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An approach to determining the lower frequencies of a cantilevered elastic parallelepiped using a

three-dimensional problem statement and allowing for material anisotropy is developed. The approach

combines the inverse-iteration and extended Kantorovich–Vlasov methods and is validated against the

combination of the finite-element and Ritz methods. The influence of the anisotropy of the material on

the lower frequencies of the parallelepiped is analyzed. It is shown that the variation in the frequencies of

the parallelepiped with the boundary conditions being considered follows the variation in the

predominant stiffness characteristics
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Introduction. Cantilevered elastic members of various shape and structure are widely used in various fields of

engineering and construction. They are used to model wings of aircraft and blades of gas-turbine engines in mechanical

engineering; elements of floors of buildings, balcony girders, and multistorey structures in construction; elements of scanning

electron microscopes in nanoelectromechanical systems. No wonder that cantilever restraint is deemed to be a technological

masterpiece. An analysis of the vibrations of such members is an important initial stage in their dynamic design, which may

prevent emergencies under real service conditions.

By now, the dynamic characteristics of cantilevered elastic members have been most extensively studied for beams and

thin plates either of simple structure or with some complicating factors. For example, the influence of lamination of beams on

their vibrations was studied in [9], the dependence of the lower frequencies on the elastic properties of composites was analyzed

in [20], and discrete inclusions such as lumped masses were allowed for in [8]. We will use beam models, the classical

Kirchhoff–Love model, and shear models of the first and higher orders.

The vibrations of cantilevered bodies have been studied, using a three-dimensional problem statement, mainly for thick

plates of various shapes such as an isosceles triangle, a rectangular parallelepiped, a prism with skew edge opposite to fixed one,

etc. [18, 19, 21, 22]. The three-dimensional problem statement in elasticity was compared in [18] with different two-dimensional

problem statements for plates depending on their geometrical parameters. Particular attention was given to the boundary

conditions on the lateral faces, and the frequency analysis was usually restricted to the case of an isotropic material [19]. The free

vibrations of thick anisotropic plates were studied in few publications. The lower frequencies of square plates of different

thickness made of materials with different types of anisotropy were analyzed in [3]. Various combinations of boundary

conditions on the lateral faces, except for the cantilever case, were considered.

To solve the relevant two- and three-dimensional eigenvalue problems, use is often made of variational difference and

finite-element methods as well as discrete-continuous and Ritz methods [3, 12, 14, 17–19, 21]. The frequencies of an isotropic

parallelepiped obtained by the Ritz method using various basis functions (algebraic and Chebyshev polynomials, trigonometric

functions, etc.) were compared in detail in [19]. It was pointed out that B-splines are promising for achieving high accuracy. The
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spline-collocation method was used to study the free axisymmetric vibrations of solid cylinders with either clamped or sliding

ends [11] and to solve a three-dimensional static problem for a thick plate with the same boundary conditions [13]. Finite integral

transforms were used in [15] to analyze the stress–strain state of cantilevered thin orthotropic plates under arbitrary loading.

Some two-dimensional problems were solved by the superposition method [10] Three-dimensional eigenvalue problems for an

isotropic parallelepiped were solved by the extended Kantorovich–Vlasov method [6]. The same method was used to study the

torsion of a rectangular anisotropic prism [5], to solve the Lame problem of the compression of an elastic parallelepiped [7], and

to solve two-dimensional stationary problems for shallow shells [4].

Here we will analyze the natural frequencies of cantilevered parallelepipeds with different dimensions made of

materials with different types of anisotropy. To solve the associated problems, we will combine the inverse-iteration and

extended Kantorovich–Vlasov methods.

1. Problem Statement and Problem-Solving Method. Consider an elastic body in the form of a rectangular

parallelepiped occupying a domain� ��� �{x y z x a, , : [ , ]� 0 , y b�[ , ]0 , z c�[ , ]}0 in Cartesian coordinates x y z, , . The body is

cantilevered: the edge x � 0is clamped, and the other edges are free. In the general case, various physically consistent boundary

conditions may be prescribed on the faces of the body.

The problem of the free vibrations of the parallelepiped is formulated using the Rayleigh variational principle:
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ij

�{ } ( , , )i j �1 6 is the matrix of elastic constants of the generalized Hooke’s law � ��C for an anisotropic material

( { , , , , , }� � � � � � ��
11 22 33 23 13 12

and � � � � ��{ , , , ,
11 22 33 23

� �
13 12

, } are the stress and strain vectors composed of the

elements of the respective tensors with allowance for their symmetry); � �� ( , , )x y z is the mass distribution function; �� is a

volume element� (the indices 1, 2, 3 correspond to x, y, z, all the vectors being column vectors).

The unknown parameter �and the associated stateU (1.1) are determined, as in [6], by combining the inverse-iteration

method [1] and the extended Kantorovich–Vlasov (EKM) method [4, 5].

First, we use the method of successive approximations to reduce problem (1.1) to a sequence of variational problems

that do not contain the unknown factor �. To this end, we introduce a sequence of vector functionsV
n

asU V
n

� and �U V
n

�
	1

to reduce the original problem to a sequence of variational problems for the functionals

Ý U( , �) �Ý V DV CDV d V V d V V
n

n n T n n T n n T
( ) ( ) � ( ) ( )� 	 	
 


1

2

1

2

1

2

� � � � �

� �

n
d

	



1

��

�

, (1.3)

and the factor � is determined as the limit of the following numerical sequence:
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It is necessary to take into account the shift of the eigenvalue spectrum by � (� � �� � ).

Any vector function of general form can be used as the initial approximationV
0

.

To find the stationary points of functional (1.3) at some fixed step n fixed	 , we will use the method based on the

extended Kantorovich–Vlasov method and detailed in [5]. This method suggests approximating the displacement vector

V v v v
n n n n
�{ , , }

1 2 3
in functional (1.3) by a vector F f f f

M

n

M

n

M

n

M

n
�{ , , }

1 2 3
as follows:

v x y z f x y z X x Y y Z z
n

M

n

i

n

i

n

i

n

i

M

1 1 1 1 1

1

( , , ) ( , , ) ( ) ( ) ( )� �

�

� ,

v x y z f x y z X x Y y Z z
n

M

n

i

n

i

n

i

n

i

M

2 2 2 2 2

1

( , , ) ( , , ) ( ) ( ) ( )� �

�

� ,

v x y z f x y z X x Y y Z z
n

M

n

i

n

i

n

i

n

i

M

3 3 3 3 3

1

( , , ) ( , , ) ( ) ( ) ( )� �

�

� , (1.5)

where the functions X x X x X x Y y Y y Y
i

n

i

n

i

n

i

n

i

n

i

n

1 2 3 1 2 3
( ), ( ), ( ), ( ), ( ), , Z z Z z Z z

i

n

i

n

i

n

1 2 3
( ), ( ), ( ) ( , )i M�1 depend on different

variables of the domain� and are unknown; M is the number of terms in the approximating expression.
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These vectors, as in [4–7], are said to be argument vector functions since each of them is composed of functions of only

one argument x, y, or z. To determine them, we use the standard procedure of variational calculus. For example, according to the

approximation F f f f
M

n

M

n

M

n
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n
�{ , , }
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(1.5), functional (1.3) is approximately replaced by the functional
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The stationarity condition for this functional is
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where � � �
X nM Y nM Z nMn n n
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When going over to the Euler–Lagrange equations, each of conditions (1.10)–(1.12) generates a one-dimensional

problem for a varied argument vector function. The argument functions of other variables that are not varied in this condition

appear in this one-dimensional problem as parameter functionals. A procedure of deriving these one-dimensional problems is

outlined in [5]. For example, the one-dimensional problem for the functions X
n

with respect to the variable x is equivalent to

condition (1.10), while the functions Y
n

and Z
n

appear in it as definite integrals. Condition (1.11) leads to a one-dimensional

problem for the functionsY
n

with respect to the variable y, while the functions X
n

and Z
n

appear in it as definite integrals. The

one-dimensional problem for the vector function Z
n

with respect to the variable z follows from condition (1.12) and includes the

functions X
n

and Y
n

in integral form. Thus, the system of conditions (1.10)–(1.12) leads to the following system of three

one-dimensional boundary-value problems with respect to three argument vector functions of different variables:
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is a block-diagonal matrix.

The matrix operator of boundary conditions (the sign “–” refers to x � 0, and the sign “+” to x a� ) is expressed in a

similar way:
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The coefficients of operators (1.16) in the case of general rectilinear anisotropy can be found in [5].
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The elements of the matrices T
y

n
and T

z

n
are similar.

To solve the system of one-dimensional problems (1.13)–(1.15) at each step of the method of successive

approximations (parameter n), the following iteration scheme (parameter m) can be used:
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The index ( )m	1 on the operators L
x

n m, 	1
,T

x

n m, 	1
, R

x

n m

�

, 	1
means that the coefficients are calculated using the functions

Y and Z from the previous ( )m	1 th step of approximation. These indices have the same meaning in the other operators of

(1.17)–(1.19).

Thus, as in solving the analogous problem for an isotropic parallelepiped [6], we set up a single iteration process

(parameter j �1 2, ,…) to determine the frequency parameter �and the associated vector functionU . This process unites inverse

iterations (parameter n) and solution of the variational problem (1.17)–(1.19) (parameter m):
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Note that any functions linearly independent in i may be chosen as the initial approximations X
pi

0
, Y

pi

0
, Z

pi

0
( , ,p �1 2 3,

i M�1, ). Each one-dimensional boundary-value problem is solved by the orthogonal-sweep method.

To terminate the iteration process (1.20)–(1.22) with a fixed number M of approximation terms, we will use the Runge

principle. The accuracy of the calculated natural frequency � is improved by increasing the number of terms M in (1.5).

2. Test Example. Since the method for solving three-dimensional eigenvalue problems has not yet been rigorously

validated (no deductive estimation of the convergence and accuracy of the solution has been done), its practical justification as

applied to spectral problems of elasticity for anisotropic bodies is based on the well-known inductive techniques of applied

mathematics.

As follows from Sec. 1, to solve the problem, it is necessary that the following two conditions be satisfied: (i)

convergence of the single iteration process of solving the system of one-dimensional problems (1.20)–(1.22) with a fixed

number M of terms in the approximating expression and (ii) convergence of solution (1.5) with increasing number of

approximating functions.

Whether these conditions are satisfied is checked by comparing two successive approximations.

The solution obtained with the EKM is validated against solutions obtained with other methods. Test examples are

borrowed from [3, 16, 19] and selected so as to illustrate the features of the class of problems being considered such as the

anisotropy of the material and the cantilever restraint of the parallelepiped. Since the natural frequencies of a cantilevered

anisotropic parallelepiped were not calculated in [3], the solution for such boundary conditions is validated for an isotropic

material using the results from [16, 19].

Example 1. Let us determine the natural frequencies of a rectangular parallelepiped � ��� � �{ , , : [ , ]x y z x a0 ,

y a z c� �[ , ], [ , ]}0 0 with a square base made of a material with different types of anisotropy and the following elastic

characteristics [3]:

Trigonal materials

# $C �

	8674 699 1191 1791 0 0

8674 1191 1791 0 0

1072 0 0 0

. . . .

. . .

.

sym. 5794 0 0

5794 1791

3988

.

. .

.

	

%

&

'

'

'

'

'

'

'

(

)

*

*

*

*

*

*

*

GPa. (2.1)
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Monoclinic materials

# $C �

	 	

	

8674 825 2715 366 0 0

12977 742 57 0 0

10283 992

. . . .

. . .

. . 0 0

3861 0 0

6881 253

2901

sym. .

. .

.

%

&

'

'

'

'

'

'

'

(

)

*

*

*

*

*

*

*

GPa. (2.2)

Orthotropic materials

# $C �

1600 373 172 0 0 0

8687 1572 0 0 0

84 81 0 0 0

2558 0 0

. . .

. .

.

.sym.

4268 0

4206

.

.

%

&

'

'

'

'

'

'

'

(

)

*

*

*

*

*

*

*

GPa. (2.3)

Let us analyze the following boundary conditions: two opposite edges are clamped and the other two are free (CFCF in

[3]):

u u u
1 2 3

0� � � at x a� 0, ;

� � �
22 21 23

0� � � at y a� 0, ; (2.4)

and Navier boundary conditions at all edges (SSSS in [19]):

u u
2 3

0� � , �
11

0� at x a� 0, ;

u u
1 3

0� � , �
22

0� at y a� 0, . (2.5)

The planes z � 0and z c� are free from load: � � �
33 13 23

0� � � at z c� 0, .

We will illustrate the computational aspects (satisfaction of conditions (i), (ii) and comparison with other solutions) of

the EKM for different frequencies, materials, boundary conditions, and dimensions of the parallelepiped. Table 1 summarizes

the cases analyzed. Comparison is made using the frequency parameter
~
� � � +� c C

11
introduced in [3].

Table 2 collects frequencies illustrating the convergence of the single iteration process of solving the system of

one-dimensional problems (1.20)–(1.22) (parameter j) at a fixed number M of approximating terms given in the last column of

Table 1.

Table 2 indicates that four to seven iterations are required for the solution to converge in four decimal places at different

number of approximating functions.
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TABLE 1

Case Frequency No. Material Boundary conditions c a/ M

I 1 trigonal CFCF (2.4) 0.5 4

II 2 monoclinic SSSS (2.5) 0.1 3

III 3 orthotropic CFCF (2.4) 0.5 2



Table 3 demonstrates how the natural frequencies converge depending on the number of terms in series (1.5).

It can be seen that the natural frequencies calculated by (1.4) converge in four decimal places with increase in the

number of terms in (1.5) at no greater than six terms of approximation.

The natural frequencies calculated with the EKM and satisfying both conditions (i) and (ii) are validated by comparing

them with those in [3] for the above types of anisotropy. These data are summarized in Tables 4 and 5 for the boundary conditions

(2.4) and (2.5), respectively.

The difference between frequencies obtained by the finite-element method [3] and by our approach does not exceed 1%.

Example 2. To test the approach for a cantilevered parallelepiped, we will use the data from [16, 19] for an isotropic

material. Comparison is made using the frequency parameter �
*

/� � �b c D
2

introduced in [19] (D Ec� 	
3 2

12 1/ ( ), , E is

Young’s modulus, , is Poisson’s ratio).

Assume that the edge x � 0 is clamped and the other edges are free:

u u u
1 2 3

0� � � at x � 0,

� � �
11 12 13

0� � � at x a� ,

� � �
22 21 23

0� � � at y b� 0, ,

� � �
33 13 23

0� � � at z c� 0, . (2.6)

How conditions (i) and (ii) are satisfied to solve the problem with the EKM using these boundary conditions is

illustrated by Table 6 (convergence of the general iteration process of solving the system of one-dimensional problems

(1.20)–(1.22) with a fixed number of approximation terms) and Table 7 (convergence of the solution depending on the number of

approximation terms).
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TABLE 2

Cases

j

1 2 3 4 5 6 7

I 0.9422 0.8637 0.8051 0.8028 0.8027 0.8026 0.8026

II 0.5276 0.5290 0.1260 0.1242 0.1242 0.1242 0.1242

III 0.7461 1.050 1.043 1.044 1.044 1.044 1.044

TABLE 3

Cases

M

1 2 3 4 5 6

I 0.9485 0.8049 0.8030 0.8026 0.8022 0.8022

II 0.1266 0.1260 0.1242 0.1242 0.1242 0.1242

III 1.059 1.044 1.042 1.041 1.041 1.041



372

TABLE 4

Anisotropy Frequency No.

c a/ = 0.5 c a/ = 0.1

EKM [3] EKM [3]

trigonal

1 0.8020 0.8005 0.05950 0.05950

2 0.9907 0.9795 0.07160 0.07150

3 1.026 1.025 0.1.145 0.1141

monoclinic

1 0.8259 0.8241 0.05980 0.05980

2 0.09862 0.9800 0.06990 0.06980

3 1.025 1.023 0.1184 0.1178

orthotropic

1 0.6812 0.6821 0.05850 0.05850

2 0.7436 0.7436 0.09480 0.09480

3 1.041 1.042 1.472 1.472

TABLE 5

Anisotropy Frequency No.

c a/ = 0.5 c a/ = 0.1

EKM [3] EKM [3]

trigonal

1 0.9252 0.9210 0.05350 0.05350

2 1.018 1.017 0.1298 0.1296

3 1.056 1.051 0.1984 0.1984

monoclinic

1 0.9055 0.9036 0.05270 0.05270

2 0.9075 0.9064 0.1243 0.1241

3 0.9373 0.9299 0.1426 0.1424

orthotropic

1 0.7293 0.7295 0.04770 0.04770

2 0.8054 0.8054 0.1021 0.1021

3 0.8054 0.8054 0.1227 0.1227



As with anisotropic materials and conditions (2.4) and (2.5), four to seven iterations are sufficient for the solution for a

cantilevered parallelepiped to converge in four decimal places. Stable values of frequencies are obtained with five to six

approximation terms.

Table 8 compares the results with those from [16, 19] where the natural frequencies were calculated with the Ritz

method using, as a basis, B-spline functions and orthogonal polynomials, respectively.

The frequencies calculated with different approaches differ by less than 1%.

Thus, testing the approach (examples 1 and 2) indicates that it works well for anisotropic materials and various

boundary conditions.

3. Analysis of the Natural Frequencies of an Anisotropic Parallelepiped. Let us use the above approach to calculate

the lower natural frequencies of a cantilevered parallelepiped. We will examine the dependence of the frequencies on the

properties of the anisotropic material and the contribution of the secondary stiffnesses relating tensile/compressive strains and

shear strains.

Let the edge x � 0of the parallelepiped be clamped and the other edges be free (boundary conditions (2.6)). The length a

of the parallelepiped along the Ox-axis is constant, while the relative dimensions of the cross-section x �const with constant area

S b c� - �const vary, which is characterized by the parameter . � c b/ .

The parallelepiped is made of a unidirectional composite reinforced with CFRP carbon fibers,

E E
1 0

211� . , E E E
2 3 0

0053� � . , G G E
12 13 0

0026� � . , G E
23 0

0013� . ,

,
21

� 0.25, � �� �
0

1524 kg/m
3
, E

0

11
10� N/m

3
. (3.1)

The axes of symmetry of the orthotropic material are initially aligned with the geometrical axes of the body, i.e., E
1
, E

2
,

and E
3

correspond to the Ox-, Oy-, and Oz-axes, respectively. The change in the angle / in the plane xybetween the physical and
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TABLE 6

c a/

Frequency

No.

M

j

1 2 3 4 5 6 7

0.5

1 2 2.957 2.952 2.950 2.950 2.950 2.950 2.950

3 3 5.233 5.222 5.215 5.205 5.204 5.204 5.204

0.1

2 3 8.111 8.107 8.102 8.099 8.091 8.090 8.090

3 4 3.773 7.187 16.89 20.26 20.18 20.17 20.17

TABLE 7

c a/

Frequency

No.

j

1 2 3 4 5 6

0.5

1 3.118 2.950 2.938 2.934 2.933 2.933

3 5.340 5.237 5.204 5.197 5.193 5.193

0.1

2 8.362 8.114 8.090 8.079 8.071 8.071

3 22.03 20.72 20.19 20.17 20.17 20.17



geometrical axes of the parallelepiped allows considering it as structurally anisotropic with one plane of elastic symmetry

perpendicular to the Oz-axis. The elements of the matrix of Hooke’s law � ��C for orthotropic material (three planes of elastic

symmetry C c
o

ij

o
�{ }) and for anisotropic material (one plane of elastic symmetry C c

ij
�{ }) are related as follows, depending on

the angle / [2]:

c c c c c
o o o o

11 11

4

12 66

2 2

22

4
2 2� � � �cos ( )sin cos sin/ / / / ,

c c c c c
o o o o

22 11

4

12 66

2 2

22

4
2 2� � � �sin ( )sin cos sin/ / / / ,

c c c c c c
o o o o o

12 12 11 22 12 66

2 2
2 2� � � 	 �[ ( )]sin cos/ / ,

c c c c c c
o o o o o

66 66 11 22 12 66

2 2
2 2� � � 	 �[ ( )]sin cos/ / ,

c c c c c
o o o o

16 22

2

11

2

12 66
05 2 2 2� 	 � �. [ sin cos ( )cos ]sin/ / / / ,

c c c c c
o o o o

26 22

2

11

2

12 66
05 2 2 2� 	 	 �. [ cos sin ( )cos ]sin/ / / / ,

c c c c c c
o o o o

44 44

2

55

2

55 44

2

55

2
� � � �cos sin , sin cos/ / / / ,
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TABLE 8

Frequency No.

c a/ = 0.5 c a/ = 0.1

EKM [19] [16] EKM [19] [16]

1 2.9327 2.9331 2.9372 3.4400 3.4387 3.4480

2 4.3889 4.3865 4.3910 8.0706 8.0746 8.0996

3 5.1926 5.1925 5.1944 20.170 20.152 20.209

Fig. 1

0

0 30 60 /, deg

–0.5

~
( )c

ij
/

0.5

~
c
11

~
c
66

	
~
c
16



c c c c c c
o o o o

45 44 55 13 13

2

23

2
� 	 � �( )sin cos , cos sin/ / / / ,

c c c
o o

23 13

2

23

2
� �sin cos/ /, c c c

o o

36 23 13
� 	( )sin cos/ / , c c

o

33 33
� . (3.2)

Figure 1 shows, as an illustration, the stiffness characteristics
~ ~

( )c c
11 11

� / ,
~ ~

( )c c
66 66

� / ,
~ ~

( )c c
16 16

� / , /� 0 0[ , ]0 90 ,

which give an indication of the elements of the matrix C c
ij

�{ }(i j, ,�1 6) (
~

( ) ( ) / ( )c c c
ij ij

/ /�
11

0 ), considering the symmetry

and periodicity of transformations (3.2).

Calculations were carried out in two stages. At the first stage, we calculated the lower frequencies of an anisotropic

parallelepiped depending on the orientation of composite fibers (3.1) (/� 0 0[ , ]0 90 ) for three relative dimensions of the section

x �const: . �1, 0.5, 0.1 (. �1corresponds to a cantilevered parallelepiped with a square cross-section; . � 0.1 to a plate of

thickness c and dimensions a b- ).

The first four frequencies
~

/ ( )
,

� � �
.i i

�
�1 1

0 ( , , , )i �1 2 3 4 divided by the minimum frequency of the orthotropic

parallelepiped with square cross-section x � const (/ � 0, . �1) are presented in Fig. 2a, b, c for . � 1, 0.5, 0.1 (a l� 25
0

,

S l�100
0

2
, l

0
is a typical length scale). If the displacements along the Ox-axis do not reverse sign, these frequencies correspond

to the following vibration modes: (i) predominantly bending vibrations along the Oz-axis (each cross-section x = const of the

parallelepiped shifts along this axis as a rigid-body), (ii) predominantly bending vibrations along the Oy-axis, (iii) shear

vibrations in the plane x = const; (iv) piston-like vibrations along the Ox-axis.

The curves
~ ~

( )� � /
i i
� for the parallelepiped with square cross-section x �const are monotonically decreasing for all

frequencies, except for the third one (curves 1, 2, 4 in Fig. 2). Their qualitative behavior is similar to that of the stiffness
~
c

11
,

which dominates over the other stiffnesses for these vibration modes (Fig. 1). For the third frequency (curve 3), the curve

~ ~
( )� � /

i i
� is nonmonotonic, peaking at / � 030 . The qualitative behavior of this curve follows that of the stiffness

~
c

66
, which

together with
~
c

12
, is predominant in determining shear strains (Fig. 1). The 15% difference between the first two frequencies is

observed within /� 0 0[ , ]10 30 . It is this quantity that is responsible for the anisotropic effect. In the isotropic case, both first

frequencies are equal and independent of the angle / (dashed lines in Figs. 1 and 2).

For the other dimensions of the cross-section x �const (. � 0.5, 0.1), the qualitative behavior of
~ ~

( )� � /
i i
� hardly

changes (Fig. 2b, c). The quantitative difference between the first and second frequencies substantially increases, which is

caused by the change in the dimensions of the parallelepiped rather than by the anisotropy of the material. The frequency curves

~ ~
( )� � /

1 1
� (bending vibrations along the Oz-axis) decrease with the parameter . for all material characteristics considered. The

curves
~ ~

( )� � /
2 2
� for the second frequency, conversely, tend to increase, while the curves

~ ~
( )� � /

3 3
� not only decrease, but
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Fig. 2
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also become more shallow. For the thick plate with.= 0.1 (Fig. 2c), the frequencies
~ ~

( )� � /
2 2
� hardly change up to / � 045 and

are higher than the frequencies of shear vibrations,
~

( )
~

( )� / � /
2 3

1 , over the entire range of / .

The frequencies of piston-like vibrations (curve 4) notably increase in the range /� 0[ , ]0 20 with decrease in . and are

almost independent of this parameter for / 1 060 .

The secondary stiffnesses were allowed for at the second stage of calculations. We compared the curves
~ ~

( )� � /
i i
� and

~ ~
( )

* *
� � /

i i
� obtained with (exact scheme) and without (conventionally simplified orthotropic scheme) regard to the stiffnesses

c c c
16 26 45

, , in Hooke’s law. These results are presented in Fig. 3 for the first and third frequencies of parallelepipeds of square

(. �1, Fig. 3a) and rectangular (. � 0.1, Fig. 3b) cross-section x �const.

As can be seen, the qualitative behavior of the frequency curves
~ ~

( )� � /
i i
� and

~ ~
( )

* *
� � /

i i
� does not change for both

frequencies. The orthotropic scheme naturally overestimates them. The simplified scheme introduces a larger error

( ( ) (
~

( )
~

( )) /
~

( )
*

� / � / � / � /
i i i i

� 	 -100, i �1 3, ) into the first frequency (~50% for. �1and. �0.1) than into the third frequency

(~20% for . �1and 45% for . � 0.1).

Conclusions. 1. Our approach to determining the natural frequencies of an elastic parallelepiped using a

three-dimensional problem statement has been tested for various anisotropic materials (trigonal, monoclinic, orthotropic) and

validated against results obtained with the finite-element and Ritz methods.

2. The influence of the properties of anisotropic materials on the lower frequencies of a cantilevered parallelepiped has

been analyzed. It has been shown that the lower frequencies of the cantilevered parallelepiped follow the variation in the

predominant stiffness characteristics, which is not so for other boundary conditions.

3. Neglecting the secondary stiffnesses that relate the tensile/compressive strains and the shear strains in Hooke’s law

results in a natural overestimation of the frequencies. The qualitative behavior of the curves does not change, while the

quantitative differences may exceed 50% in some cases.
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