15

� 84.8–85.9 1.1 4

� 84.2–85.9 1.7 5

20

� 84.7–86.0 1.3 6

� 84.1–86.0 1.9 7



Figure 2 compares the ranges in which the parametrical vibrations of the dry shell are excited when the resonant zones

corresponding to the modem = 1, n = 3 are slowly passed from left to right (Fig. 2a) and from right to left (Fig. 2b). The vertical

axis indicates the acceleration of the shaker table, and the horizontal axis indicates the frequency of kinematic excitation.

The DIDs corresponding to the conjugate modes overlap at g
e
= (19.5–20)g

0
when f

e
increases (Fig. 2a, domain A) and

at g
e
= (8.5–20)g

0
when the frequency decreases (Fig. 2b, domain B). As is seen from Figs. 1 and 2, Table 1, the domain A is

much narrower than the domain B in which traveling waves are generated.

Analyzing the dependence of the DID on the amplitude g
e
and filler level H

f
, we discover that the DID broadens with

increase in g
e
and narrows down with increase inH

f
. With increase in g

e
, the DID broadens, regardless of whether the excitation

frequency f
e
is decreased or increased. The plastic-foam filler not only intensifies the damping, but also narrows the DID in

which intensive circumferential vibrations of the external end of the shell are excited.

This effect is especially strong at H
f
= H

sh
/2. At this level of the filler, the circumferential vibrations of the free upper

end of the shell in modes n = 3 and n = 5 occur when g
e
= (15; 20)g

0
and g

e
= 20g

0
, respectively.

Thus, the most diverse nonlinear deformation of the elastic wall under single-frequency excitation is observed at the

minimum resonant frequencies of conjugate modes with wave number n = 3. How traveling waves are excited depends on the

direction of scanning the excitation frequency f
e
, excitation amplitude g

e
, and the filler level H

f
in the shell.

2.2. Deformation of the Elastic Wall of a Shell under Two-Frequency Kinematic Vibration Excitation. Based on the

test data on the deformation of a shell, dry or with plastic-foam filler, under single-frequency axial kinematic vibration

excitation, we used several types of two-frequency excitation. We used the frequencies of conjugate modes with wave number n

= 3 and nonconjugate modes with wave number n = 5, which correspond to two DIDs (Fig. 3) and at which the deformation

processes are the most intensive (which was pointed out earlier). We mainly studied the dynamic behavior of a shell, depending

on the frequency and amplitude of external two-frequency excitation.
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First type of excitation: the primary excitation frequency f
e

1
is equal to one of the double resonant frequencies f

e

1
�2F

r

of the conjugate circumferential modes and the secondary frequency f
e

2
is equal to frequencies close to the first excitation

frequency, i.e., f
e

2
� f

e

1
= 2F

r
.

Second type of excitation: the primary excitation frequency f
e

1
is equal to the double frequency of the traveling wave

with n = 3 ( f
e

1
= 2F

tr
) and the secondary frequency ( f

e

2
) is to close to the double frequency of the traveling wave ( f

e

1
= 2F

tr
and

f
e

2
� 2F

tr
).

Third type of excitation: the primary excitation frequency f
e

1
is equal to one of the extreme critical frequencies

corresponding to the mode n = 3, and the secondary frequency is equal to f
e

2
corresponding to the mode n = 5.

The studies show that the nonlinear deformation of the composite shell is most strongly affected when the primary

frequency is equal to one of the resonant frequencies F
r
of the circumferential mode or the frequency F

tr
of the traveling wave

with wave number n = 3 and the secondary frequency is close to these frequencies: f
e

1
= 2F

r 2
and f

e

2
� 2F

r2
; f

e

1
= 2F

tr
and f

e

2
�

2F
tr
. The deformation of the shell subject to two-frequency vibrational excitation at frequencies corresponding to twomodes, f

e

1

(n = 3) and f
e

2
(n = 5), is a specific process. The deformation process is the most intensive when the frequencies f

e

1
and f

e

2
differ

a little: 0.1–0.2 Hz. The elastic shell, empty (Í
f
= 0) or filled to H

f
= (0.3; 0.5)H

sh
, was subjected to excitation of the first type.

The dry shell was subjected to two-frequency excitation with one of the frequencies ( f
e

1
and f

e

2
) equal to the double resonant

frequency ( f
e

1
= 81.5 Hz = 2F

r
) of transverse vibrations of the shell in one of the conjugate modes with n = 3 in which vibrations

occur at lower amplitude g
e
and the other frequency being close to it ( f

e

2
= 81.6 Hz) at g

e
= 4.0g

0
. This joint action produces

beating [11] (at a frequency of �
tr

�0.1 Hz), which is accompanied by variation in the amplitude of kinematic excitation and the

amplitude of parametrical vibrations of the shell wall.

Table 3 shows the variation in the amplitude F = 2A mm of vibrations of the shell with wave number n = 3 and the

amplitudeG= g
e
( f

e

1
and f

e

2
) of two-frequency kinematic excitation ( f

e

1
and f

e

2
) and the variation in the amplitude F

1
= 2Amm

of vibrations of the shell wall and the amplitudeG
1
= g

e
( f

e

1
) of single-frequency excitation ( f

e

1
) for filler levels H

f
= (0, 0.3,

0.5)H
sh
.

As is seen, such axial excitation ( f
e

1
= 81.5 Hz and f

e

2
= 81.6 Hz) causes beating manifested as variation in the

amplitude of kinematic excitation in the range g
e
= (3.5–5)g

0
and in the amplitude of vibrations of the wall of the dry shell at

antinodes in the range 2A = (4.5–7) mm. Under single-frequency excitation ( f
e

1
= 81.5 Hz, g

e
= 4g

0
), the amplitude of vibrations

of the shell wall 2A = 6 mm.

Two-frequency excitation ( f
e

1
= F

r
(85.2 Hz) and f

e

2
= 85.3 Hz) causes the deformation of the dry shell with wave

number n = 5 with lower amplitudes 2A = (1.5–2) mm at higher excitation amplitudes g
e
= (8.5–9.2)g

0
, compared with the mode

n = 3.
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Several types of two-frequency excitation were used to study the traveling-wave deformation (second type) of the shell

observed in the shell either empty or filled to H
f
= (0.3; 0.5)H

sh
under single-frequency axial kinematic excitation. We used the

frequencies of conjugate modes with wave number n = 3 that occur only as traveling waves under kinematic excitation (which

was pointed out earlier).

It was established that the circumferential deformation of the shell wall under single-frequency excitation depends not

only on the frequency, but also on the amplitude of kinematic excitation, i.e., whether the circumferential deformation mode of

the upper end of the shell is traveling or standing wave depends on the amplitude g
e
. The wave is traveling when g

e
is high and

standing when g
e
is low.

In the case of two-frequency ( f
e

1
and f

e

2
) excitation of the dry shell, the primary frequency f

e

1
was chosen equal to the

frequency of traveling waves ( f
e

1
=F

tr
) when g

e
= (10, 15, 20)g

0
. At these amplitudes, the deformation of the shell wall occurs as

a traveling wave with the maximum amplitude 2A. The secondary frequency ( f
e

2
) is equal to close frequencies corresponding to

these excitation amplitudes: f
e

1
= 2F

tr
= (79.0, 78.6, 77.9) Hz and f

e

2
� 2F

tr
= (�78.5–79.5, 78.0–80.0, 77.0–80.0) Hz.

When the dry shell is subjected to two-frequency excitation, its deformation mode alternates between traveling and

standing waves in the used frequency range �f
e
because of the variation in the amplitude g

e
caused by beating resulting from the

interaction of the two excitation frequencies [11].

Figure 4 shows the frequency ranges in which the vibration mode of the free end of the dry shell is a traveling wave

under single-frequency (curve 1) and two-frequency (curve 2) excitation with g
e
= (10; 15; 20)g

0
.

The deformation of the free end of the dry shell under two-frequency excitation is the most intensive when the

excitation frequencies ( f
e

1
and f

e

2
) are equal to the frequencies f

e

1
of traveling waves and to frequencies close to them.

This type of excitation with starting amplitude g
e
= 15.0g

0
and frequencies f

e

1
= F

tr
(78.6 Hz) and f

e

2
= 78.5 Hz

generates a cyclic process in the range t = (8–9) sec when the excitation amplitude varies as g
e
= (13.0–16.0)g

0
. The wave is

traveling in the ranges t = (4–5) sec and �f
e
= (78.5–79.1) Hz when g

e
= (14.5–16.0)g

0
(Fig. 4a, curves 2) and is standing in the

range t = (3–4) sec when g
e
= (13.0–14.5)g

0
.

As is seen, such external excitation with varying g
e
causes not only the alternation of the deformation modes of the shell

wall, but also the alternation of the amplitudes of vibrations of the shell wall at antinodes in the range 2A = (8–15) mm. In

single-frequency excitation of a traveling wave ( f
e

1
= 78.6 Hz, g

e
= 15.0g

0
), the amplitude of vibrations of the dry shell 2A =

13 mm.

In the composite shell with filler, the cyclic processes described above occur at higher amplitudes g
e
and within

narrower frequency ranges.
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TABLE 3

Parameter

Íf/Ísh

0 0.3 0.5

f
e

1
, Hz 81.5 81.7 82.2

f
e

2
, Hz 81.6 81.8 82.3

F 4.5–7 3.5–5.0 1–2.5

G 3.5–5 3–4.6 3–4.2

F
1

6 4.5 3

G
1

4 4 4



A cylindrical shell filled to H
f
= H

sh
/2 was subject to two-frequency axial kinematic excitation with the primary

frequency equal to the frequencies of traveling waves ( f
e

1
= F

tr
) at starting excitation amplitudes g

e
= (15; 20)g

0
and the

secondary frequency ( f
e

2
) equal to close frequencies at the following starting excitation amplitudes: f

e

1
= 2F

tr
(78.75, 78.2) Hz

and f
e

2
� 2F

tr
= (�78.5–79.0, 77.5–78.7) Hz. As established earlier, the deformation mode of the shell with H

f
= H

sh
/2 under

single-frequency vibrational excitation is a traveling wave with n = 3 when g
e
= (15–20)g

0
.

Figure 4 shows the frequency ranges in which the vibration mode of the free end of the shell with this filler level is a

traveling wave under single-frequency (curve 1) and two-frequency (curve 2) excitation with g
e
= (15; 20)g

0
.

As in the dry shell, the cyclic deformation of the wall of the shell with filler level H
f
= H

sh
/2 under two-frequency

excitation with g
e
= 15.0g

0
is the most intensive when one of the frequencies is equal to the frequency of the traveling wave and

the other frequency is close to it: f
e

1
= F

tr
(78.5 Hz) and f

e

2
= 77.75 Hz. With this type of excitation, the shell deforms in the

range t = (8–10) sec when g
e
= (13–16)g

0
. The wave is traveling in the range t = (3–4) sec when g

e
= (15–16)g

0
and is standing in

the range t = (4–5) sec when g
e
= (13–15)g

0
. In this cyclic process, the amplitude of vibrations of the shell wall at antinodes

varies: 2A = (9–12) mm. In single-frequency excitation of a traveling wave ( f
e

1
= 78.75 Hz, g

e
= 15.0g

0
), the amplitude of

vibrations of the shell with Í
f
= Í

sh
/2 reaches 2A = 10 mm.

The frequencies of the third type of two-frequency excitation of the dry shell (H
f
= 0) are equal to the extreme critical

frequencies [1, 8] at which radial vibrations of the free upper end of the shell in modes n = 3 and n = 5 are excited at minimum

excitation amplitude g
e
. Figure 3 shows the spectrum of close extreme critical frequencies of the two vibration modes depending

on the excitation amplitude.

Two types of two-frequency vibrational excitation with extreme critical frequencies of modes n = 3 and n = 5were used:

type 3.1: f
e

1
= 84.0 Hz (n = 3) and f

e

2
= 84.2 Hz (n = 5) and type 3.2: f

e

1
= 84.0 Hz (n = 3) and f

e

2
= 84.1 Hz (n = 5).

How the vibrations of the shell wall with wave numbers n = 3 and n = 5 are excited depends on the frequency f
e
and

amplitude g
e
of external single-frequency excitation. The circumferential vibration mode n = 5 of the free end of the shell in its

DID begins to be excited at frequency f
e
= 84.2 Hz in the range g

e
= (14.0–14.5)g

0
and at frequency f

e
= 84.1 Hz in the range g

e

= (18.0–18.5)g
0
, while the vibrations of the shell in mode n = 3 occur at lower amplitudes g

e
. With these types of two-frequency

excitation, the starting excitation amplitudes are: g
e st

= 14.5g
0
for type 3.1 and g

e st
= 18.5g

0
for type 3.2.

The two-frequency excitation causes beating [1, 8, 14] (at frequencies w
tr
= (0.1; 0.2 Hz)), which is accompanied by a

change in the excitation amplitude g
e
and in the amplitude 2À of vibrations of the free end of the shell.

An analysis of the experimental results (Table 4) shows that these types of two-frequency axial kinematic excitation

( f
e

1
(n = 3) and f

e

2
(n = 5)) with cyclic change in the excitation amplitude g

e
cause the circumferential deformation mode of the

shell wall to alternate between one mode (n = 3) and a combined mode (n = 3 + n = 5). For example, if f
e

1
= 84.0 Hz, f

e

2
=

84.2 Hz, and g
e st

= 14.5g
0
, the cyclic change in the excitation amplitude occurs in the range g

e
= (13.0–15.0)g

0
. When g

e
=

(13.0–14.5)g
0
, only the circumferential mode n = 3 is excited in the range t = (5–6) sec. When g

e
= (14.5–15.0)g

0
, the combined

circumferential deformation mode (n = 3 + n = 5) is excited in the range t = (1–2) sec. The simultaneous excitation of the two
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circumferential modes n = 3 and n = 5 considerably intensifies the deformation of the shell. This type of excitation causes the

cyclic change in the amplitude of vibrations of the end of the dry shell in the range 2À = (4.0–7.0) mm (Table 4)).

Single-frequency vibrational excitation with g
e
= 15g

0
causes the following amplitudes of deformation of the shell wall at these

frequencies: 2À = 6.0 mm for n = 3 and 2À = 5.0 mm for n = 5.

Under two-frequency excitation ( f
e

1
= 84.0 Hz and f

e

2
= 84.1 Hz), the deformation of the dry shell with wave numbers

n = 3 and n = 5 occurs at higher excitation amplitudes.

For example, at starting excitation amplitude g
e
= 18.5g

0
, the cyclic change in the excitation amplitude occurs in the

range t = (13–14) sec when g
e
= (17.0–20.0)g

0
. When g

e
= (17.0–18.5)g

0
, only the circumferential mode n = 3 is excited in the

range t = (10–11) sec. When g
e
= (18.5–20.0)g

0
, the combined circumferential deformation mode (n = 3 + n = 5) is excited in the

range t = (3–4) sec. This type of excitation causes the cyclic change in the amplitude of vibrations of the free end of the dry shell

at antinodes in the range 2À = (7.0–13.0) mm (Table 4). Single-frequency vibrational excitation with g
e
= 20g

0
causes the

following amplitudes of deformation of the shell wall at these frequencies: 2À = 8.0 mm for n = 3 and 2À = 7.0 mm for n = 5.

If the shell is filled to H
f
= H

sh
/2, its deformation occurs only if the difference of the two excitation frequencies is 0.1

Hz, i.e., f
e

1
= 84.5 Hz (n = 3), f

e

2
= 84.6 Hz (n = 5), and g

e st
= 20.0g

0
. This type of excitation gives rise to a cyclic process in the

range t = (7–8) sec when g
e
= (8.5–20.5)g

0
. When g

e
= (18.5–20.0)g

0
, only the circumferential mode n = 3 is excited in the range

t = (6–7) sec. When g
e
= (20.0–20.5)g

0
, the combined circumferential deformation mode (n = 3 + n = 5) is excited in the range

t = (1–2) sec.

This type of excitation causes a cyclic change in the amplitude of vibrations of the end of the shell with N
f
= Í

sh
/2 at

antinodes in the range 2A = (5–9) mm. Single-frequency vibrational excitation with g
e
= 20.0g

0
causes the following amplitudes

of deformation of the shell wall at these frequencies: 2À = 6 mm for n = 3 and 2À = 5 mm for n = 5.

Conclusions. We have experimentally established that quite complex dynamic processes of deformation occur in the

elastic glassfiber-reinforced plastic cylindrical shell under two-frequency vibrational excitation, unlike single-frequency

excitation. These processes are the most intensive at the resonant frequencies and at lower excitation amplitudes.

Especially complex processes of deformation such as cyclic change in the amplitude and deformation mode between

traveling and standing waves are due to beating and the interaction of conjugate circumferential modes in a certain frequency
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TABLE 4

f
e
, Hz, 2À, ge

Type of excitation

3.1 3.2

f
e

1
(n = 3) 84.0 84.0

f
e

2
(n = 5) 84.2 84.1

2À ( f
e

1
and f

e

2
) 4…7 7…13

ge ( fe
1
and f

e

2
) 13…15 17…20

2À ( f
e

1
) 4.5 6.5

ge st ( fe
1
) 14.5 18.5

2À ( f
e

2
) 3.5 5.5

ge st ( fe
2
) 14.5 18.5



range and at certain excitation amplitudes and due to the interaction of various nonconjugate modes (n = 3 + n = 5). The

plastic-foam filler intensifies the damping of vibrations.
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