
NONSTATIONARY DEFORMATION OF AN ELECTROELASTIC NONCLOSED

CYLINDRICAL SHELL UNDER MECHANICAL AND ELECTRIC LOADING

I. V. Yanchevskii

A numerical–analytic solution describing the nonstationary vibrations of an infinitely long nonclosed

cylindrical electroelastic shell with hinged ends is found. The direct and inverse piezoelectric effects are

considered. The dynamic processes are modeled using the linear theory of thin electroelastic shells based

on the generalized Kirchhoff–Love hypotheses. To satisfy the boundary conditions, additional loads are

introduced. The Laplace transform is used to reduce the problem to a system of Volterra equations. The

numerical results are plotted and analyzed
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Introduction. Devices that have piezoceramic transducers as components are of wide use [15]. Of the great variety of

configurations, transducers in the form of thin-walled cylindrical shells are widely used and their dynamic behavior is of great

interest [4, 5, 7, 18]. Of particular interest is the vibrations caused by impulsive electromechanical loads [1, 8, 16, 17]. There are

still open questions on the behavior of piezoceramic elements with various design features and various boundary conditions.

The present paper addresses the deformation of a piezoelectric cylindrical strip with hinged longitudinal edges under

either mechanical or electric impulsive loading. Among the relevant publications, noteworthy are [6, 11–14] which study the

coupled electroelastic processes in piezoelectric transducers of similar shape.

1. Problem Formulation. Consider an infinitely long open circular cylindrical shell with a central angle of 2
0

� (Fig. 1).

The shell consists of perfectly bonded thin electroelastic (inner) and elastic (outer) layers of thickness h
p

and h
m

, the radius of

the interface being R
1
. The electroelastic layer is polarized throughout the thickness and coated with continuous, infinitely thin

electrodes, of which the inner one is grounded, and an electric potentialV is applied to the outer electrode. Uniform pressure p
0

(Fig. 1) acts on a domain with a central angle of 2
2

� symmetric about the edges. The longitudinal edges of the shell are hinged.

Our goal here is to determine the transient characteristics of a bimorph transducer operating in the modes of inverse

piezoelectric effect and direct piezoelectric effect.

The initial conditions are zero (the transducer is at rest until t � 0).

2. Equations of Motion. With the Kirchhoff–Love hypotheses generalized to electromecanics, the initial system of

equations of motion of a bimorph cylindrical piezoelectric transducer is as follows [8]:
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where w and u
0

, q
z

and q
�

are the normal and tangential displacements of the datum surface [9] and external load, respectively;

V
�

is the function describing the profile of the electric potential applied to the outer conductive coating; a z h
p p
� �

0
2/ is the

distance between the datum surface with radius of curvature R R z
0 1 0
� � and the mid-surface of the electroelastic layer.

If the distance z
0

between the datum surface and the interface (Fig. 1) is equal to ( ) /c h c h D
N1

2

1

2
2

p p m m
� , then the

stresses and strains are in the simplest relationship [9]:
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Electric-flux density does not depend on the thickness coordinate and is expressed as
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The constant coefficients are determined from the formulas

�
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3
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3
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�
3

12/ , � � �� � �( ) /1 �D D, c s
j

j

1 11

2
1 1� �/ ( )� ,

e c d
1 1 31

1� �
p

( )� , � � �
3 33 31 1 33

1 2� �
T T

d e( / ),

s
j

11
, � are the elastic compliances and Poisson’s ratio of the materials ( j m p� , ); d

31
, �

33

T
are the piezoelectric modulus and

permittivity of the piezoceramics.

The equations of motion (1) are supplemented with zero initial conditions:
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and mechanical hinged-boundary conditions

w
� ���

�
0

0, u
0

0

0
� ���

� , M
� � ���

�
0

0. (4)
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The electric boundary conditions depend on how the piezoceramic layer is electroded and how electric energy is

supplied (picked up). If the continuous electrodes are connected to a generator or short-circuited, then the function

V t V t
�
�( , ) ( )� (5�)

in (1) assumed given. If the electrodes are open-circuited or connected to a electronic device of infinitely high impedance, then it

is necessary that the running current of displacement through the mid-surface of a piezolayer be equal to zero, i.e.,

�

�
�

��t
D d

z
�

�

�

0

0

0. Then we obtain from (3) the following expression for the unknown potential difference:
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Equations (1), (4), (5�), (5�) constitute a closed-form system describing the coupled vibrations of the bimorph

electroelastic transducer. Note that the time t is normalized to R D
h N0

� / , while the displacements w and u
0

to R
0

.

3. Problem-Solving Method. If the longitudinal edges of the shell are hinged, then the functions w and u
0

can be

represented as follows, taking into account symmetry about the section � � 0 (Fig. 1):

w c t KN
k

k

�

�

�

� ( )cos �

1

,

u b t KN
k

k

0

1

�

�

�

� ( )sin �, (6)

where c
k

, b
k

are unknown coefficients; � � �� �[ , ]
0 0

, K k� �( ) /2 1 2, N �  �/
0

.

The electric potential is expanded into a Fourier series of even functions:

V v t KN
k

k

�
��

�

�

� ( )cos

1

. (7)

Its coefficients can be expressed in terms of the function V: v V KN KN
k
� !2

0 0
sin /� � according to Eqs. (5�) and (5�).

Series (6) and (7) do not allow the complete satisfaction of conditions (4). Therefore, to satisfy the equality

u
0

0

0|
� ���

� , we supplement the given mechanical load p
0

with additional unknown tangential forces q
1

distributed over small

strips of width ��near the sections � �� �
0

. Such an approach is used, for example, in [3] in studying the unsteady axisymmetric

deformation of a mechanically loaded elastic plate.

The components of the mechanical load

" #q p t H
z
� � �

0 2
( ) | |� � ,

" #q q t H
�

� � � �� � ! ! � �
1 0

( ) ( ) | | ( )sign � ,

where H is the Heaviside function, can also be represented similarly to (6):

q f t KN
z k

k

�

�

�

� ( )cos �

1

, q g t KN
k

k

�
��

�

�

� ( )sin

1

(8)

( f p KN KN
k
� � !

0 2 0
2sin /� � , g N KN R

k
� � !

0 0 0 0
2sin /� � ).

Here the passage to the limit to obtain the concentrated forces N q R
0

0
1 0

�
$

lim

�

�
�

� in the sections � �� �
0

has already been done.
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Substituting series (6)–(8) into the Laplace-transformed system (1), we obtain an algebraic system of equations for the

Laplace transforms of the coefficients c
k

and b
k

:

b c s f v
k

L

k k

L

k k

L

k k

L
% % � � %

( ) ( ) ( )
( )

1 2 2

0 1

4
� � � � ,

b s c g v
k

L

k k

L

k k

L

k k

L
( )

( ) ( ) ( )2 3 1

0 1

5
� � � �% % � � % , (9)

where s is the Laplace parameter; %
k

( )1
�KN( )1

2 2
� �K N , %

k

( )2
� �1 �K N

4 4
, %

k

( )3
�K N

2 2
( )1� � , %

k
a R K N

( )
( / )

4

0

2 2
1� �

p
,

%
k

KN a R
( )

( / )
5

0
1� �

p
.

The solution of system (9) becomes
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k
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k
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k
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k
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)
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( ) ( )4 2
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k k
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( ) ( ) ( ) ( )
/
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k k k

( ) ( ) ( )
/

6 5 4
� .

Next, using the standard rules of operational calculus, we recover the original functions:

c
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where f I f I t d
t

* ( ) ( )� �� ' ' '
0

; the subintegral functions I have the form:

I t
k
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k

j k

j

j

( )
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�

�
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( , )

( ) ( )

( ) ( )

�
�

�

2

2 2

(*, ,j �1 2; * + j; r + 1);

)
k

j( )
are the modules of the imaginary roots of the biquadratic equation D s

k
( ) � 0.

In the case of electromechanical excitation of the transducer, the functions p
0

and V appearing in (11) are assumed

given, and the unknown force N
0

can be found from the condition

u b KN
k

k

0 0

1
0

0
� �

�
�

�

�

� �� sin , (12)

which is a Volterra equation of the first kind.
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If the electroelastic layer is in the mode of direct piezoelectric effect (“idling”), then both N
0

andV are unknown. To

calculate them, we set up a system of integral equations in which one equation is (12) and the other equation is derived by

substituting (11) into (8) in view of (6):

V c
KN

KN
k k

k

� �

�

�

�
�

�
%

�

�

2

1

4 0

01

( )
sin

. (13)

The system of integral equations (12), (13) is solved numerically using special regularizing algorithms [10] stable

against computational errors.

After finding the values of p
0

, N
0

, and V, we substitute them into (11) and calculate the components of the

displacement vector (6).

4. Analysis of the Numerical Results. The numerical analysis was made for a nonclosed shell with circumference

length

�

l R
0 1 0

2� �� 104.7 mm consisting of a PZT-5 piezoceramic layer (h
p

= 2 mm) and a ÂÒ-6 titanium alloy layer (h
m

=

h
p

/2) with the following material characteristics: �
ð

= 7600 kg/m
3
, s

11

p
= 15.4!10

–12
m

2
/N,�= 0.331, d

13
= –178!10

–12
C/N, �

33

T

= 1750!�
0
, �

0
= 8.85!10

–12
F/m, �

m
= 4450 kg/m

3
, s

11

m
= 8.85!10

–12
m

2
/N.

For numerical purposes, 40 terms were retained in series (6)–(8), which ensures an approximation error of no greater

than 3%. The accuracy of calculation was also controlled by varying the time step length during the numerical solution of the

integral equations (12), (13).

As a test example, we consider a nonclosed bimorph shell with relatively large radius R
1

50� m subject to pressure step

p t H t
0

4
10( ) ( )� ! N/m

2
. The electrodes are short-circuited (V � 0), and the area of application of the mechanical load is defined

by a central angle 2
2 0

� �� . It is clear that with R
1

and

�

l h h
0

/ ( )
p m
� , the transducer is similar to an asymmetric bimorph strip of

width l l
0 0
�

�

modeled in [2]. The normal displacements (omitted here) in the section equidistant from the edges calculated by

formulas (6) and (11) and by the procedure outlined in [2] are in good agreement and can be described, with adequate accuracy,

by the equation " #w w t T� �
st

1 2cos( / ) , where w
st
� –0.0478 mm is the static deflection in the same section induced by

mechanical load p
0

4
10� N/m

2
on the area � � �� �[ , ]

2 2
, T �2.03 msec is the period of the lower natural mode of the bimorph

strip atV = 0 [2].

The greater the curvature of the transducer, the less the maximum radial displacement in the section � � 0. In particular,

for R
1
� 0.05 m (�  

0
3� / ) and the mode of direct piezoelectric effect, the amplitude w t( , )0 decreases by 98.7%, while the

period of the principal vibration mode by 87.5% (curve 1, Fig. 2a). The potential difference between the electrodes of the

piezoceramic layer in this case is represented by curve 1 in Fig. 2b.

Note that in Fig. 2, the function w t( , )0 is normalized to w
st

, and V t( ) to the potential difference V
st

between the

open-circuited electrodes of the bimorph strip under static mechanical load p
0

(V
st
, 62.5 V).

In Fig. 2a, solid curve 2 illustrates the reaction of a transducer with R
1
� 0.05 m to instantaneous constant electric

potentialV t V H t( ) ( )� � !
st

. Curve 2 suggests that the electric excitation of the transducer causes the displacement w t( , )0 to vary
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with time in a more complicated manner (than curve 1). Vibrations with higher frequency are represented by the first term in (6),

(7). For the chosen boundary and loading conditions, the shape of the curves on which these vibrations are imposed are mainly

determined by the terms with k � 2.

To validate the results (Fig. 2), the problems were solved using a finite-element software. The numerical solutions are

shown by dashed curves with primed number. A possible cause of the disagreement is that the electroelastic transducer model is

based on the assumption of infinite shear stiffness. Generally, however, it may be stated that the curves of radial displacement

(Fig. 2a) and potential difference (Fig. 2b) are in satisfactory qualitative and quantitative agreement.

Conclusions. A solution describing the nonstationary deformation of an electroelastic two-layer transducer in the form

of a nonclosed cylindrical shell has been obtained by introducing an additional load to satisfy the kinematic conditions at the

edges of the shell. Mathematically, the problem has been reduced to a system of integral equations over time derived from the

boundary conditions. The calculations have demonstrated the efficiency of the developed numerical analytic method for the

determination of the mechanical and electric characteristics of the transient under consideration. The results have been validated

by solving a test problem for a bimorph asymmetric strip and comparing with finite-element solutions.

Note that the formulas presented here can be used to analyze other types of boundary conditions of the bimorph shell

and the geometries of the electrodes on its electroelastic layer. The obtained results can be used to solve applied problems of the

active control of the nonstationary vibrations of structural elements in the form of nonclosed cylindrical shells.
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