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A theory of long-term damage of laminated materials with physically nonlinear components is proposed.

The damage of components is modeled by random micropores. The damage criterion for a microvolume

is characterized by its stress-rupture strength. It is determined by the dependence of the time to brittle

failure on the difference between the equivalent stress and its critical value, which is the tensile strength,

according to the Huber–Mises criterion, and assumed to be a random function of coordinates. An

equation of damage (porosity) balance in the components at an arbitrary time is formulated. Algorithms

of calculating the time dependence of microdamage and macrostresses are developed and respective

curves are plotted. The influence of the nonlinearity of the matrix on the macrostress–macrostrain and

damage curves is studied
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Introduction. Long-term loads lower than the ultimate ones may cause sudden failure of structural elements. This is

due to the occurrence and development of dispersed microdamages, which commonly lead to the formation of main cracks.

Physically, the damage of a material may be considered as dispersed defects such as microcracks, microvoids, or destroyed

microvolumes. They reduce the effective or bearing portion of the material that resists loads.

Experimental data on and observation of the real behavior of structural members and structures suggest that damage can

be either short-term (occurring instantaneously after the application of stresses or strains) or long-term (building up with time

after the application of load). A structural theory of short-term microdamage of homogeneous and composite materials was

proposed in [8]. It employs the mechanics of microinhomogeneous bodies of stochastic structure and models dispersed

microdamages by quasispherical micropores [5]. Long-term damage is the accumulation of dispersed microdamages such as

micropores and microcracks. At the microscopic level, the strength of a material is inhomogeneous, i.e., the ultimate strength and

stress-rupture curves for a microvolume are random functions of coordinates with certain distribution density or cumulative

distribution. When a macrospecimen is subject to constant stresses, some microvolumes whose ultimate strength is less than the

equivalent stress are damaged, i.e., microcracks or micropores form in their place. Microvolumes where the stress is less than,

yet close to the ultimate strength are damaged after a lapse of time, which depends on the difference between the applied stress

and the ultimate microstrength. A theory of the long-term damage of homogeneous, particulate, and laminated materials was

developed in [9] based on models and methods of the mechanics of stochastically inhomogeneous materials.

The stress–strain behavior of many materials becomes nonlinear under quite high loads. This type of nonlinearity is

typical of metals and polymers at high temperatures. Therefore, it is important to generalize the theory of long-term damage of

laminated materials [10, 11] based on models and methods of the mechanics of stochastically inhomogeneous materials to

physically nonlinear laminated materials. The damage of the components (plies) of a laminated material is modeled by dispersed

microvolumes destroyed to become random micropores. The failure criterion for a single microvolume is determined by its
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stress-rupture strength described by a fractional or exponential power function, which is, in turn, determined by the dependence

of the time to brittle failure on the difference between the equivalent stress and its critical value, which characterizes the ultimate

strength according to the Huber–Mises criterion. The ultimate strength is assumed to be a random function of coordinates whose

one-point distribution is described by a power function on some interval or by the Weibull function. The effective properties and

the stress–strain state of a laminated material with random microdamages are determined from the stochastic equations of

elasticity of laminated materials with porous components. We will derive a damage (porosity) balance equation from the

properties of the distribution functions and ergodicity of the random field of ultimate microstrength, and the dependence of the

time to brittle failure for a microvolume on its stress state and ultimate microstrength for given macrostrains and an arbitrary

time. The macrostress–macrostrain relationship and the porosity balance equations for a laminated material with porous

components describe the coupled and interacting processes of deformation and long-term damage. We will use an iteration

method to develop algorithms for calculating the microdamage and macrostresses as functions of time and to plot the respective

curves. The influence of nonlinearity on the deformation and microdamage of laminated materials will be analyzed.

1. The physically nonlinear deformation of a laminated material with N isotropic components is described as the

dependence of the bulk (K
�

) and shear (�
�

, � �1 2, ,... ,N) moduli on strains. The microdamage of the composite components

caused by loading is modeled by random quasispherical micropores occurring in those microvolumes where the stresses exceed

the ultimate microstrength. The macrostresses � ��
ij

and macrostrains � ��
ij

in an elementary macrovolume are related by
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, , , , are the effective elastic moduli dependent on the macrostrains � ��

ij
due to physical nonlinearity

and microdamage.

Denote the bulk and shear moduli of the skeleton of the �th component by K
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and �
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, its porosity by p
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where
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The effective moduli K
� � �

� �
p p p

, , of the porous �th component are defined by the following formulas, according to

[2, 6]:
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where � ��
�

ij

1
are the average strains in the undamaged portion of the �th component. Since they are expressed in terms of the

elastic moduli K
� �

�, of the components, which, in turn, are functions of the average strains in the undamaged portion of the�th

component, they can be determined using the following iterative algorithm. Their ( )n 
1 th approximation is related to the nth

approximation by
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The average strains � ��
�

ij
are determined in terms of the macrostrains � ��

ij
by the formulas
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The zero-order approximation represents physically linear components.

We will use the Huber–Mises criterion [3] as a condition for the formation of a microdamage in a microvolume of the

undamaged portion of the components:
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is the second invariant of the deviatoric average-stress tensor � ���
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in the undamaged portion

of the�th component; k
�

is the ultimate microstrength, which is a random function of coordinates. The average stresses � ��
�

ij

1
in

the undamaged portion of the �th component are related to the average stresses � ��
�

ij
as follows [6]:
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If the invariant I
� ��

�1
does not reach the critical value k

�
in some microvolume of the�th component, then, according to

the stress-rupture criterion, failure will occur in some time �
�

k
, which depends on the difference between I

� ��

�1
and k

�
. In the

general case, this dependence can be represented as some function:
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where �
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( , )k k � 0and �
� �

( , )0 k � � according to (1.9).

The one-point distribution function F k
� �

( ) in the undamaged portion of the �th component can be approximated by a

power function on some interval:
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or by the Weibull function
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where k
�0

is the minimum value of ultimate microstrength in the �th component; k m n
� � �1

, , are deterministic constants

describing the behavior of the distribution function and determined by fitting experimental microstrength scatter or stress–strain

curves.

The random field of ultimate microstrength k
�

is statistically homogeneous in real materials, and its correlation scale

and the size of single microdamages and the distances between them are negligible compared with the macrovolume. Then the

random field k
�

and the distribution of microstresses in the component under uniform loading are ergodic, and the distribution

function F k
� �

( ) defines the fraction of the undamaged portion of the component in which the ultimate strength is less than k
�

.

Therefore, if the stresses � ��
�

ij

1
are nonzero, the function F I
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�
( )

� �

1
defines, according to (1.7), (1.10), and (1.11), the fraction of

damaged microvolumes of the skeleton of the component. Since the damaged microvolumes are modeled by pores, we can write

a porosity balance equation [8]:
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where p
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is the initial porosity of the component and, according to (1.8),
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Given macrostrains � ��
ij

, the average stresses � ��
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in the�th component are related to the macrostrains � ��
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as follows
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If the stresses � ��
�

ij
act for some time t, then, according to the stress-rupture criterion (1.9), those microvolumes of the

�th component are damaged that have k
�

such that
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, (1.15)
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where I
� ��

�1
is defined by (1.13).

The time to brittle failure �
�

k
for the �th component of real materials at low temperatures is finite beginning only from

some value of I
� �

'
�

�1
0. In this case, the durability function �
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can be represented as
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where some typical time �
�0

, exponent n
1�

, and coefficient *
�

are determined from the fit of experimental durability curves for

the �th component.

Substituting (1.16) into (1.15), we arrive at the inequality
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Considering the definition of the distribution function F k
� �

( ), we conclude that the function F I t
� �

�

� �
+[ ( )]

� �

1
, where

+

*

� �

�

� �

�

�

( )

/

/
t

t

t

n

n
�







1

1

1

1

1

1

(1.18)

defines the fraction of the destroyed microvolumes in the undamaged (before loading) portion of the �th component at the time

t
�

. Then, in view of (1.9), the porosity balance equation for the�th component subject to long-term damage can be represented as
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where p
�

is a function of dimensionless time t
�

, and I
� ��

�
is defined by (1.14).

If the time �
�

k
is finite for arbitrary values of I
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, which may be observed at high temperatures, then the durability

function can be approximated by an exponential power function:
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which has enough constants �
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, m n n
1 1 2� � �

, , to fit experimental curves. Substituting (1.20) into (1.15), we arrive at the

inequality
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Considering the definition of the distribution function F k
� �
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defines the fraction of the destroyed microvolumes in the undamaged (before loading) portion of the �th component at the time

t
�

. Then, in view of (1.1), the porosity balance equation for the�th component subject to long-term damage can be represented in

the form (1.19), where p
�

is a function of dimensionless time t
�

, and I
� ��

�
is defined by (1.14).
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At t
�

� 0, the porosity balance equation (1.19) with (1.14), (1.18) (or (1.22)) defines the short-term (instantaneous)

damage of the �th component. As time elapses, Eqs. (1.19) with (1.14), (1.18) (or (1.22)) defines its long-term damage, which

consists of short-term damage and additional time-dependent damage.

Equations (1.1), (1.2)–(1.6), (1.19), (1.14), (1.10) (or (1.11)), (1.18) (or (1.22)) form a closed-form system describing

the coupled processes of statistically homogeneous physically nonlinear deformation and long-term damage of a laminated

material. The physical nonlinearity of its components affects the way pores form during deformation, and the porosity of the

material has an effect on its stress–strain curve. This is why the nonlinearity of the stress–strain curve of the laminated composite

is determined by the physical nonlinearity of its components and the increase in the porosity during physically nonlinear

deformation.

To describe the coupled processes of physically nonlinear deformation and long-term damage, it is necessary to find the

macrostrain-dependent effective elastic moduli by the iterative algorithm (1.2)–(1.6) and to determine the porosity from Eqs.

(1.14), (1.10) (or 1.11)), (1.18) (or (1.22)) also by an iterative method. At the nth step of the iterative process (1.2)–(1.6), Eq.

(1.19) is represented as
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Then the root p
�

of Eq. (1.23) at the mth step of some iterative process can be expressed as
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( ). The root is found as follows:
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2. Let us analyze, as an example, the coupled processes of nonlinear deformation and long-term microdamage of a

two-component laminated composite with linear elastic reinforcement and microdamaged nonlinear elastic matrix with bulk

strains being linear and shear strains described by a linear-hardening diagram, i.e.,
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where � ���
ij

2
and � ���

ij

2
are the strain and stress deviators in the matrix; �

20
is the tensile proportional limit assumed to be

independent of the coordinates; �
20

and ��
2

are the material constants of the matrix.

The root p
2

of Eq. (1.23) can be found by the secant method [1]. Since the root p
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1, which follows
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&

1 1
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�
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1( ) ( )
�

	
for f a f p

n m n m n

2 2

1

2 2

1
0

( ) ( ) ( ) ( , )
( ) ( )

	 	
(

( , , )m �1 2 � ,

which proceeds until

2 2f p
n m n

2 2

( ) ( , )
( ) � �, (2.7)

where � is the error of the root.

We analyzed the coupled processed of nonlinear deformation and long-term microdamage of a laminated material for

the Weibull distribution (1.11) and for the fractional power durability function +
2 2

( )t defined by (1.22). The reinforcement is

linear elastic plies with the following characteristics [4] and volume fraction:

K
1
� 38.89 GPa, �

1
� 29.17 GPa, c

1
0� , 0.25, 0.5, 0.75, 1.0 (2.8)

and the matrix is described by the linear-hardening diagram (2.1), (2.2) with the following constants [2, 4]:

K
2

� 3.33 GPa, �
20

� 1.11 GPa, � ��
2

0.331 GPa (2.9)

and the following proportional limits and minimum tensile microstrength (�
2 20

3 2
p

k� / ):

�
20

� 0.003 GPa, �
2 p

� 0.011 GPa, (2.10)

and

p
02

0� , k
02 2

/ � � 0.01, m
2

1000� , 3
2

2� , *
2

� 0.05, n
12

1� . (2.11)

If

� � 4�
33

0, � � � � � �� �
11 22

0, (2.12)

then, according to (1.1), the macrostress � ��
33

is related to the macrostrain � ��
33

by

� � �





 	 � ��

� �

� � � � �
33

11 12

11 12 33 13

2

33

1
2

* *

* * * *
[( ) ( ) ] . (2.13)

In the porosity balance equation (1.19), (1.14), (1.11), (1.18) we use

� � � � � � 	




� �� �

�

� �

�
11 22

13

11 12

33

*

* *
, (2.14)

which is equivalent to (2.12).
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Figure 1 shows (solid lines) the porosity p
2

of the linear-hardening matrix as a function of time t
2

for macrostrain

� � ��
11

0.005 and for different values of c
1
. For comparison, the same figure shows (dashed lines) p

2
versus t

2
for a linear matrix

(the notation is the same in Fig. 2). As is seen, the physical nonlinearity of the matrix has a significant effect on the microdamage

of the laminated material. The microdamage of the material with linear-hardening matrix sets in at greater values of t
2

and

occurs more intensively than in the material with linear elastic matrix, i.e., at great values of t
2

, the porosity of the composite

with linear-hardening matrix is higher than in the composite with linear elastic matrix.

Figure 2 shows (solid lines) the macrostress � �� �
33 2

/ for laminated materials with linear-hardening matrix and linear

elastic matrix as a function of time t
2

for macrostrain � � ��
11

0.005 and for different values of c
1
. At small values of t

2
, the

physical nonlinearity of the matrix has a significant effect on the stress state of the laminated material. At great values of t
2

, the

effect of nonlinearity on the stress state is weak.
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