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The applicability of three versions of constitutive equations to the description of the thermoviscoplastic

deformation of isotropic materials is discussed. It is shown that the thermoviscoplastic equations

incorporating the third deviatoric stress invariant are in good agreement with experiment
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Introduction. The characteristics of some initially isotropic polycrystalline materials under creep are known [3, 10, 16]

to depend on the stress mode. Constitutive equations describing the isothermal deformation of such materials were derived in [3,

6, 9–11, 16, 17] using data of reference tension, compression, and torsion tests. Here we will use the constitutive equations from

[15] to describe the thermoviscoplastic deformation of such materials. These equations generalize the thermoplastic equations

proposed in [14] and describe the thermoviscoelastoplastic deformation of isotropic materials along paths of small curvature,

taking into account the dependence of the material properties on temperature and stress mode. The equations from [15]

incorporate the stress mode angle [1], which is expressed in terms of the second and third deviatoric stress invariants, and relate

the components of the engineering stress and strain tensors. It was assumed that the strains are represented as the sum of elastic

and inelastic components and that the stress deviator and the deviator of inelastic strain differentials are coaxial. The equations

include two nonlinear functions found experimentally. One of these functions relates the first invariants of the stress and strain

tensors, while the other function relates the second invariants of the respective deviatoric tensors. These functions are

individualized in two series of reference tests on tubular specimens under proportional loading at several constant values of the

stress mode angle and several temperatures. The first series of tests involves instantaneous deformation of specimens (i.e., the

loading rate does not affect the form of the functions). The second series includes creep tests at the same initial loading rate as in

the tests of the first series. If the first invariants of the stress and strain tensors are in linear relationship and the relationship

between the second invariants of the stress and strain deviators is independent of the stress mode, then the constitutive equations

go over into the equations describing deformation along paths of small curvature [2], which coincide with the widely used [2, 12,

13, etc.] equations of incremental plasticity [1, 2, 8, 18, etc.] associated with the von Mises yield criterion.

The assumption of the coaxiality beteewn the stress deviators and the deviators of inelastic strain differentials and the

nonlinear functions appearing in the constitutive equations of thermoviscoplasticity were experimentally validated in [14, 15].

Expanding upon [14, 15], we will validate the equations of thermoviscoplasticity by comparing experimental values of

the strain components with their values calculated from these equations, given stress values. Moreover, we will also validate the

version of these equations from [4] in the case where the first stress and strain invariants are in linear relationship.

1. Thermoviscoplastic Equations. The constitutive equations [15] that describe nonisothermal deformation along

paths of small curvature, relate the components of the stress �
ij

and strain �
ij

tensors, and incorporate the stress mode are
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where K E� �/ ( )1 2� , E G� �2 1( )� , � �
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are, respectively, the elastic modulus, Poisson’s ratio, and

thermal linear expansion coefficient, each depending on temperature T; T
0

is the initial temperature; e
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are the components of

the inelastic-strain deviator; � �
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are the first invariants of the plastic strain and creep tensors,

respectively.

To use Eqs. (1.1), the loading process should be divided into steps. At the end of the Nth step of loading, the components

of the inelastic-strain deviator are represented as the sum of their increments:
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To determine �
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and �
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, we will use the relationship between the first invariants of the stress and strain tensors,
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where �
�

is the stress mode angle; I D s
ij3

( ) | |
�

� is the third invariant of the stress deviator D
�

; s
ij ij ij

� �� � �
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are the

components of the stress deviator; S is the shear-stress intensity,
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The increment �
k ij
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at an arbitrary step of loading is defined by
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where � �
k

( )n
is the increment of inelastic shear strain intensity,
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k

( )c
are the increments of instantaneous plastic-shear-strain and creep-strain intensities. The angular brackets in

(1.9) denote averaging over a step of loading. To determine � �
k

( )p
, we assume that
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where �
*

is the intensity of instantaneous shear strains,
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The functions F
1

(1.4) and F
2

(1.11) are determined from the first series of reference tests on tubular specimens under

proportional loading, as described in [5, 7, 14, 15]. To determine �
k
�

0

( )c
and � �

k

( )c
, we use the data of the second series of

reference (creep) tests. The following approximating expressions are proposed in [15]:
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where c d
i i
, ( , , )i �1 6� are coefficients found from the best fit of expressions (1.13) and (1.14) to the test data. Then
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where �
k k k

t t t� �
�1

is the step duration.

Note that a simpler version [4] of these constitutive equations where the first stress and strain invariants are in linear

relationship rather than (1.4) can be used.

2. Algorithm for the Analysis of the Deformation of a Tubular Specimen. Procedures for testing tubular specimens

and plotting graphs of (1.4) and (1.11) are detailed in [4, 5, 7, 14, 15]. The tests were conducted at different constant and variable

ratios between the tensile axial force and the internal pressure, different temperatures and loading rates, either strongly affecting

or not the deformation curves. In these tests, the stress state of the specimen is characterized by the axial and circumferential

stresses � �
11 22

, , the radial stress being negligible compared with �
11

and �
22

, i.e., �
33

0� . The strain state is characterized by

the axial, circumferential, and radial strains �
11

, �
22

, �
33

, of which �
11

and �
22

are measured and �
33

is calculated, as described

in [5, 15].

When determining the strain state of the specimen, we assume that the stresses are given. The elastic modulus,

Poisson’s ratio, and linear thermal expansion coefficient of the material must be known. Functions (1.4) and (1.11) are also

assumed known from reference tests on tubular specimens proportionally loaded at �
�

� 0, � � 6, � / 3and at several temperatures

from the range considered (reference curves). At intermediate values of the angle and temperature, functions (1.4) and (1.11) are

determined by linear interpolation from the reference curves. The coefficients in (1.13) and (1.14) must be known as well. Then

from Eqs. (1.1) we derive expressions for the strains in the specimen:
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The following algorithm can be used to calculate the strains in the specimen. Divide the loading process into a number

of steps. It is convenient that the first step be within the elastic region; then e e
11 22

0
( ) ( )n n

� � and � �
0 0

0
( ) ( )p c

� � in (2.1) and (2.2)

and the strains at the first step can be found from the theory of elasticity. To determine the strains at the Nth step from the stresses,

calculate ( ) (( ) / )� � �
0 11 22

3
N N

� � , ( )S
N

(1.8) and ( )�
� N

(1.7). Among the reference curves (1.4), find the curve
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and the temperature T
N

of the specimen. On this curve, find the value of ( )
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and formulas (1.13) and (1.15) to determine � �
N

( )c
and

� �
N

( )n
(1.10). After that, calculate the increments of the inelastic components of the strain deviator (1.9) and the components

themselves (1.3). Finally, calculate �
11

*
and �

22

*
(2.2) and use formulas (2.1) to determine the unknown strains.

3. Calculated Results. Table 1 collects the results of analyzing the nonisothermal deformation of the specimen using

the above algorithm [15].

The specimen is made of Kh18N10T alloy with characteristics borrowed from [14, 15]. Tables 2 and 3 collect the values

of functions (1.4) and (1.11), respectively, calculated as described in [4, 5, 7, 14, 15].

The calculations have been performed (i) taking the stress mode into account and using functions (1.4) and (1.11)

(Tables 2 and 3); (ii) taking (1.11) into account and using the linear relationship between the first stress and strain invariants

instead of (1.4), i.e., using a simplified version of the constitutive equations [4]; and (iii) using the theory of deformation along

paths of small curvature and disregarding the stress mode [2]. The creep strains are described by expressions (1.13) and (1.14)

with coefficients presented in [15].

Figures 1 and 2 show the calculated axial, �
11

, and radial, �
33

, strains, respectively, versus the number of steps of

loading. The strain �
22

is not shown because it is much lower than �
11

and �
33

and varies from � !
�

1 10
3

to 2 10
3

!
�

. The solid,

dotted, and dashed lines represent cases (i), (ii), and (iii), respectively, and the triangles stand for the experimental data.

The values of �
33

calculated by the procedure from [15] using the plastic incompressibility condition are considered as

experimental values. Figures 1 and 2 demonstrate that the results of cases (i) and (ii) are different and are in good agreement with
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TABLE 1

t, min T, °C �
11

, MPa �
22

, MPa �
11

3
10! �

22

3
10! �

33

3
10!

0 590 164.1 82.6 6 –1 –4.2

1.5 606 175.3 84.3 10.1 –1 –8.1

3.3 615 187.4 87.9 14.1 –1 –11.9

4.3 633 191.4 90.3 19.2 –1 –16.8

5.5 642 200.6 93 22.2 –1 –19.5

6.7 654 211.4 97.2 26.3 0 –24.3

8 660 218.4 103.9 34.6 1 –33

9.3 674 226.8 113.1 43.9 2 –42.4

10.8 682 228.7 116.5 57.6 1 –53.7

11.1 691 228.9 118.1 65 2 –61.1



the experimental data. The difference between the maximum strains calculated in cases (i), (ii) and found experimentally reaches

12%. The results of case (iii) are in good agreement with the experimental data at the first six steps of loading when the strains do

not exceed 3% (in absolute magnitude). The difference between the results of case (iii) and the experimental data increases with

the strains, reaching more than 50% at the end of the process.

Conclusions. The thermoviscoplastic deformation of a tubular specimen made of Kh18N10T alloy has been analyzed

numerically using three versions of the theory of plastic deformation along paths of small curvature. It has been shown that the

strains calculated with the theory of thermoviscoplasticity [15] based on nonlinear relationships between the first stress and

strain invariants and between the second invariants of the stress and strain deviators, which incorporate the stress mode, are in

good agreement with the experimental strains. It has also been shown that the deformation process can be described well by a

simpler version of the constitutive equations [4] in which the stress mode appears only in the relationship between the second
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TABLE 2

�
0

*

T � 500 °C T � 700 °C

�
�

� 0 �
�

� �/6 �
�

� �/3 �
�

� 0 �
�

� �/6 �
�

� �/3

0.0002 72 72 72 34 34 34

0.0006 166 131 88 70 60 50

0.001 178 139 100 82 68 62

0.0024 205 151 116 160 130 100

0.004 211 159 124 186 137 104

0.008 219 169 133 194 147 112

0.02 240 197 154 216 177 136

TABLE 3

�
*

T � 500 °C T � 700 °C

�
�

� 0 �
�

� �/6 �
�

� �/3 �
�

� 0 �
�

� �/6 �
�

� �/3

0.0002 26 26 26 12 12 12

0.01 104 104 104 80 80 80

0.02 129 129 129 96 92 103

0.04 149 134 165 128 107 132

0.06 173 145 188 134 111 141

0.08 179 153 200 140 116 150

0.10 184 157 212 146 121 159

0.16 199 169 232 172 135 186



invariants of the stress and strain deviators, while the first invariants of the stress and strain tensors are in conventional linear

relationship. The results calculated with the constitutive equations [2] describing deformation along paths of small curvature

regardless of the stress mode are in agreement with the experimental data only at the initial steps of loading when the strains are

less than 3% and differ from the experimental data by more than 50% at the end of the process when the strains reach 7%.
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