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A technique for determining the axisymmetric thermoelastoplastic state of thin shells with allowance for

the third invariant of the deviatoric stress tensor is developed. The technique is based on the theory of

thin shells that incorporates transverse shear and torsional strains. The equations of thermoplasticity

relating the stress components in Euler coordinates with the components of the linear part of the

finite-strain tensor are used as constitutive equations. The nonlinear scalar functions in the constitutive

equations are determined from reference tests on tubular specimens under proportional loading at

different temperatures and stress mode angles. The boundary-value problem is solved by numerically

integrating a system of ordinary differential equations using Godunov’s discrete orthogonalization. The

thermoelastoplastic stress–strain state of a corrugated shell is analyzed as an example
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Introduction. The elastoplastic stress–strain state (SSS) of shells of revolution under isothermal loading was analyzed

in [2, 3] taking the third invariant of the deviatoric stress tensor into account. The papers [2, 3] outline techniques for solving

axisymmetric problems of plasticity for thin shells based on the Kirchhoff–Love [2] and straight-line [3] hypotheses and the

constitutive equations from [5, 6]. These equations relate the stress components in Euler coordinates and the components of the

linear part of the finite-strain tensor. The chosen stress and strain measures are energy-consistent. These equations employ the

nonlinear relationships between the first invariants of the stress and strain tensors and between the second invariants of the

deviatoric stress and strain tensors. These relationships are established in tests on tubular specimens under proportional loading

at different values of the stress mode angle, which depends on the third invariant of the deviatoric stress tensor. The constitutive

equations from [5, 6] were modified in [7] to include the case of nonisothermal loading and used in [1] to solve, based on the

Kirchhoff–Love hypotheses, an axisymmetric problem of thermoplasticity for thin shells having temperature-dependent

material properties and undergoing no torsion. In contrast to [1], we will outline a technique developed to solve a similar problem

based, however, on the kinematic straight-line element model that allows for transverse shear and torsional strains.

1. Problem Statement. Consider a thin shell of revolution made by joining elements with differently shaped meridian.

The position of an arbitrary point of the shell is defined by curvilinear orthogonal coordinates s, �, �, where s ( )s s s
n0

� � is the

arc length of the middle meridian, � is the circumferential coordinate, and � is the distance from the point to the mid-surface. Let

the shell be such that �k
s

and �k
�

(k
s

and k
�

are the principal curvatures of the mid-surface) can be neglected compared with

unity. We will also assume (as in shell theory) that the normal stress �
��

may be neglected compared with the other normal

stresses:

�
��

� 0. (1.1)

International Applied Mechanics, Vol. 49, No. 6, November, 2013

1063-7095/13/4906-0675 ©2013 Springer Science+Business Media New York 675

S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, 3 Nesterova St., Kyiv, Ukraine

03057, e-mail: plast@inmech.kiev.ua. Translated from Prikladnaya Mekhanika, Vol. 49, No. 6, pp. 55–66, November–December

2013. Original article submitted December 24, 2010.



Let the shell, being undeformed and at temperature T T�
0

, be subject to nonuniform heating and loading that cause an

axisymmetric SSS, torsion, and large plastic strains. The unloading is not accompanied by secondary plastic strains, and creep

strains are negligibly small compared with instantaneous elastoplastic strains. We will use a geometrically linear quasistatic

problem formulation. The loading process is divided into short steps such that the loading history is described in the best possible

way. At each step of loading, the problem of thermoplasticity will be solved with the method of successive approximations.

2. Kinematic and Static Equations. To solve the problem, we will use the kinematic equations of the straight-element

model [3]:

�
s s

u k w� � 	 , � 

� �
� 	u k w,

� �
s s
� � , � 
�

�
�

s
,

 � � �v v
 , � � 
�
� �

� � � , 

�

�
cos

r

, (2.1)

where

� �
s s s
�� 	 , ( , )s � ,

� � � �
s s

k u w , � �
� �

k v,

k
s
� �� , k

r
�

�
�

sin
,

( )
( )

�

�

� �
d

ds

, (2.2)

where �
s

and �
�

are the strain components of the mid-surface in the s- and�-directions; �
s

and �
�

are parameters characterizing

the variation in the curvature of the midsurface in the same directions; and � are parameters characterizing the variation in the

angle between the s- and �-axes; u and v are the displacements of particles of the midsurface in the s- and �-directions; w is

deflection; �
s

and �
�

are the complete angles of rotation of the straight element;�
s

and�
�

are the angles of rotation of the

normal to the midsurface; �
s

and �
�

are the angles of rotation caused by transverse shear; r is the parallel radius of the

midsurface; ( )� �� is the angle between the normal to this surface and the z-axis of revolution; ( , )s � denotes the circular

permutation of the indices s and �.

The strain components at an arbitrary point of the shell are related to the strain components of its midsurface as follows:

� � �
ss s s
� 	 � , 2� �

�s
� 	 � ,

2� �
s s�

� ( , )s � . (2.3)

The static equilibrium equations for a shell element under axisymmetric loading and torsion are as follows [3]:

( )rN r N rk Q rq
s s s s
� � 	 	 �


�
0,

( )rN r N rk Q rq
s s� � � � �


� 	 	 	 � 0,

( )rM r M rQ rm
s s s
� � � 	 �


�
0,

( )rM r M rQ rm
s s� � � �


� 	 � 	 � 0,

( )rQ rk N rk N rq
s s s
� � � 	 �

�� �
0, (2.4)

where N
s
,Q

s
, and M

s
are the normal and transverse forces and bending moment acting in the section s �const; N

�
,Q

�
, and M

�

are the normal and transverse forces and bending moment acting in the section � �const; N
s�

and M
s�

are the shearing force and

twisting moment acting in the same sections; q
s
, q

�
, and q

�
are distributed loads referred to the midsurface; m

s
and m

�
are the

distributed moments induced by these loads.
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3. Constitutive Equations. We will use the equations from [7] describing nonisothermal loading when the material

properties depend on temperature. These equations relate the components of the stress tensor �
ij

in Euler coordinates and the

components of the linear part of the finite-strain tensor �
ij

. According to assumption (1.1), we represent the equations [7] as

Hooke’s law with additional stresses:

�
�

� �� �
��ss ss ss

G

�
�

	 �
2

1

( )
ad

,

�
�

�� � �
�� �� ��

�
�

	 �
2

1

G

ss
( )

ad
,

� � �
� � �s s s

G� �2
ad

,

� � �
s s s

G
� � �
� �2

ad
,

� � �
� � �� � �

� �2G
ad

, (3.1)

where �
ij

ad
are the additional stresses determined from the SSS found at the previous iteration:
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1
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s s
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�
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�
ad p

2Ge . (3.2)

The strain �
��

is determined from assumption (1.1) and the equation [7] for the stress �
��

:

�
�

� � � � � � �
�� ����

� �
�

	 	 � 	 � 	 	
1

1

1 2 1
0

( ) ( )( ) ( )(
ss ss T

e e
p p p

� �) , (3.3)

where � �
T T

T T� �( )
0

is the thermal strain; G, �, and �
T

are the temperature-dependent shear modulus, Poisson’s ratio, and

thermal linear expansion coefficient, respectively; �
0

p
is the plastic component of the mean strain � � � �

��0

1

3

� 	 	
��

( )
ss

; e
ij

p

are the components of the deviatoric plastic-strain tensor. These equations describe the deformation of the body’s element along

small-curvature paths and differ from the well-known equations [4] by the term �
0

p
,

� � � �
�0 1 0

� �F T
T

( , , ), (3.4)

where � � �
��0

1

3

� 	( )
ss

is the mean stress; �
�

is the stress mode angle,

�
�

�
� �

�

�
�

�

�
�

1

3

3 3

2

3

3
arccos

J D

S

( )

, (3.5)

where J D s
ij3

( ) ( )
�

�det is the third invariant of the deviatoric stress tensor D
�

; s
ij

are the components of the deviatoric stress

tensor; S is the shear-stress intensity,
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S
ss ss s s
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!

"
#
$
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3

2 2 2 2 2
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( )

/
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. (3.6)

It is assumed that the components of the deviatoric strain tensor in Eqs. (3.1) have elastic (e

s

G
ij

ije
�

2

) and plastic (e
ij

p
)

components. The plastic components are determined from the coaxialty of the director stress tensor and the director plastic strain

rate tensor, i.e.,

s

S

de

d

ij ij

�

p

p
%

, where d%
p

is the plastic shear strain intensity differential. The total components of the deviatoric

plastic strain tensor and the total shear plastic strain intensity are determined as the sums of their increments over all steps of

loading:

e e
ij k ij

k

p p
�&' , ' ' %

k ij

ij

k
e

s

S

p p
� , (3.7)

% ' %
p p
�& k

k

, (3.8)

where the angular brackets denote averaging over the kth step.

The increment of the shear plastic strain intensity ' %
k

p
is determined from the nonlinear formula

S F T�
2

( , , )% �
�

. (3.9)

We assume that, when the body’s element deforms along small-curvature paths, the shear strain intensity % includes

elastic (%
e
) and plastic (%

p
) components:

% % % %� 	 � 	
e p S

G

P

2

. (3.10)

The scalar functions F
1

and F
2

are determined from tests on tubular specimens under proportional loading at different

temperatures T and stress mode angles �
�

. At a fixed temperature, these functions are stress–strain curves at different values of

the angle �
�

. At a fixed angle, these functions describe instantaneous thermomechanical surfaces [4]. In [5–7], the functions

F
1

and F
2

were determined in tests on tubular specimens under a combination of tensile force and internal pressure at different

temperatures and �
�
�0°, 30°, 60°. It was established by calculation that when stress–strain curves are plotted for non-reference

values of T and �
�

, these functions permit linear interpolation. Then �
0

p
and '%

p
can be determined from the corresponding

stress–strain curves by the formulas

� � �
0 0

1p
� � �| |

T

F

K

, '%
p
�

�S F

G

2

2

, (3.11)

where K

G

�
	

�

2 1

1 2

( )�

�
is the dilatation modulus.

Transforming Eqs. (3.1) to forces and moments, we arrive at the following constitutive equations:

�

�

�

�

�

X
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T

s
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�
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)

*

*

+

,

-

-
�
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�
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�

�
�

(
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*
*

+

,

-
-
�

[ ] [ ]

[ ] [ ]

X

X

s

ad

ad
�

�

(

)

*

*

+

,

-

-
,

�

�

�

Q L Q� �[ ]�
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, (3.12)

where

�

X N N M M
s s s s s

Ò
�{ , , , }

� �
,
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Ò
�{ , , , } ( , )s � ,

�

Q Q Q
s

Ò
�{ , }

�
,

�
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Ò
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�

X N N M M
s s s s s

Tad ad ad ad ad
�{ , , , }

� �
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�

Q Q
s
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�
, (3.13)

where [ ]C , [ ]K , [ ]D , [ ]L are stiffness matrices obtained by integrating Eqs. (3.1) over the thickness of the shell; N Q
s

ad ad
. .�

�
are

the additional forces and moments.

4. Governing System of Equations. Equations (2.1)–(2.4), (3.12), (3.13) constitute a closed system of equations for

determining the SSS at each iteration of an arbitrary step of loading. We use these equations to reduce the thermoplactic problem

to the system of differential equations

� � �

� � 	Y P Y f[ ] (4.1)

for the vector

�

Y of unknown functions in terms of which the boundary conditions at the shell ends are formulated:

� �

�

Y N u
T

�{ , } ,

�

N r N N M M Q
s s s s s

T
� { , , , , }

� �
,

�

u u v w
s

T
�{ , , , , }� �

�
. (4.2)

The boundary conditions at s s�
0

and s s
n

� are

[ ]G Y g

�

�

� ( , )i n� 0 , (4.3)

where [ ]P and

�

f are the matrix of the system of equations and the vector of free terms; [ ]G and
�

g
i

are the given matrix and vector

of boundary conditions.

At each step of loading, the thermoplastic problem is solved by the method of successive approximations in each of

which the values of the additional stresses �
ij

ad
are corrected. In each approximation, the boundary-value problem (4.1)–(4.3) is

reduced to Cauchy problems, which are integrated by the Runga–Kutta method in combination with Godunov’s discrete

orthogonalization.

5. Problem-Solving Algorithm. Let the values of �
ij

k( )�1
, �

ij

k( )�1
, �

ij

kad( )�1
, %

p( )k�1
, �

0

1p( )k�
( , , , )i j s� �� have been

found at the ( )k �1 th step of loading. As the first approximation of the kth step, we solve the boundary-value problem (4.1)–(4.3)

with known �
ij

kad( )�1
, which yields the vector of unknown functions

�

Y
k ,1

. These functions are then used to determine, at each

point of the shell, the strains �
ss

k ,1
, �

�s

k ,1
, �

s

k

�

,1
, ( , )s � (2.3) and then the strain �

��

k ,1
(3.3), the strains �

ss
, �

�s
, and �

T
corresponding to

the first approximation of the current step, while e e
ss

p p p
, ,

��
�

0
corresponding to the last approximation of the previous step. Next,

we determine the mean strain � � � �
��0

1 1 1 11

3

k

ss

k k k, , , ,
( )� 	 	

��
, the components of the stress tensor �

ij

k ,1
(3.1), the mean stress

� � �
��0

1 1 11

3

k

ss

k k, , ,
( )� 	 , the components of the deviatoric stress tensor s

ij

k ,1
, and the shear-stress intensity S

k ,1
(3.6).

After that, we determine the stress mode angle �
�

k ,1
(3.5) and the shear-strain intensity % %

k k

k

k

S

G T

, ( )

,

( )

1 1

1

2

� 	
�

p
at each

point of the shell. By linear interpolation of surface (3.9) with respect to temperature and angle �
�

k ,1
, we find
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�
and the increment of the plastic shear strain intensity' %

k

k k

k

S S

G T
,

, ,

( )
1

1 1

2

p ad
�

�

. If' %
k ,1

0
p
/ , the process

is active loading; otherwise, it is unloading, and it is necessary to set ' %
k ,1

0
p
� . The loading direction found in the first

approximation is used in all the subsequent approximations of the current step. The increment ' %
k

p
is determined as the sum of

increments found in all approximations, while the total plastic-strain intensity is found from (3.8). Next, we determine the

increments of the deviatoric plastic-strain tensor ' ' %
k ij

ij

k

k
k

p
e

s

S

,

,

, ,1

1

1 1

p
� and the total deviatoric plastic-strain tensor e

ij

kp( , )1

(3.7).

In the case of active loading, we find F
k

1

1,
and � � �

0

1

0

1 1

1

p( , ) ,

,

| |

( )

k k

T

k

k

F

K T

� � � by linear interpolation with respect to

temperature and angle �
�

k ,1
using (3.4). In the case of unloading, we set � �

0

1

0

1p p( , ) ( )k k
�

�
. Then the additional stresses �

ij

kad( , )1

(2.7) are corrected and the boundary-value problem is solved in the second approximation to determine the vector of unknown

functions

�

Y
k ,2

, the strains �
ss

k ,2
, �

�s

k ,2
, �

s

k

�

,2
( , )s � , and the strain �

��

k ,2
, and so on. Unlike the first approximation, the strains �

ss
and

�
��

in (3.3) correspond to the second approximation, while e e
ss

p p p
, ,

��
�

0
to the first approximation. The process of successive

approximations at the kth step is terminated once the relative changes the increments of the plastic shear strain intensity ' %
k

p

over the step found in two successive approximations has differed by a small amount 0, which is the error of solution of the plastic

problem.

In [1], the convergence of the process of successive approximations was tested by comparing the values of �
0

found by

the formula �

� �
��

0
3

�

	
ss

and formula (3.4) and it was shown that it is sufficient to trace the increment ' %
k

p
alone.

To validate the results obtained with the above algorithm, it is necessary to refine the spatial mesh and steps of loading.

6. Example. Let us analyze the thermoelastoplastic SSS of a corrugated shell whose middle meridian is shown in Fig. 1.

The geometrical parameters: R = 0.14 m, r = 0.04 m, 2L r� �m, thickness h = 0.004 m. The shell is composed of a cylindrical

segment of length 2L and two toroidal segments of arc length L each. The segments are numbered as I, II, III and are smoothly

joined without discontinuity of the derivative �� .

The shell is in a stationary temperature field varying across the thickness as

T T

T T

r h

r h

r

r h

� 	
�

�
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)
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+

,
-
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(

)
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,
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2

1 2

2
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2
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/

,
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TABLE 1

� �
0
�

T

T = 293 K T = 773 K

�
�
� 0° �

�
� 30° �

�
� 60° �

�
� 0° �

�
� 30° �

�
� 60°

0.0000 0.0 0.0 0.0 0.0 0.0 0.0

0.0002 88.9 88.9 88.9 71.8 71.8 71.8

0.0006 243.8 207.1 121.4 165.9 131.2 88.1

0.0010 261.9 214.9 133.1 178.5 138.8 99.9

0.0024 295.7 233.4 154.2 205.3 151.4 115.5

0.0030 306.0 240.4 160.7 207.4 154.0 119.4

0.0040 316.6 252.0 169.0 211.4 159.0 123.9

0.0060 336.6 267.0 179.5 215.4 164.0 129.3

0.0080 356.6 282.0 186.2 219.0 169.0 133.0

0.0200 373.0 365.0 188.0 239.8 197.0 154.0

0.0400 411.6 431.6 199.5 274.5 243.7 189.0

TABLE 2

Ã

Ò = 293 K Ò = 773 K

�
�
� 0° �

�
� 30° �

�
� 60° �

�
� 0° �

�
� 30° �

�
� 60°

0.0000 0.0 0.0 0.0 0.0 0.0 0.0

0.0002 32.2 32.2 32.2 26.0 26.0 26.0

0.0100 166.6 166.6 166.6 104.3 104.3 104.3

0.0200 188.9 180.0 191.6 128.6 128.6 128.6

0.0400 220.5 204.0 223.0 149.0 137.0 164.6

0.0600 243.0 222.8 247.8 166.0 145.2 187.6

0.0800 261.9 235.3 268.0 178.6 152.6 200.4

0.1000 276.1 246.3 287.9 183.8 156.7 211.9

0.1600 310.0 279.3 325.3 199.4 169.0 231.8

0.2000 332.6 301.3 350.2 209.8 177.2 245.1

0.2500 360.9 328.8 381.4 222.8 187.5 261.7



where T
1
�473 K is the temperature of the inside surface; T

2
�323 K is the temperature of the outside surface; T

0
�293 K is the

initial temperature.

The shell is subject to internal pressure q
�
, axial compressive force N

s

*
, and shearing force N

s�

*
that are proportional to

the parameter p: q p
�
� MPa, N p

s

*
.� �0 1 MPa1m, N p

s�

*
.� �01 MPa1m.

Let p = 0.5, 1.0, 1.2, 1.4, …, 3.6, 3.8. The boundary conditions: N N
s s
�

*
, N N

s s� �
�

*
, M Q

s s s�
�� � � 0at s s�

0
and

Q
s

= u = v = �
s

= �
�

= 0 at s s
n

� . The shell is made of Kh18N10T steel with Poisson’s ratio � � 0.27 and linear thermal

expansion coefficient�
T
�

�
1210

6
. K

–1
. The values of the functions F

1
and F

2
are summarized in Tables 1 and 2, respectively.

The number of points of integration along the length of each segment K
s

i
= 401, 201, 201, and the number of points of

integration across the thickness K
�

= 17. The error of solution 0= 0.001. To check the accuracy of the results, we compared them

with those obtained with a double mesh spacing (K
s

i
= 201, 101, 101, K

�
= 9). The former partition provides convergence (the

difference between maximum strains is no greater than 5%). We also compared the results obtained with and without regard to

the stress mode. In the latter case, it was assumed that �
0

0
p
� (� �

0 0
� K ), and function (3.9) was determined in tension tests

(�
�
� 60°).

By solving the problem, we establish that all elements of the shell are subject to active loading. The plastic strains on the

surfaces of the shell are large. The angle �
�

at different points varies from 0 to 59°. At the beginning of the process, the results

obtained in both cases are similar. At %
p
2 2%, the difference between strains does not exceed 7%. Then this difference

increases, reaching 44% at the last step.
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Figures 2–9 show calculated strains on the outside surface at the last step of the process with (curves 1) and without

(curves 2) regard to the stress mode.

Figure 2 demonstrates the meridional distribution of the plastic shear strain intensity %
p

. Figures 3–5 show the variation

in the strains �
ss

, �
��

, �
�s

in the same direction.

It can be seen that the maximum values of the strains �
ss

obtained in the two cases differ by 45%, the strains �
��

differ

by 25%, and the strains �
�s

by 33%. Contrastingly, the values of the stresses �
ss

and �
��

(Figs. 6 and 7) differ insignificantly

between the cases.

For comparison, Figs. 8 and 9 show the meridional distribution of the plastic shear strain intensity %
p

and the strains �
ss

on the inside surface. As is seen, the maximum strains on the inside surface are somewhat lower than on the outside surface.

Conclusions. We have developed a technique for solving the axisymmetric problem of thermoplasticity for thin

isotropic shells based on constitutive equations that incorporate the third invariant of the deviatoric stress tensor. The nonlinear

scalar functions in the constitutive equations have been determined in reference tests on tubular specimens under proportional

loading at different temperatures and stress mode angles. The boundary-value problem has been reduced to the numerical

integration of a system of ordinary differential equations. The example considered has demonstrated that the results obtained

with and without regard to the stress mode are in good agreement only for plastic strain intensities lower than 2%. As the strains

increase, the agreement becomes worse and the difference between the results reaches 45%.
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