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The general solution to the problem of the nonaxisymmetric electromechanical vibrations of a

piezoceramic ring plate is obtained. The spectra of natural frequencies and modes for the first

circumferential harmonics are numerically determined and analyzed for plates with radially cut

electrode coating and the following boundary conditions: clamped edge–free edge, free edge–clamped

edge, free edge–free edge
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Introduction. Thin piezoelectric planar transducers with thickness polarization are used in devices of various

functionality [2–4, 6–8, 10–12]. Disk- and ring-shaped vibrators with solid electrodes on the faces undergo axisymmetric

vibrations [4, 9]. The vibrations will be nonaxisymmetric with respect to the circumferential coordinate if the electroelastic

sectors of a ring plate with radially cut electrodes are excited in antiphase. The circumferential vibration modes are a priori

determined by the number of radial cuts in the electrodes [2]. There have been no systematic theoretical studies of the frequency

spectrum and radial vibration modes. Theses aspects are addressed in the present paper.

1. Problem Formulation and General Solution. Consider a thin piezoelectric plate of thickness h. To describe the

plate, we will use a cylindrical coordinate system r z, ,� with the plane z � 0 coinciding with the midsurface of the plate. If a

thickness-polarized thin piezoceramic plate with electroded faces z h� � / 2 is in plane stress state (u r t
r

( , , )� , u r t
�

�( , , ),

� � �
�zz z zr

� � � 0, E E
r

� �
�

0, E r t
z

( , , )� ), then the formulas below follow from the general constitutive equations [2, 5, 7,

10, 13]:
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where we have used the formulas for strains and s s s
E E E

66 11 12
2� �( ),�

E

E E
s s� �
12 11

/ . If the thickness acceleration is neglected, the

three equations of mechanical vibrations degenerate into two:

�

�
�

�
�

�

�
�

�

�

� � � �

�
�

�� �rr rr r r

r r r

u

t

1
2

2
,

International Applied Mechanics, Vol. 50, No. 5, September, 2014

582 1063-7095/14/5005-0582 ©2014 Springer Science+Business Media New York

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3 Nesterova St., Kyiv, Ukraine

03057, e-mail: electr@inmex.kiev.ua. Translated from Prikladnaya Mekhanika, Vol. 50, No. 5, pp. 119–131,

September–October 2014. Original article submitted June 5, 2012.

DOI 10.1007/s10778-014-0657-3



�

�
� �

�

�
�

�

�

� � �

�
�

� � �� �r r

r r r

u

t

2 1
2

2
. (2)

After simple transformations in (1) and (2), we arrive at the vibration equations for displacements:
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The solution of the system of equations (3) can be represented [3] in the form

u
r r

r
�

�

�
�

�

�

� �1

�
,

u
r r

�
�

�
�

�
�

�

�

1 � �
. (4)

The functions �( , , )r t� and �( , , )r t� determined from the following wave equations satisfy Eqs. (3):
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The electric potential for a plate with solid electrodes on the faces z h� � / 2 is given by � �
�

h zV t
1

0
( ), the edge effect

being neglected. This potential corresponds, according to [2, 5, 6, 9], to an electric field with E E
r

� �
�

0, E h V t
z

�
�1

0
( ); hence,

the term ( )1
31

��
E z

d E in Eq. (5) should be omitted, considering (3).

The following expressions for stresses in terms of the potentials � and � can be derived from (1), (4):
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The homogeneous boundary conditions for displacements and stresses (at r r�
0

and r r�
1
) in a circular piezoceramic

plate of radius r
1

with a hole of radius r
0

are taken one from each of the following two pairs ( j � 0 1, ):

u r t r t
r j rr j

( , , ) ( , , )� � �� � �0 0,
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u r t r t
j r j� �

� � �( , , ) ( , , )� � �0 0. (7)

The initial conditions for steady-state harmonic vibrations are not formulated.

Consider a circular piezoceramic plate r r r
0 1

� � with electrode coating on its faces z h� � / 2 cut into 2N sectors.

Adjacent sectors are connected in antiphase so that E V h
za

n
� �

�
( ) /1

1

0
, n N�1 2, ,� . If vibrations are harmonic,

f r t f r i t
a

( , , ) Re ( , )exp� � �� , where � is the angular frequency, then a candidate solution to Eqs. (5) (the term ( )1
31

�� d E
z

in

the first equation should be equated to zero [3]) in polar coordinates r,� can be chosen in the form of series:

�( , , ) Re { ( ) ( )}sin exp
, ,

r t R A J k r A Y k r m i
m m m m

m

� � �� ��
2

1 1 2 1
t,

�( , , ) Re { ( ) ( )}cos exp
, ,

r t R A J k r A Y k r m i
m m m m

m

� � �� ��
2

3 2 4 2
t, (8)

where J k r
m j

( ) and Y k r
m j

( ) are mth-order cylindrical functions of the first and second kinds [1]; k s
E

E

1

2 2

11

2
1� �( )� � � ,

k s
E

E

2

2

11

2
2 1� �( )� �� ; A

m i,
are dimensionless constants.

From (4), (6), and (8), we can find [5, 12, 13] the displacements

u R u k r A u k r A u k r A u
r m m m

m

m m m m
� � � ��Re [ ( ) ( ) ( )

, , ,1 1 1 2 1 2 3 2 3 4 2 4
( ) ]sin exp

,
k r A m i t

m
� � ,

u R l k r A l k r A l k r A l
m m

m

m m m m m�
� � � ��Re [ ( ) ( ) ( )

, , ,3 1 1 4 1 2 1 2 3 2 2 4
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k r A m i t
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� � (9)
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where

�  a k r k rJ k r k r m m J k
m E m E m1 1 1 1 1 1

2 2
1 1 1( ) ( ) ( ) ( ) ( ) (� � � � � �

�
� �+ ,1

2 2
r R r) ,

�  a k r k rY k r k r m m Y k
m E m E m2 1 1 1 1 1

2 2
1 1 1( ) ( ) ( ) ( ) ( ) (� � � � � �

�
� �+ ,1

r) ,

+ ,a k r m k rJ k r m J k r R r
m E m m3 2 2 1 2 2
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�
� ,

584



+ ,a k r m k rY k r m Y k r R r
m E m m4 2 2 2 2
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Y k r k RY k r
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�
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u k r m
R
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), ( ) ( )� � . (11)

Since E V h
z

a n
� �

� �
( )1

1

0

1
, n N�1 2 2, , ,� , the electric-field strength E E i t

z z

a
� Re exp � can be expanded into a Fourier

series in the angular coordinate �:

E
V

h

N n

n
z

a

n

� �
�

�
�

(

�
2 2 1

2 1

0

1
)

�sin ( )
, (12)

the subscript m N n� �( )2 1 , n � 1, 2, …, in (9) and (10).

In the resonance case, the concept of complex moduli [2, 4] has to be used, i.e., the material constants should be

considered complex (
~ Im
s s is
ij

E

ij

E

ij

E
� � ,

~ Im
d d id

ij ij ij
� � ,

~ Im
- - -

ij

T

ij

T

ij

T
i� � ).

To determine the resonance frequencies, it is possible to neglect the loss tangents as small and to use the real values of

the material constants.

If N � 0, there occur electroelastic radial vibrations
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and azimuthal vibrations
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The natural frequencies of electroelastic radial vibrations (13) are analyzed in [11, 12]. Azimuthal vibrations (14),

which cannot be excited electrically, are addressed for a fuller analysis of the results.

For N . 0, the frequencies of radial (problem (13)) and azimuthal (problem (14)) vibrations will be called quasiradial

and quasiazimuthal, respectively.

2. Analysis and Comparison of the Results. Consider a ring plate with the inner edge (r r�
0

) clamped and the outer

edge (r r�
1
) free:

u r t
r

( , , )
0

0� � , u r t
�

�( , , )
0

0� ,
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TABLE 1a

k
N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 0.77405 1.2108 1.85491 2.31119

2 4.24997 4.61023 5.4193 6.40551

3 7.211044 8.24799 8.85883 9.53872

4 10.14251 10.15934 10.23068 10.43583

5 13.06489 13.04537 13.09362 13.22587

6 15.98328 16.01617 16.11943 16.30792

7 18.89954 18.97603 19.19561 19.54078

TABLE 1r

k
N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 2.7658 2.70754 2.87211 3.50261

2 7.93913 7.05481 6.88761 6.87753

3 13.14434 13.28651 13.59398 14.02106

4 18.36553 18.37633 18.41591 18.49402

5 23.59297 23.65134 23.82034 24.08278

6 28.82342 28.86298 28.9791 29.16424

7 34.05554 34.10693 34.25091 33.47553



� �
rr

r t( , , )
1

0� , � �
�r

r t( , , )
1

0� . (15)

Using expressions (9), (10) and boundary conditions (15), we obtain block systems of algebraic equations for the

dimensionless constants A
N n i( ),2 1�

, n � 1, 2, …:

u k r A u k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

�
),2

� �
� � � �

u k r A u k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
),

� ,

l k r A l k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

�
),2

� �
� � � �

l k r A l k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
),

� ,

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

�
),2

� �
� � � �

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4 0

134 1

2 1
),

( )
� �

�

�)

�
V

d

n

E
,

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

�
),2

� �
� � � �

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4

0
),

� , (16)

where m N n� �( )2 1 , n N�1 2, , ,� is the number of radial cuts in the electrode coating.

The resonance frequencies can be determined by equating the fourth-order determinants of the homogeneous (atV
0

0� )

systems of algebraic equations (16) to zero.

Tables 1r and 1a summarize the results of analyzing the frequency equations derived by equating the determinant of the

system of equations (16) to zero. In the tables, the dimensionless resonant frequencies are denoted by � � ��� �( )1
2

11 1E

E
s r . The

results have been obtained for different values of N and the first vibration modes (k is the harmonic number). Here and later on,

the letter ”r” in the number of the tables and figures refers to quasiradial frequencies, and the letter “a” to quasiazimuthal

frequencies. The input data: r r
0 1

/ �0.4 and � �7740 kg/m
3
, s

E

11

12
152 10� /

�
. m

2
/N, s

E

12

12
58 10� � /

�
. m

2
/N, d

31

12
125 10� � /

�

C/N, which corresponds to TsTS-19 piezoceramics [6].
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Fig. 1a
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The quasiazimuthal vibration modes at frequencies �
0 5,

� 13.06489, �
1 5,

� 13.04537, �
2 5,

� 13.09362, �
3 5,

�

13.22587 are shown in Fig. 1a and the quasiradial modes at frequencies �
0 3,

� 13.14434, �
1 3,

� 13.28651, �
2 3,

� 13.59398,

�
3 3,

� 14.02106 are shown in Fig. 1r. The frequencies of quasiazimuthal (�
j ,5

) and quasiradial (�
j ,3

) vibrations are close;

therefore, this case is chosen for the analysis of vibration modes. Figures 1r and 1a, and the figures that follow, show curves of u
r

(solid lines) and u
r�

(dashed lines) versus r r r� /
1

for different values of N (N = 0, …, 3).

If the inner edge (r r�
0

) is free and the outer edge (r r�
1
) is clamped, then

� �
rr

r t( , , )
0

0� , � �
�r

r t( , , )
0

0� ,

u r t
r

( , , )
1

0� � , u r t
�

�( , , )
1

0� . (17)

Using expressions (9) and (10), we obtain the following systems of algebraic equations for the constants A
N n i( ),2 1�

(n � 1, 2, …):

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

�
),2
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TABLE 2a

k
N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 2.31583 2.46586 2.70391 3.14207

2 4.81907 5.20747 6.05161 6.74316

3 7.56991 7.37752 7.27896 7.74701

4 10.40329 10.43448 10.56156 10.88514

5 13.26914 13.42252 13.72799 14.13504

6 16.15099 16.18638 16.29824 16.50383

7 19.04174 18.41827 18.46417 18.55208

TABLE 2r

k
N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 3.20884 3.3252 3.93292 4.80765

2 8.043868 8.39152 8.97637 9.55813

3 13.20124 13.1704 13.22125 13.38097

4 18.40479 19.11545 19.32803 19.66145

5 23.62303 23.68015 23.84421 24.09559

6 28.84782 28.88754 29.00366 29.18763

7 34.07609 34.13 34.27815 34.49971



� �
� � � �

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4 0

134 1

2 1
),

( )
� �

�

�)

�
V

d

n

E
,

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

�
),2

� �
� � � �

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
),

� ,

u k r A u k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

�
),2

� �
� � � �

u k r A u k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4

0
),

� ,

l k r A l k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 1 1 2 1 1 2 1 4 1 1 2 1� � � �

�
),2

� �
� � �

l k r A l k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 1 2 1 3 2 2 1 4 2 1 2 �

�
1 4

0
),

. (18)

The natural frequencies are found by equating the fourth-order determinants of the homogeneous systems of algebraic

equations (18) to zero. The numerical results are presented in Tables 2r and 2a.

The quasiazimuthal vibration modes at frequencies �
0 5,

� 13.29614, �
1 5,

� 13.42252, �
2 5,

� 13.72799, �
3 5,

�

14.13504 are shown in Fig. 2a and the quasiradial modes at frequencies �
0 3,

� 13.20124, �
1 3,

� 13.1704, �
2 3,

� 13.22125,

�
3 3,

� 13.38097 are shown in Fig. 2r.

The formulas to determine the resonant frequencies for the boundary conditions (14) follow from the existence

condition for the nontrivial solutions of the homogeneous (V
0

0� ) systems of equations (18).

If the inner (r r�
0

) and outer (r r�
1
) edges are free, then

� �
rr

r t( , , )
0

0� , � �
�r

r t( , , )
0

0� ,

� �
rr

r t( , , )
1

0� , � �
�r

r t( , , )
1

0� . (19)

Using expressions (9), (10) and boundary conditions (15), we obtain block systems of algebraic equations for the

dimensionless constants A
N n i( ),2 1�

(n � 1, 2, …):

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

�
),2
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Fig. 2a
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Fig. 2r
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� �
� � � �

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4 0

134 1

2 1
),

( )
� �

�

�)

�
V

d

n

E
,

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

�
),2

� �
� � � �

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
),

� ,

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

�
),2

� �
� � � �

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4 0

134 1

2 1
),

( )
� �

�

�)

�
V

d

n

E
,

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

�
),2

� �
� � � �

c k r A c k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4

0
),

� . (20)
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TABLE 3a

k
N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 3.31746 3.85103 2.34721 3.18735

2 6.05804 6.53165 5.05288 6.17078

3 8.89634 8.88278 7.29402 7.983204

4 11.76887 11.81621 11.04868 11.42551

5 14.65643 14.68479 14.77914 14.96509

6 17.5518 17.59723 17.73907 17.99138

7 20.45171 20.42391 20.3894 20.39869

TABLE 3r

k
N � 0,

�
0,k

N � 1,

�
1,k

N � 2,

�
2,k

N � 3,

�
3,k

1 1.42346 1.6265 0.69281 1.54389

2 5.49151 5.20302 4.85053 4.97488

3 10.59329 10.72654 8.93175 9.28126

4 15.78762 15.85037 16.02459 16.2763

5 21.00334 21.10521 21.36017 21.7125

6 26.22731 26.21529 26.24087 26.30856

7 31.45534 31.47436 31.52862 31.61186



The formulas to determine the resonant frequencies for the boundary conditions (19) follow from the existence

condition for the nontrivial solutions of the homogeneous (V
0

0� ) systems of equations (20).

The numerical results are presented in Tables 3r and 3a.

The quasiazimuthal vibration modes at frequencies �
0 5,

� 14.65643, �
1 5,

� 14.68479, �
2 5,

� 14.77914, �
3 5,

�

14.96509 are shown in Fig. 3a and the quasiradial modes at frequencies �
0 3,

� 10.59329, �
1 3,

� 10.72654, �
2 3,

� 8.93175,

�
3 3,

� 9.28126 are shown in Fig. 3r.

The following general properties of the theoretical frequency spectrum of a plate with different number (N) of radial

cuts can be found from the boundary conditions (15), (17), (19), formulas (9), (10), and the frequency equations derived from

systems (16), (18), and (20):

if N = 1 (two electrodes), then f
k1,

, f
k3,

, f
k5,

, …; if N = 2 (four electrodes), then f
k2,

, f
k6,

, f
k10,

, …; if N = 3 (six

electrodes), then f
k3,

, f
k9,

, f
k15,

, …; if N = 4 (eight electrodes), then f
k4,

, f
k12,

, f
k20,

, …; if N = 5 (ten electrodes), then f
k5,

,

f
k15,

, f
k25,

, …; if N = 6 (12 electrodes), then f
k6,

, f
k18,

, f
k30,

, …; if N = 7 (14 electrodes), then f
k7,

, f
k21,

, f
k35,

, …; if N = 8

(16 electrodes), then f
k8,

, f
k24,

, f
k40,

, …. In the notation of frequencies f
m k,

, the subscript “m” is the harmonic number with

respect to the azimuth � (circumferential mode number) and the subscript “k” is the root sequence number of the frequency

equation.

Conclusions. As the number of cuts of the electrode coating is increased, the quasiradial and quasiazimuthal

frequencies for small k increase if one of the edges of the plate is clamped. This is not so for the plate with free edges.

For the boundary conditions (15) and (17), the difference between the quasiradial and quasiazimuthal frequencies for

equal k and different N tends to zero with increase in k.

For k 0 2, the frequencies corresponding to different N can differ several-fold. As k is increased, the relative difference

of frequencies corresponding to different N decreases to a fraction of a percent even at k 1 6, irrespective of the nature of

vibrations.

If one of the edges is clamped (boundary conditions (15), (17)), two quasiazimuthal frequencies appear between the

quasiradial frequencies �
k

and �
k�1

. If all the edges are free, this conclusion holds true beginning from k � 2.

With increase in k, one of the quasiazimuthal frequencies tends to a quasiradial frequency, while the vibration modes

are qualitatively and quantitatively different. This effect is the strongest for the frequencies �
j ,5

and �
j ,3

of quasiazimuthal and

quasiradial vibrations, respectively.

The quasiazimuthal frequencies of the plate with free edges are higher than those for the plate with one edge clamped.

The effect is opposite for quasiradial vibrations.
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Fig. 3a
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Fig. 3r
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Although the quasiazimuthal and quasiradial frequencies tend to each other with increase in the number of cuts, the

vibration modes become more and more different. The number of zeros of the function u
r

is the same for the boundary

conditions (15) and (17). This conclusion also applies to the function u
�

. Each quasiradial frequency has a close quasiazimuthal

frequency, both corresponding to the same number of nodal points, irrespective of the value of k. The number of nodal points

does not depend on the number of cuts. The frequency increases with N , and the difference of frequencies is considerable for the

first modes and decreases with increase in k.
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