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The stress–strain state of thin spherical, conical, and ellipsoidal shells made of nonlinear elastic

orthotropic composites is analyzed numerically. The methods of successive approximations, the

finite-difference method, and an original algorithm for the numerical discretization of a plane curve are

used. The effect of the orthotropy and nonlinearity of composite materials, the geometry of shells, and

the stiffness of the reinforcement (rings, inclusions) on the stress–strain state is studied
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Introduction. Thin structural members such as plates and shells are often weakened with natural or artificial holes or

rigid inclusions of various shapes. Artificial holes in shell members of structures subject to internal pressure are commonly

reinforced with rods for further connection or closing by a rigid plug. This causes the redistribution of the stresses around the

holes. Such a situation occurs near rigid inclusions in thin-walled structural members.

The stress concentration around rigid inclusions in isotropic elastoplastic and elastic shells is addressed in many studies

such as [4–8, 15, 16]. Noteworthy are the two papers [13, 14] that generalize and develop studies on, in particular, the stress

concentration in isotropic spherical shells with rigid inclusions.

Numerical results on the stress–strain state (SSS) of orthotropic shells made of nonlinear elastic composite materials

(CMs) are summarized in [2, 12]. Spherical and ellipsoidal shells with a reinforced hole were considered in [1] and [10],

respectively. A rigid inclusion as a limiting case of reinforcement of a hole with a rod of high stiffness was considered in [1].

Also, of interest is to study the nonlinear deformation of orthotropic shells of revolution with reinforcements, including a rigid

inclusion.

In what follows, we will discuss results on the SSS of equiwide spherical, conical, and ellipsoidal shells (with widely

vaying ellipticity).

1. Problem Statement. Methodical Aspects of Problem Solving. Let us consider deep shells made of orthotropic

nonlinear elastic CMs [2] undergoing nonlinear deformation under surface loads and boundary forces and moments (Fig. 1). Let

the effective mechanical characteristics and nonlinear properties of the orthotropic composite be known, and its axes of

orthotropy be aligned with the line-of-curvature coordinate axes (s,�, �) on the mid-surface of the shell.

Under certain levels of load, the anisotropic material of the shell manifests nonlinear properties, the strains being small.

This allows us to use the geometrically linear theory of shells [2] and the theory of anisotropic plasticity [3] to derive the basic

equations.

Methodologically, the analysis of the SSS of irregularly shaped shells with a reinforced hole is complicated by the

problem of joining components of different dimensionality. This problem is simpler if the deformation of shells of revolution is

axisymmetric. Three types of boundary conditions can be prescribed on the surface of a shell with a rigid inclusion: (i) the

portion of the shell’s boundary to which the inclusion is attached is undeformable (deformation boundary conditions); (ii) the
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displacement and angles of rotation on the shell’s boundary are expressed in terms of the rigid-body displacement of the

inclusion (geometrical boundary conditions); (iii) the boundary of the shell is reinforced with a ring of high stiffness; using such

a thin curved element as a reinforcement is acceptable in shells of revolution.

If the hole is reinforced with a thin elastic element (ring) of given stiffness to which a shearing force Q
0

is applied

(Fig. 1), then we have the following boundary conditions at the interface (s � 0) between the ring and the shell [1, 10]:
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whereT
s
,Q

s
, M

s
are the internal forces and moment; w, u,� are the deflection, tangential displacement, and the angle of rotation

of the normal around the tangent to the hole boundary; � is the angle between the normal and the axis of revolution at the

junction; r
0

, r
1
, r

2
are the distance from the center of gravity of the ring to the axis of revolution and its displacements along the

coordinate lines s and �, respectively; E
0

, F
0

, J
0

are the elastic modulus of the ring in the circumferential direction, its

cross-sectional area, and the moment of inertia of its cross section.

For a ring of rectangular cross-section of height a
0

and width b
0

, we have

F a b
0 0 0

� , J a b
0 0

3

0
� /12.

Let E
0

of the rigid inclusion be very high. Then, the boundary conditions (1) reduce to the following limiting form:

w usin cos� �� � 0,

Q T Q
s s

cos sin� �� � �
0

,

� � 0, (2)

which represents the equilibrium of a perfectly rigid inclusion. The outer boundary (s s
k

� ) of the shell is hinged

u � 0, w � 0, M
s

� 0. (3)

The nonlinear governing system of equations for displacements, including the equilibrium equations and the boundary

conditions (1) or (2) and (3) can be solved numerically [12] using the method of successive approximations and the

finite-difference method (FDM). For the purposes of the FDM, the meridian of the shell of revolution should be partitioned into

arcs of given length. This problem cannot be solve analytically in the general case (including ellipsoidal shells). To solve these

(non)linear problems, it is proposed to use the algorithm for the numerical discretization of a plane curve F x z( , ) � 0[9] based on

a Newton-type method.
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2. Stress State of Shells of Revolution. Let us consider a family of equiwide shells of revolution (spherical, conical,

ellipsoidal) in which the distance from the inner (r r�
0

, s � 0) and outer (r r
k

� , s s
k

� ) edges to the axis of revolutionOZ does not

change, while the shape and length of the meridian and the distance from the hole boundary to the equatorial plane along the axis

are variable (Fig. 1). The meridian of such shells is described by the equation
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� � �1 0 ( , )n � 1 2 . (4)

Let the shells be subject to internal pressure p and shearing force Q pr
0 0

2� / .

2.1. Spherical Shell. Let us analyze the SSS around a circular hole of radius r
0

� 22.22h in thin spherical (n � 2,

a b R� � in (4)) orthotropic shells of radius R h� 120 [10] whose outer edge is bounded by an equatorial plane (r h
k

� 120 ,

s h
k

� 165.19 ).

Let internal pressure ( p � 5 MPa) and shearing force Q
0

be applied to the edge of the hole. The mechanical

characteristics of the material (nonlinear elastic orthotropic eight-layer organic plastic [2]) of the shells: E
ss

= 26.8 GPa, E
��

=

46.5 GPa, �
� s

� 0.166, q
ss

= 4.32, q
��

= 2, q
s�

= –0.64. The other quantities in Eqs. (1) and the function describing the

anisotropic nonlinear properties of the material can be found in [2].

Let the hole be reinforced with a linear elastic ring of rectangular cross-section [10] of height a h
0

20� and width b h
0

�

with r r
1 2

0� � and E
0

= 46.5 GPa, which corresponds to the third type of reinforcement. The other types ( )N are: (i) no

reinforcement (E
0

= 0), (ii) reinforcement of low stiffness (E
0

= 4.65 GPa), (iv) reinforcement of higher stiffness (E
0

= 465

GPa), (v) rigid inclusion (E
0

= 4.65�10
9

GPa).

Linear (LP) and nonlinear (NP) problem statements are considered. The meridian is partitioned into regular intervals by

321 nodal points. The difference between the maximum strains found in two subsequent approximations does not exceed 10
–3

.

Table 1 summarizes the values of the meridional (�
s
) and circumferential (�

�
) stresses (MPa) on the outer (

~
/� �� �h

0.5) and inner (
~
� �–0.5) surfaces near the hole (s � 0). It can be seen that the stresses are maximum on the boundary of the hole for
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TABLE 1

N

~
�

LP NP

�
s

�
�

�
s

�
�

1

0.5 10 2694 10 1788

–0.5 10 1543 10 1437

2

0.5 900 1284 753 894

–0.5 –701 787 –616 542

3

0.5 425 416 411 399

–0.5 115 328 113 328

4

0.5 231 103 231 103

–0.5 439 163 439 163

5

0.5 203 58 197 56

–0.5 485 139 467 135



all types of reinforcement. The hoop stresses on the outer surface are maximum for nonreinforced and weakly reinforced holes

(N = 1, 2), while the meridional stresses on the inner surface are maximum for the stiffer reinforcement (N = 4, 5).

The third type of reinforcement is close to optimal when the maximum meridional and hoop stresses are equal.

Noteworthy is the presence of compressive stresses when the hole is weakly reinforced (N = 2). Physical nonlinearity manifests

itself when the hole is not reinforced or reinforced with a ring of low stiffness. With increase in the stiffness, the reinforcement

has either weak effect (N = 3) or no effect (N = 4). The influence of nonlinearity on the stress distribution is insignificant with a

rigid inclusion.

2.2. Conical Shell. Let us analyze the SSS of a truncated conical (n � 1, a h� 120 , b h� 144 69. â (4), s h
k

� 153.16 )

orthotropic shell generated by revolving the chord connecting the ends of the meridian of the spherical shell considered above. Its

mechanical characteristics are the same as those of the spherical shells.

Table 2 summarizes the values of the stresses (MPa) near the truncated portion of the cone found by solving the

nonlinear problem. They are almost half those in the spherical shell. Physical nonlinearity is not manifested if there is a

reinforcement or a rigid inclusion in the truncation zone (s � 0). If there is no reinforcement (N = 1), ignoring the nonlinear

properties of the composite increases the stress from �
�

= 717 MPa to �
�

= 763 MPa.

Unlike the spherical shell, the maximum stresses (Table 3) in the conical shell are observed near the hinged edge in the

section s s
k

� 09. and these are hoop stresses. In this section, they exceed approximately two times the stresses in the spherical

shell where they are close to the membrane stresses. Note that Table 3 gives stresses only for the rigid inclusion because the

reinforcement of the truncated edge of the cone has almost no effect on the SSS near the fixed edge.

2.3. Ellipsoidal Shells. Let us consider oblong (n � 2, a h� 120 , b h� 240 in (4), s h
k

� 266.03 ; Tables 4–6) and oblate

(n � 2, a h� 120 , b h� 60 in (4), s h
k

� 122.6 ; Table 7) ellipsoidal shells. Their mechanical characteristics are the same as those of

the spherical shell.

Table 4 presents the stress distribution along the boundary of the nonreinforced and weakly reinforced holes (N = 1, 2)

in the oblong shell found by solving the linear and nonlinear problems. Table 5 summarizes the results for the stiffer
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TABLE 2

N
~
� �

s
�

�

1

0.5 42 717

–0.5 42 647

3

0.5 –19 56

–0.5 176 114

5

0.5 –33 –26

–0.5 263 75

TABLE 3

N

~
�

LP NP

�
s

�
�

�
s

�
�

5

0.5 502 787 470 741

–0.5 220 707 235 742



reinforcement and the rigid inclusion obtained by solving only the nonlinear problem because nonlinearity in these cases is

manifested near the hinged edge, but not on the boundary of the hole or the inclusion.

The deformation behavior of the oblong ellipsoidal shell is generally similar to that (see Sec. 2.1) of the spherical shell

with the difference that the stresses on the hole boundary in the oblong shell are maximum only if the hole is not reinforced or

weakly reinforced. In the other cases, the hoop stresses near the hinged edge in the section s s
k

� 095. are maximum, as in the

conical shell (Sec. 3).

Table 6 shows how physical nonlinearity affects the SSS in the section s s
k

� 095. of the oblong shell with a rigid

inclusion. It can be seen that nonlinearity has a stronger effect on the meridional strains (e
s
) than on the hoop stresses (�

�
), which

tend to pa h/ = 600 MPa due to the elongated shape of the shell along the axis of symmetry, as in the cylindrical shell.
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TABLE 4

N

~
�

LP NP

�
s

�
�

�
s

�
�

1

0.5 20 1687 20 1284

–0.5 20 1143 20 1063

2

0.5 546 773 498 661

–0.5 –405 484 –388 423

TABLE 5

N
~
� �

s
�

�

3

0.5 192 210

–0.5 109 188

4

0.5 68 38

–0.5 284 100

5

0.5 51 14

–0.5 308 88

TABLE 6

NP, LP

~
� e

s
�10 e

�
�10 �

s
�

�

NP

0.5 0.118 0.101 379 548

–0.5 0.046 0.102 213 534

LP

0.5 0.112 0.097 393 566

–0.5 0.045 0.098 206 515



The stresses in the oblate shell (Table 7) exceed the stresses in all the shells considered above. The deformation

behavior of the oblate ellipsoidal shell is to a lesser degree similar to that (Sec. 2.1) of the spherical shell compared with the

oblong shell. A distinguishing feature of the oblate shell is the presence of a zone of compressive hoop stresses near the outer

edge (curve 4 in Fig. 2).

Figure 2 show the variation of the hoop stresses (�
�

, MPa) along the meridian (
~

/s s s
k

� ) on the outside surfaces of

shells with the rigid inclusion. Curves 1, 2, 3, 4 represent the spherical, conical, and oblong and oblate ellipsoidal shells,

respectively.

For comparison, Fig. 3 shows similar curves for the spherical (solid line), conical (dashed line), oblong (dotted line) and

oblate (dash-and-dot line) ellipsoidal shells with a free hole.

3. Effect of Orthotropy on the Stress State of Spherical Shells. By changing the orientation of the axes of orthotropy

of composites relative to the coordinate axes, we can analyze its effect on the SSS of the shell, the other conditions being given.
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TABLE 7

N

~
�

LP NP

�
s

�
�

�
s

�
�

1

0.5 5 4314 6 2582

–0.5 5 2041 5 1988

2

0.5 1442 2132 1090 1178

–0.5 –1130 13428 –837 765

3

0.5 875 811 740 613

–0.5 138 599 249 635

4

0.5 602 246 592 234

–0.5 722 281 718 266

5

0.5 560 161 565 165

–0.5 811 233 766 228
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Let us compare the SSS of a spherical shell (Sec. 2) with

~

/E E E
ss

� �
��

0.576 to the SSS of the same shell with the orientation of

the axes of orthotropy changed so that

~

E � 1.735 and to the SSS of an isotropic elastoplastic shell made of aluminum alloy with

the following characteristics [7, 8]: E E E
ss

� � �
��

67 GPa, � � 0.3…0.5, �
n

� 130 MPa, �
n

� 0.002.

For the shells with a rigid inclusion, the comparison is made in Table 8. It can be seen that in the nonlinear case,

orthotropy is manifested to a lesser degree than in the linear case. In the linear case, the magnitude of the stresses in the isotropic

shell is between those of the stresses in the orthotropic shells. Nonlinearity in the isotropic shell affects the SSS under lower

loads. Increasing the elastic modulus in the meridional direction increases the stresses on the hole boundary, which is due to the

stronger interaction between the stiffer portion of the shell near the rigid inclusion and the less stiff middle portion of the shell.

For comparison, Table 9 presents similar data for a spherical shell with a free (nonreinforced) hole. It can be seen that in

the nonlinear case, orthotropy is manifested to a greater degree than in the linear case. Increasing the elastic modulus in the

meridional direction also decreases the stresses on the hole boundary, which is due to the stronger reinforcing effect of the major

portion of the shell on its free edge.

Conclusions. The deformation behavior of oblong and oblate ellipsoidal shells is essentially different. The oblong

ellipsoidal shell behaves as a conical shell. The oblate shell has a compression zone near the hinged edge.
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TABLE 8

~

E p, MPa
~
�

LP NP

�
s

p/ �
�

/ p �
s

p/ �
�

/ p

0.576 5

0.5 40.6 11.6 39.4 11.2

–0.5 97.6 27.8 93.4 27

1.735 5

0.5 –30.8 –5 –35 –5.8

–0.5 187 31 170 27.6

1.000 3

0.5 16.3 5 –4.3 –1.3

–0.5 126 40.3 85.3 40

TABLE 9

~

E p, MPa
~
�

LP NP

�
�

/ p �
�

/ p

0.576 5

0.5 539 358

–0.5 309 287

1.735 5

0.5 402 254

–0.5 282 225

1.000 1

0.5 464 248

–0.5 296 223



Increasing the stiffness of the reinforcement of the hole leads to nonmonotonic redistribution of the stresses on its

boundary. The maximum stresses on the hole boundary first decrease, becoming almost equal when reinforcement is optimal,

and then increase.

The effect of orthotropy on the SSS around the hole depends on the stiffness of the reinforcement and is opposite in two

limiting cases: free hole and rigid inclusion.
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