
STRESSES IN A SPHERICAL SHELL LOADED THROUGH RIGID INCLUSIONS

V. P. Shevchenko and S. V. Zakora

The stress state of a shallow isotropic spherical shell with circular rigid inclusions subject to a force or a

moment is determined. The case of two inclusions of unequal radii is analyzed numerically. It is

established that the stresses in the shell increase substantially with decrease in the inclusion radius and

the distance between the two inclusions
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Introduction. The analysis of the stress state of shells and plates with various stress concentrators such as holes and

inclusions [2–12], concentrated [1] and local [3] loads is still of theoretic and practical interest.

Analytic and numerical solutions for a spherical shell loaded by a force or a moment through a rigid ring were obtained

in [3] for a shell with one perfectly rigid inclusion. However, studies of shells and plates with two circular holes or rigid

inclusions showed that the stress concentration can be very high if the stress concentrators are close to each other [2, 4–12]. In

view of this, we will consider a spherical shell with two circular perfectly rigid inclusions loaded by a force or a moment and will

analyze in detail the stress state of a shell with two unequal rigid rings, including the case where they are very close to each other.

1. Problem Formulation. Consider a shallow isotropic spherical shell with m circular perfectly rigid inclusions with

centers located on theOx-axis. The following boundary conditions are defined on the rigid boundaries�
q
of the inclusions [2]:

� � � �
�� �� �� �
| , | , | , |
� � � �
q q q q

n
� � � �0 0 0 0 (q m�1, ). (1)

Assume that the rigid rings are loaded by transverse forces with resultant component F
z

q( )
� 0 or by moments with

resultant component B
y

q( )
� 0.

The stress state perturbed by the inclusions is determined from the homogeneous governing differential equation for

thin spherical isotropic shells proposed in [2]:
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whereU is an unknown complex function;	 �
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is the Laplacian in polar coordinates� , ;� �
r

cR

is a

relative dimensionless position vector; re x iy
i

� 
 , c h� �/ ( )12 1
2

� ; � is Poisson’s ratio; R is the radius of the midsurface of

the shell; h is the thickness of the shell; i is imaginary unit.

2. Problem-Solving Method. The solution of the homogeneous differential equation (2) is represented as the sum of

cylindrical, polyharmonic, and analytic components:

U U U U� 
 

c p a

. (3)
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The solutions satisfying the conditions for the symmetry of the stress state about theOx-axis and decreasing in absolute

value with distance from �
q
have the following form [2]:
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where c
qn

and a
qn

are complex unknowns; H
n q

( )
( )

1
�� is the Hankel function; �

q

q
r

cR

� is a relative dimensionless position

vector in a polar coordinate system r e x iy
q

i

q q

q


� 
 with the origin at the centerO
q
of the boundary �

q
; � � 
( ) /1 2i .

The resultant and the principal moment of the external load applied to one of the rigid rings �
q
are determined as

follows [2]:

F EhcR
x

q q q( ) ( ) ( )
Im( )� �2

1 2
� � � ,

F EhcR
y

q q q( ) ( ) ( )
Re( )� �2

1 2
� � � , (6)

� �B Ehc icR
x

q q q q q( ) ( ) ( ) ( ) ( )
Re ( ) ( )( )� � 
 � 
� � � � � �

1 2 1 2
2 1 ,

� �B Ehc icR
y

q q q q q( ) ( ) ( ) ( ) ( )
Im ( ) ( )( )� � � � 
� � � � � �

1 2 1 2
2 1 , (7)
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Following [2], it is also necessary to satisfy the uniqueness condition for the complex displacements on the boundaries�
q
:
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The complex unknown constants �
j

q( )
,�

j

q( )
, �

j

q( )
( , )j �1 2 are determined from the system of equations (6)–(9), given

the components of the resultant and principal moment of the external load.

Consider two cases of loading: the rigid rings are loaded by (i) transverse forces, i.e., F
z

q( )
� 0, and by (ii) moments

B
y

q( )
� 0, and F

x

q( )
� 0, F

y

q( )
� 0, B

x

q( )
� 0, B

z
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� 0. Then it follows from (6)–(9) that �
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analytic partU
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takes the following form [2]:
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To separate variables in the functionU in the qth coordinate system, we will use an approached [2] that is based on

Graf’s theorem for cylindrical functions in (4) and involves the expansion of each term of the power part (5) and the analytical

part (10) of the solution into a Laurent series. In the case of two rigid inclusions (m � 2), we have
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where J
n q
( )��

0
is the Bessel function of the first kind;�

0

0
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� is the dimensionless radius of the qth inclusion; l L cR� / ,

L is the distance between the centers of the circlesO O
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(Fig. 1);
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The boundary strains (1) are expressed as
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The forces and moments corresponding to solutions (11)–(13) are expressed as follows [2, 3]:
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Let the rigid rings be loaded by equal transverse forces, i.e., F F
z

q

z

( )
� , and by equal moments B B

y

q

y

q( )
( )� �



1

1
.

When F Ehc
z
� � and the other components are equal to zero, the system of equations (6)–(9) yields
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when B Ehc cR
y
� � , we have
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Substituting the forces and moments (15) with (11)–(13) into the boundary conditions (1), (14) and equating the

coefficient of like harmonics, we obtain an infinite system of linear algebraic equations for the real and imaginary parts of the

unknowns a
qn

and c
qn
. Since the complex unknown constants �

j

q( )
,�

j

q( )
, �

j

q( )
( , )j �1 2 are given by (16), (17), this also defines

the right-hand sides of the system.

For the boundary strains (14), the coefficients of the unknown constants are related by
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for the first harmonic.

In deriving the system, we omit the equations dependent through identities (18) and (19). For example, we keep
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The resulting system is solved with the reduction method. Substituting c
qn

and a
qn

found by solving the system into

formulas (11)–(13) and (3), we find the functionU. Next, we use formulas (15) to determine the forces and moments at given

points, which are transformed by well-known formulas [2] upon passage to the directions

�

� and

�

�. As a result, we obtain the

concentration factors for membrane and bending stresses:

k T d
 

T
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B
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r r

B
� 6 / ,

�
 r r
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 r r

H dh
B

� 6 / . (20)

They are then used to calculate the relative equivalent stresses using the energy theory of strength [2]:

k k k
  
� 0

T B
, k k k

r r r
� 0

T B
,

k
r r r  

� �� 0
T B

, k k k k k k
r r req

� 
 � 

2 2 2

3
  

.

The signs “+” and “–” correspond to the relative equivalent stresses on the outside (k
eq

Ext
) and inside (k

eq

Int
) surfaces of

the shell. In the tables and figures below, the concentration factors are scaled up (10:1); therefore, d Eh� 01. in formulas (20).
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3. Analysis of the Numerical Results. The numerical analysis has been performed for an isotropic spherical shell

(Poisson’s ratio� �0.3) with two rigid rings of radii�
01

4� and�
02

2� for different relative widths sof the bridge between the

rings. Here�
0q

are the radii of the inclusions; s S r� /
01
, where S is the width of the bridge between the inclusions (ÑE in Fig. 1).

In Figs. 2–5, the parameter 1 laid off along the abscissa axis takes the following values: (i) 1



�
� � 
4 4

2

q
q

*

,

4 1 4 2( )q q� 2 2 �1 , describes half the boundary �
q
of the inclusion, i.e., if there is symmetry about theOx-axis, we have 0 2

q

*

2 �, where  � 
q q

*
� � (Fig. 1); (ii) 1 � 


�)

*

+
+

,

-

.

.
2 1

1 01
x r

S

, 2 42 21 , describes the bridge s, i.e., r
01

2 x
1

2 
r S
01

; (iii)

1 � � 
4 3
0

q x r
q q
/ describes the distance from the boundary �

q
along theOx

q
-axis to 5

0
r
q
, i.e., � 25 x

1
2 0or 6 2 x

2
2 11.

The vertical axis indicates the following relative stresses: equivalent stress on the outside surface k
eq

Ext
(solid line),

tangential stress k
r

T
(dotted line), tangential stress k



T
(dash-and-dot line), and bending stress k

r

B
(dashed line).
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Figures 2 and 3 show the distribution of stresses and Tables 1 and 2 summarize their values for F
z
and for s � 6(Fig. 2),

s � 0.4 (Fig. 3), for s � 7.5 (Table 1) and s � 0.2 (Table 2). Similar results for B
y
are presented in Figs. 4 and 5 and in Table 3.

The figures and tables indicate that the stress concentration on and near the boundary of the smaller ring is higher than

on the larger ring. For example, the maximum stresses k
eq

Ext
and k

eq

Int
on the boundary �

2
of radius�

02
2� are higher than on the

boundary �
1
of radius�

01
4� by a factor of 3 for F

z
(Fig. 2 and Table 1) and by a factor of 5 to 6 for B

y
(Fig. 4 and Table 3a).

The contribution of the bending stresses k
r

B
is the greatest. As the radius of the rigid inclusion is decreased, the zone of decrease

in the stress concentration becomes larger.

164

TABLE 1

Case F
z

Points

k
r
, k


, k

eq

�
01

4� , from point A

to point C, 0
1

2 2 �
* s = 7.5, point D, s / 2

�
02

2� , from point E

to point G, 0
2

2 2 �
*

à

k
r

T

0.203 0.003 0.553

k


Ò

0.061 –0.003 0.166

k
r

B

0.556 0.000 1.700

k


B

0.167 0.000 0.510

k
eq

Ext

0.675 0.004 2.002

k
eq

Int

0.314 0.004 1.019

TABLE 2

Case F
z

k
r
, k


, k

eq

�
01

4� s = 0.2 �
02

2�

Point À,


1

0
*
�

Point B,

 �
1

2
*

/�

Point Ñ,

 �
1

*
�

Point D,

s / 2

Point E,


2

0
*
�

Point F,

 �
2

2
*

/�

Point G,

 �
2

*
�

b

k
r

T

0.198 0.208 0.851 0.904 0.926 0.391 0.649

k


Ò

0.059 0.062 0.255 0.163 0.278 0.117 0.195

k
r

B

0.438 0.569 –1.789 –0.101 2.039 1.365 1.956

k


B

0.131 0.171 –0.537 0.003 0.612 0.409 0.587

k
eq

Ext

0.565 0.733 0.834 0.734 2.636 1.564 2.316

k
eq

Int

0.214 0.404 2.347 0.935 0.989 0.870 1.161



Figures 3 and 5 and Tables 2 and 3b show that as the bridge width s is decreased, the relative equivalent stresses near and

on the bridge increase and the zone of decrease in the stresses with distance from the boundaries along the �Ox
1
- andOx

2
-axes

becomes larger.

Reliability of the Results. 1. We tested the accuracy of satisfying the boundary conditions through the direct

calculation of the forces and moments on the boundaries using series (4), (5), (10), i.e., not using Graf’s theorem and Laurent

series. To this end, we used Maple software. The accuracy of computation can be varied by assigning a value to the system

variable Digits and setting the number n of harmonics in (9) and (10). For example, the absolute error of satisfying the boundary

conditions did not exceed 10–47 for n = 30 and Digits = 50 in the cases represented in Tables 1 and 3a and 10
–4

in the cases

represented in Tables 2 and 3b (the maximum stresses being less than 3).

2. For comparison to a spherical shell with one rigid inclusion, we calculated the case where the rigid inclusions do not

interact, i.e., s = 7.5. The results are in good agreement with those obtained in [3].

3. It is also observed that as the radius of the rigid inclusion is decreased, the stress state qualitatively tends to the case of

a concentrated force addressed in [1] in all cases (load distributed over the ring).

4. We also tested the accuracy of satisfying the differential equations (1) by the functionUwith coefficients determined

after the solution of the system. The absolute error does not exceed 10
–46

for Digits = 50.
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TABLE 3

Case
k
r
, k


, k

eq

Point À,


1

0
*
�

Point B,

 �
1

2
*

/�

Point Ñ,

 �
1

*
�

Point D,

s / 2

Point E,


2

0
*
�

Point F,

 �
2

2
*

/�

Point G,

 �
2

*
�

�
01

4� s = 7.5 �
02

2�

à

k
r

T

–0.087 0.000 0.087 0.000 0.342 0.000 –0.342

k


Ò

–0.026 0.000 0.026 0.000 0.102 0.000 –0.102

k
r

B

–0.325 0.000 0.325 0.000 1.820 0.000 –1.820

k


B

–0.098 0.000 0.098 0.000 0.546 0.000 –0.546

k
eq

Ext

0.367 0.151 0.367 0.000 1.922 0.592 1.922

k
eq

Int

0.212 0.151 0.212 0.000 1.314 0.592 1.314

b

k
r
, k


�
01

4� s = 0.2 �
02

2�

k
r

T

–0.122 0.042 0.318 0.335 0.370 –0.078 –0.300

k


Ò

–0.037 0.013 0.095 0.099 0.111 –0.023 –0.090

k
r

B

–0.482 0.104 –1.364 0.477 2.712 –0.177 –1.589

k


B

–0.145 0.031 –0.409 0.211 0.814 –0.053 –0.477

k
eq

Ext

0.537 0.294 0.930 0.709 2.739 0.573 1.680

k
eq

Int

0.320 0.269 1.496 0.130 2.081 0.533 1.146



5. After solving the system, the components of the resultant and principal moment have been evaluated as integrals

according to [2] (for example: B S d
z r
� 3� 



�

2

0

2

, etc.). The calculated components are in good agreement with the given

components. The absolute error does not exceed 10
–8

for Digits = 10 (the maximum value being less than 20�).

Conclusions.We have presented a method for and performed a numerical analysis of the stress state of a spherical shell

with two circular rigid inclusions loaded by transverse forces or moments. It has been established that with decrease in the radius

of the inclusion, the relative equivalent stresses on its boundary increase severalfold (by a factor of 3 to 6 in the above examples).

The radial bending stresses make the greatest contribution. As the radius of the rigid inclusion is decreased, the zone of decrease

in the stress concentration becomes larger.

The results together with theMaple routine developed can be used in engineering to determine the stresses and the zone

of their decay in a spherical shell loaded through rigid rings.
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