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A general analysis of the mixed systems of four equations in Kirchhoff’s theory of the vibrations of plates

in rectangular and polar coordinates is carried out. It is shown that these systems can be represented in

Hamiltonian (canonical) operator form in space coordinate after the selection of the appropriate

“canonical” variables and operator Hamiltonian. Functionals for canonical systems are formulated
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Introduction. The monograph [3] was the first in the scientific literature to represent the mixed system of equations

describing the vibrations of an elastic plate in Hamiltonian operator form in space coordinate. In many subsequent studies

reviewed in [2, 6–8, etc.], the Hamiltonian formalism in the form developed in [3] was extended to the equations and problems of

elasticity, electroelasticity, and magnetoelasticity. These results made it possible to determine the properties of the characteristic

equations and the general structure of solutions of wave problems for periodic media. Canonical equations in a space coordinate

in problems of the harmonic flexural vibrations of plates with parameters periodic in one coordinate were derived in [4]. Similar

studies were conducted in [6, etc.] and in the theory of vibrations of beams with periodic parameters.

Here the Hamiltonian formalism is applied to Kirchhoff’s theory of the bending of plates. It will also be shown that

canonical operator equations in a space coordinate can be derived from the variational principle.

1. Problem Formulation. In Kirchhoff’s (classical) theory of the transverse vibrations of a thin plate in orthogonal

curvilinear coordinates �
1
, �

2
, the bending moments, M

11
and M

22
, twisting moment, M M

12 21
� , transverse forces, Q

1
, Q

2
,

and deflection, w, in the midplane are related by the vibration equations
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and the constitutive equations
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which include the formulas for strains. In (1.1) and (1.2): �, E, � are density, Young’s modulus, and Poisson’s ratio;

D I E� �
1

2
1/ ( )� is flexural stiffness; h is the thickness of the plate; I h

1

3
12� / is the area moment of inertia per unit length; A

1

and A
2

are the Lame parameters.

The theory also employs the formulas for the angles between the normal and the bent surface
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and for the generalized transverse forces
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The six equations (1.1), (1.2) for six unknown functions M
11

, M
22

, M M
12 21

� , Q
1
, Q

2
, w of the coordinates �

1
, �
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and time t are commonly reduced to one equation for the deflection w t( , , )� �
1 2

.

For numerical purposes, it is reasonable to use a mixed system of four operator equations in Cauchy normal form. Here

we perform a general analysis of Eqs. (1.1) and (1.2) in rectangular (x x
1 2

, ) and polar (r,�) coordinates.
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and the constitutive relations (1.2) can be written as
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The formulas for the angles between the normal and the midsurface become
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The formulas for the generalized transverse forces take the form
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Let us write the system of equations (2.1)–(2.3) in mixed form:
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At perfect mechanical contact, the bending moment M
11

, deflection w, angle �
1
, and generalized transverse force Q

1

*

remain continuous in the sections x
1

� const where the mechanical characteristics of the plate discontinue. These functions

should be considered unknown, and system (2.5) should be transformed appropriately.

To this end, it is necessary to replace Q
1

in (2.5) by Q
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*
and to eliminate M
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, and Q

2
.
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and replace Q
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by Q
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*
according to (2.4).
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The functions M
22

, M
12

, Q
2

, absent in (2.7), are determined in terms of M
11

, w, �
1

by formulas (2.6), and
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The coefficients of system (2.5) and, hence, of Eqs. (2.1) and (2.2) may be arbitrary functions of the coordinate x
1

with

discontinuities of the first kind.

System (2.7) is an operator system in Cauchy normal form in coordinate x
1
. Let us show that this system is a

Hamiltonian operator system [1] in space coordinate x
1
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To this end, it is necessary to appropriately select canonical variables { , } { , }q q M w
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*
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In (2.8) and (2.9), the operators
�P
ij

and
�Q

ij
should be considered constant. This reduces (2.8) to (2.7).

The Hamiltonian operator system in a space coordinate x
1

can be derived from the “isochronous” variation of the
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In varying it, the following rule should be used:
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The Hamiltonian operator system in space coordinate x
2

can be obtained in a similar way if M
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, w, �
2

,Q
2

*
are used as

unknown functions. Let us write the system of equations (2.1)–(2.3) in mixed form:

�

�

� �

�

�

M

x
Q

M

x

22

2

1

12

1

,

�

�

�

w

x
2

2
� ,

�

�

� � �

�

�

�

�
2

2

22

2

1

2x

M

D

w

x

,

�

�

�

�

�

�

�

�

Q

x
h

w

t

Q

x

2

2

2

2

1

1

� . (2.13)

The functions M
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, absent in (2.13), are determined in terms of M
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System (2.13) can be reduced to the form
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system (2.15) becomes a Hamiltonian operator system in space coordinate x
2
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System (2.15) becomes equivalent to (2.7) if the indices 1 and 2 are interchanged.

3. Polar Coordinates. When A
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The constitutive equations (1.2) become:
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The formulas for the angles between the normal and the bent midsurface take the form
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and the formulas for the generalized transverse forces are
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Let us write the system of equations (3.1)–(3.4) in the form
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System (3.5) is an operator system in Cauchy normal form in radial coordinate r. At perfect mechanical contact, the

bending moment M
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, deflection w, angle �
r
, and generalized transverse force Q
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remain continuous in the sections r � const

where the mechanical characteristics of the plate discontinue. Choosing rM
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[5] as unknown functions, we will

transform the system.

To this end, Q
r

in (3.5) is replaced by Q
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Transforming Eqs. (3.5), we obtain the following system of mixed equations in polar coordinates describing the

transverse vibrations of a plate according to Kirchhoff theory:
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Using the general idea of [3] and following [5], we will show that system (3.7) is a Hamiltonian operator system [1] in

space coordinate r:
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q
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i

i

�

,

�

�

� �

�

�

p

r

H

q

i

i

�

, i �1 2, . (3.8)

To this end, the “canonical” variables q
i
, p

i
and the operator Hamiltonian are represented as
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where the elements of the symmetric operator matrices
�P
ij

,
�Q

ij
and the nonzero elements of the operator matrix

�R
ij

are given by
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In (3.8) and (3.9), the operators
�P
ij

,
�Q

ij
,

�R
ij

in (3.10) are assumed constant. This reduces (3.8) to (3.7). Thus, it has been

proved that (3.7) is a Hamiltonian operator system in space coordinate r.

The coefficients of system (3.7) and, hence, of Eqs. (3.1) and (3.2) may be arbitrary functions of the coordinate r with

discontinuities of the first kind.

The functions M
��

, M
r�

, Q
r
, Q

�
are determined in terms of the unknown functions by formulas (3.4) and (3.6).

The Hamiltonian operator system in space coordinate r can be derived from the “isochronous” variation of the

functional
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In varying the functional, the operators
� �P P
ij ji

� ,
� �Q Q

ij ji
� , and

�R
ij

should be considered “frozen” (constant) and

permutable with variations

!(
�P
ij

,
�Q

ij
,

�

) (
�R a b P

ij m n ij
� ,

�Q
ij

,
�

)( )R a b b a
ij m n n m

! !�

� !b P
n ij

(
�

,
�Q

ij
,

�

) (
�R a a P

ij m m ij
� ! ,

�Q
ij

,
�

)R b
ij n

. (3.12)

Conclusions. A general analysis of the mixed systems of four equations in Kirchhoff’s theory of the vibrations of plates

in rectangular and polar coordinates has been performed. It has been shown that these systems can be represented in Hamiltonian

operator form in space coordinate after selection of the appropriate “canonical” variables and operator Hamiltonian. Functionals

for canonical systems have been formulated.
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