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The general solution to the problem of the nonaxisymmetric electromechanical vibrations of a

piezoceramic ring plate is obtained. For plates with radially cut electrode coating and different

boundary conditions (clamped edge–free edge, free edge–clamped edge, free edge–free edge), the natural

frequency spectra are determined numerically and analyzed for the first circumferential harmonics
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Introduction. Thin piezoelectric planar transducers polarized across the thickness are used in devices of various

functionality [1, 3, 5, 8, 10, etc.]. Disk- and ring-shaped vibrators with solid electrodes on the faces undergo axisymmetric

vibrations [2, 6, 8]. The vibrations will be nonaxisymmetric with respect to the circumferential coordinate if the electroelastic

sectors of a ring plate with radially cut electrodes are excited in antiphase. The circumferential vibration modes are a priori

determined by the number of radial cuts in the electrodes [7–9, 12]. The present paper compares the frequency spectra of a plate

with three types of boundary conditions.

1. Problem Formulation. General Solution. Consider a thin piezoceramic plate of thickness h. To describe the plate,

we will use a cylindrical coordinate system r z, ,� with the plane z � 0 coinciding with the midsurface of the plate. If a thin

piezoceramic plate with electroded faces z h� � / 2 polarized across the thickness is in plane stress state (u r t
r

( , , )� , u r t
�

�( , , ),

� � �
�zz z zr

� � � 0, E E
r

� �
�

0, E r t
z

( , , )� ), then the formulas below follow from the general constitutive equations [2, 6, 8]:
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which include the formulas for strains and s s s
E E E

66 11 12
2� �( ), �

E

E E
s s� �
12 11

/ . If the thickness accelerations are neglected, two

out of the three equations of mechanical vibration remain:
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After simple transformations in (1) and (2), we arrive at the vibration equations for displacements:
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The solution of the system of equations (3) can be represented [7] in the form

u
r r

r
�

�

�
	

�

�

� �1

�
, u

r r
�

�
�

�

�
�

�

�

1 � �
. (4)

The functions �( , , )r t� and �( , , )r t� determined from the following wave equations satisfy Eqs. (3):
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The electric potential for a plate with solid electrodes on the faces z h� � / 2 is given by � �
�

h zV t
1

0
( ), the edge effect

being neglected. This potential corresponds, according to [2, 6, 8], to an electric field with E E
r

� �
�

0, E h V t
z

�
�1

0
( ); hence,

the term ( )1
31

	�
E z

d E in Eqs. (5) should be omitted, considering (3).

The following expressions for stresses in terms of the potentials � and � can be derived from (1), (4):
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The homogeneous boundary conditions for displacements and stresses (at r r�
0

and r r�
1
) in a circular piezoceramic

plate of radius r
1

with a hole of radius r
0

are taken one from each of the following two pairs ( j � 0 1, ):

u r t r t
r j rr j

( , , ) ( , , )� � �� � �0 0,

u r t r t
j r j� �

� � �( , , ) ( , , )� � �0 0. (7)

The initial conditions for steady-state harmonic vibrations are not formulated.

Consider a circular piezoceramic plate r r r
0 1

� � . The electrode coating on its faces z h� � / 2 is cut into 2N sectors.

Adjacent sectors are connected in antiphase so that E V h
z

na
� �

�
( ) /1

1

0
, n N�1 2, ,� . If vibrations are harmonic,
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f r t f r i t( , , ) Re ( , )exp� � ��
a

, where � is the angular frequency, then a candidate solution to Eqs. (5) (the term ( )1
31

	� d E
z

in

the first equation should be equated to zero [7]) in polar coordinates r,� can be chosen in the form of series:

�( , , ) Re { ( ) ( )}sin exp
, ,

r t R A J k r A Y k r m i
m m m m

m

� � �� 	�
2

1 1 2 1
t,

�( , , ) Re { ( ) ( )}cos exp
, ,

r t R A J k r A Y k r m i
m m m m

m

� � �� 	�
2

3 2 4 2
t, (8)

where J k r
m j

( ) and Y k r
m j

( ) are mth-order cylindrical functions of the first and second kinds [4]; k s
E

E

1

2 2

11

2
1� �( )� �� ,

k s
E

E

2

2

11

2
2 1� 	( )� �� ; A

m i,
are dimensionless constants; R is a parameter with units of meters.

From (4), (6), and (8), we can find the displacements [9, 12]:

u R u k r A u k r A u k r A u
r m m m

m

m m m m
� 	 � ��Re [ ( ) ( ) ( )

, , ,1 1 1 2 1 2 3 2 3 4 2 4
( ) ]sin exp

,
k r A m i t

m
� � ,

u R l k r A l k r A l k r A l
m m

m

m m m m m�
� 	 	 	�Re [ ( ) ( ) ( )

, , ,3 1 1 4 1 2 1 2 3 2 2 4
( ) ]cos exp

,
k r A m i t

m
� � (9)

and the stresses:

� �

�
rr

E

E
r t

s

( , , ) Re

( )

� �

�

1

1
2

11

�  �  a k r A a k r A a k r A a k r A
m m m m m m m m

m

1 1 1 2 1 2 3 2 3 4 2 4
( ) ( ) ( )

, , , ,
	 	 	�

!

"

#

sin m�

	 	
�

�

$

%
&

'&�

(

�
4

1
2 1

2 1
0 13

1
)

�
�

�V d
N n

n
i t

E

n

( )
sin ( )

exp ,

� �

�
��

( , , ) Re

( )

r t

s
E

E
� �

�

1

1
2

11

�  �  b k r A b k r A b k r A b k r A
m m m m m m m m

m

1 1 1 2 1 2 3 2 3 4 2 4
( ) ( ) ( )

, , , ,
	 	 	�

!

"

#

sin m�

	 	
�

�

$

%
&

'&�

(

�
4

1
2 1

2 1
0 13

1
)

�
�

�V d
N n

n
i t

E

n

( )
sin ( )

exp ,

� �

�
�r

E

E m m m m
r t

s

c k r A c k r A( , , ) Re

( )

( ) ( )
, ,

�

	

	 	
1

1
11

1 1 1 2 1 2� c k r A
m m

m

3 2 3
( )

,�

 	 c k r A m i t
m m4 2 4

( ) cos exp
,

� � , (10)

where

�  a k r k rJ k r k r m m J k
m E m E m1 1 1 1 1 1

2 2
1 1 1( ) ( ) ( ) ( ) ( ) (� � 	 � � 	

�
� �* +1

2 2
r R r) / ,

�  a k r k rY k r k r m m Y k
m E m E m2 1 1 1 1 1

2 2
1 1 1( ) ( ) ( ) ( ) ( ) (� � 	 � � 	

�
� �* +1

2 2
r R r) / ,

* +a k r m k rJ k r m J k r R r
m E m m3 2 2 1 2 2

2 2
1 1( ) ( ) ( ) ( ) ( ) /� � � 	

�
� ,

* +a k r m k rY k r m Y k r R r
m E m m4 2 2 2 2

2 2
1 1( ) ( ) ( ) ( ) ( ) /� � � 	� ,

�  b k r k rJ k r k r m m J
m E m E E1 1 1 1 1 1
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2 2
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� � �* +m

k r R r( ) /
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2 2
,
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z
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� �
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( )1

1

0

1
, n N�1 2 2, , ,� the electric-field strength E E i t

z z
� Re exp

a
� can be expanded into a Fourier

series with respect to the angular coordinate �:

E
V
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N n

n
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a
� �
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�
�

(

�
2 2 1

2 1

0

1
)

�sin ( )
, (12)

we have m N n� �( )2 1 , n �1 2, , … in (9) and (10).

In the resonance case, the concept of complex moduli [6, 8] has to be used, i.e., the material constants should be

considered complex (
~ Im
s s is
ij

E

ij

E

ij

E
� � ,

~ Im
d d id

ij ij ij
� � ,

~ Im
, , ,

ij

T

ij

T

ij

T
i� � ).

To determine the resonance frequencies, it is possible to neglect the loss tangents as small and to use the real values of

the material constants.

Consider a ring plate with the following boundary conditions:

inner edge r r�
0

clamped and outer edge r r�
1

free,

u r t
r

( , , )
0

0� � , u r t
�

�( , , )
0

0� , � �
rr

r t( , , )
1

0� , � �
�r

r t( , , )
1

0� , (13)

inner edge r r�
0

free and outer edge r r�
1

clamped:

� �
rr

r t( , , )
0

0� , � �
�r

r t( , , )
0

0� , u r t
r

( , , )
1

0� � , u r t
�

�( , , )
1

0� , (14)

inner edge r r�
0

free and outer edge r r�
1

free:

� �
rr

r t( , , )
0

0� , � �
�r

r t( , , )
0

0� , � �
rr

r t( , , )
1

0� , � �
�r

r t( , , )
1

0� . (15)

Using expressions (9), (10) and boundary conditions (13), we obtain block systems of algebraic equations for the

dimensionless constants A
N n i( ),2 1�

(n �1 2, ,�):

u k r A u k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

	
),2

	 	
� � � �

u k r A u k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
),

� ,
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N n N n N n N n( ), ( ), ( ), (
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2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �
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� � � �

l k r A l k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
),

� ,

a k r A a k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

	
),2

	 	
� � � �

a k r A a k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4 0

134 1

2 1
),

( )
� �
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�
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d

n

E
,

c k r A c k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

	
),2

	 	
� � � �

c k r A c k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4

0
),

� . (16)

The resonance frequencies can be determined by equating the fourth-order determinants of the homogeneous (atV
0

0� )

systems of algebraic equations (16) to zero:

u k r u k r u k r u k r

l k r l k

m m m m

m m

1 1 0 2 1 0 3 2 0 4 2 0

1 1 0 2

( ) ( ) ( ) ( )

( ) (
1 0 3 2 0 4 2 0

1 1 1 2 1 1 3 2 1

r l k r l k r

a k r a k r a k r a

m m

m m m

) ( ) ( )

( ) ( ) ( )
m

m m m m

k r

c k r c k r c k r c k r

4 2 1

1 1 1 2 1 1 3 2 1 4 2 1

( )

( ) ( ) ( ) ( )

-

-

-

-

--

-

-

-

-

--

� 0. (17)

Using expressions (9), (10) and boundary conditions (14), we obtain block systems of algebraic equations for the

dimensionless constants A
N n i( ),2 1�

( , , ... )n �1 2 :

a k r A a k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

	
),2

	 	
� � � �

a k r A a k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4 0

134 1
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� �
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N n N n N n N n( ) , ( ), ( ) , (
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2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

	
),2

	 	
� � � �

c k r A c k r A
N n N n N n N n( ), ( ), ( ) , (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
),

� ,

u k r A u k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 1 1 1 2 1 1 2 1 2 1 1 2 1� � � �

	
),2

	 	
� � � �

u k r A u k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4

0
),

� ,

l k r A l k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 1 1 2 1 1 2 1 4 1 1 2 1� � � �

	
),2

	 	
� � �

l k r A l k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 3 2 1 2 1 3 2 2 1 4 2 1 2 �

�
1 4

0
),

. (18)

The equations for the resonance frequencies of a plate with the boundary conditions (14) can be derived from the

existence condition for nontrivial solutions of the homogeneous (atV
0

0� ) systems of equations (18):

a k r a k r a k r a k r

c k r c k

m m m m

m m

1 1 0 2 1 0 3 2 0 4 2 0

3 1 0 3

( ) ( ) ( ) ( )

( ) (
1 0 1 2 0 2 2 0

1 1 1 2 1 1 3 2 1

r c k r c k r

u k r u k r u k r u

m m

m m m

) ( ) ( )

( ) ( ) ( )
m

m m m m

k r

l k r l k r l k r l k r

4 2 1

1 1 1 2 1 1 3 2 1 4 2 1

( )

( ) ( ) ( ) ( )

-

-

-

-

--

-

-

-

-

--

� 0. (19)

Using expressions (9), (10) and boundary conditions (15), we obtain block systems of algebraic equations for the

dimensionless constants A
N n i( ),2 1�

( , , )n �1 2 � :

a k r A a k r A
N n N n N n N n( ), ( ), ( ), (

( ) ( )
2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

	
),2

	 	
� � � �

a k r A a k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4 0

134 1

2 1
),
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� �
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�
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d

n

E
,
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2 1 1 1 0 2 1 1 2 1 2 1 0 2 1� � � �

	
),2

	 	
� � � �

c k r A c k r A
N n N n N n N n( ) , ( ), ( ) , (
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2 1 3 2 0 2 1 3 2 1 4 2 0 2 1 4

0
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a k r A a k r A
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d

n

E
,
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( ) ( )
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� � � �

c k r A c k r A
N n N n N n N n( ) , ( ), ( ) , (

( ) ( )
2 1 3 2 1 2 1 3 2 1 4 2 1 2 1 4

0
),

� . (20)

The resonance frequencies can be determined by equating the fourth-order determinants of the homogeneous (atV
0

0� )

systems of algebraic equations (20) to zero:

a k r a k r a k r a k r

c k r c k

m m m m

m m

1 1 0 2 1 0 3 2 0 4 2 0

1 1 0 2

( ) ( ) ( ) ( )

( ) (
1 0 3 2 0 4 2 0

1 1 1 2 1 1 3 2 1

r c k r c k r

a k r a k r a k r a

m m

m m m

) ( ) ( )

( ) ( ) ( )
m

m m m m

k r

c k r c k r c k r c k r

4 2 1

1 1 1 2 1 1 3 2 1 4 2 1

( )

( ) ( ) ( ) ( )

-

-

-

-

--

-

-

-

-

--

� 0. (21)

In (16)–(21), m N n� �( )2 1 , n �1 2, , …; N is the number of radial cuts of the electrode coating.

The following general properties of the theoretical frequency spectrum of a plate with different number (N) of radial

cuts can be found from the boundary conditions (13)–(15), formulas (9), (10), and frequency equations (17), (19), and (21):

if N �1(two electrodes), then f
k1,

, f
k3,

, f
k5,

, …;

if N � 2(four electrodes), then f
k2,

, f
k6,

, f
k10,

, …;

if N � 3(six electrodes), then f
k3,

, f
k9,

, f
k15,

, …;

if N � 4 (eight electrodes), then f
k4,

, f
k12,

, f
k20,

, …;

if N � 5(10 electrodes), then f
k5,

, f
k15,

, f
k25,

, …;

if N � 6(12 electrodes), then f
k6,

, f
k18,

, f
k30,

, …;

if N � 7(14 electrodes), then f
k7,

, f
k21,

, f
k35,

, …;

if N � 8(16 electrodes), then f
k8,

, f
k24,

, f
k40,

, … .

In the notation of frequencies f
m k,

the subscript “m” is the harmonic number with respect to the azimuth �

(circumferential mode number) and the subscript “k” is the root sequence number of the respective frequency equation.

2. Analysis of the Results. The results of analysis of the frequency equations (17), (19), and (21) are summarized in

Tables 1, 2, and 3, respectively. They present the values of dimensionless resonant frequencies � � ��� �( )1
2

11 1E

E
s r determined

from (17), (19), and (21), respectively, for different number N of cuts in the electrode coating for lower harmonics m N� , and for

r r
0 1

/ � 0.4 and � � 7740 kg/m
3
, s

E

11

12
152 10� .

�
. m

2
/N, s

E

12

12
58 10� � .

�
. m

2
/N, d

31

12
125 10� � .

�
C/N, which corresponds to

TsTS-19 piezoceramics [2].

When N � 0, the plate undergoes radial electroelastic vibrations,

�

�
	

�
�

�

�

� � �
�

��rr rr r

r r

u

t

2

2
, (22)
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and azimuthal vibrations,

�

�
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�

�

� �
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u

t

2
2

2
,
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TABLE 1

k
N � 0

�
0,k

N � 1

�
1,k

N � 2

�
2,k

N � 3

�
3,k

1 0.77405 1.2108 1.85491 2.31119

2 2.7658 2.70754 2.87211 3.50261

3 4.24997 4.61023 5.4193 6.40551

4 7.211044 7.05481 6.88761 6.87753

5 7.93913 8.24799 8.85883 9.53872

6 10.14251 10.15934 10.23068 10.43583

7 13.06489 13.04537 13.09362 13.22587

TABLE 2

k
N � 0

�
0,k

N � 1

�
1,k

N � 2

�
2,k

N � 3

�
3,k

1 2.31578 2.46586 2.70391 3.14207

2 3.20884 3.3252 3.93292 4.80765

3 4.81907 5.20747 6.05161 6.743159

4 7.56991 7.377518 7.278965 7.747007

5 8.04387 8.391521 8.976372 9.558131

6 10.40329 10.43448 10.56156 10.88514

7 13.20124 13.1704 13.22125 13.38097

TABLE 3

k
N � 0

�
0,k

N � 1

�
1,k

N � 2

�
2,k

N � 3

�
3,k

1 1.42334 1.6265 0.69281 1.54389

2 3.31746 3.85103 2.34721 3.18735

3 5.49151 5.20302 4.85053 4.97488

4 6.05803 6.53165 5.05288 6.17078

5 8.896337 8.88278 7.294018 7.983204

6 10.59329 10.72654 8.93175 9.28126

7 11.76887 11.81621 11.049 11.42551



�

�
�

� �

r

E

E
s

u

r

u

r
�

	

�

�
�




�

�
�



�

�
�

1

2 1
11

( )

. (23)

The natural frequencies of electroelastic radial vibrations (22) were analyzed in [11]. The circumferential vibrations

(23) cannot be excited electrically.

It follows from Tables 1–3 that when N � 0 (axisymmetric vibrations) and one (inner or outer) edge is clamped

(boundary conditions (13) and (14)), the second, fifth, and seventh frequencies represent the radial vibrations (22), while the
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TABLE 4

r r
0 1

/
N � 1

�
1 1,

N � 2

�
2 1,

N � 3

�
3 1,

N � 4

�
4 1,

0.1 0.71165 1.34364 2.00921 2.61817

0.2 0.87091 1.45357 2.03302 2.62141

0.3 1.02743 1.62725 2.1194 2.6486

0.4 1.21076 1.85491 2.31119 2.75133

0.5 1.45919 2.12615 2.64278 3.01045

0.6 1.84263 2.46673 3.10797 3.52854

0.7 2.5143 3.02277 3.6822 4.32559

0.8 3.91731 4.2612 4.77424 5.39814

0.9 8.23944 8.40371 8.67026 9.02956

TABLE 5

r r
0 1

/
N � 1

�
1 1,

N � 2

�
2 1,

N � 3

�
3 1,

N � 4

�
4 1,

0.1 1.95992 2.75578 3.79396 4.56191

0.2 2.06778 2.50631 3.55341 4.4994

0.3 2.23762 2.50406 3.22194 4.15698

0.4 2.46665 2.70391 3.14207 3.81339

0.5 2.7481 3.08122 3.36569 3.78359

0.6 3.11977 3.60247 3.93426 4.18378

0.7 3.74549 4.21597 4.81566 5.20081

0.8 5.0915 5.42034 5.92438 6.5546

0.9 9.3562 9.51646 9.77759 10.13163



first, third, fourth, and sixth frequencies represent the circumferential vibrations (23). When the edges are free (boundary

conditions (15)), the first, third, and sixth frequencies represent radial vibrations and the second, fourth, fifth, and seventh

frequencies represent circumferential vibrations. For N / 0, the frequencies of radial (problem (22)) and circumferential

(problem (23)) vibrations will be called quasiradial and quasicircumferential, respectively. When one edge is clamped (boundary

conditions (13) and (14)), the natural frequencies equalize with increasing frequency number at N � 0 1 2 3, , , . This is also true for

the boundary conditions (15) (free edges), but the associated frequencies are lower.

Depending on the boundary conditions and the number N of cuts in the electrode coating, the first natural frequencies,

both quasiradial and quasicircumferential, for conditions (13) and (14) are considerably different (sometimes two- or three-fold)

from those for condition (15). As the frequency number increases, the difference decreases to approximately 10% for the seventh

frequency.

With increase in the number N of cuts in the electrode coating of the plate (with at least one edge clamped), the

frequency corresponding to small k becomes higher and the frequency spectrum becomes more crowded in the high-frequency

range.

It is of interest to analyze the dependence of the frequency spectrum on the geometry of the ring. Tables 4, 5, and 6 give

the values of the first frequency as a function of the ratio r r
0 1

/ for different values of N and the following boundary conditions:

clamped edge–free edge, free edge–clamped edge, and free edge–free edge, respectively.

The tables indicate that the way the principal frequency depends on the ring geometry is strongly dependent on the

number of cuts. This frequency peaks for N �1and decreases with increasing radius of the hole for N � 2 3 4, , . For N � 2 3 4, , , the

more there are the cuts, the higher the frequency.

Conclusions. Nonaxisymmetric planar electroelastic vibrations can be excited in thin piezoceramic ring plates with

radially cut electrode coating on their faces. The general solution of the relevant problem has been obtained. The natural

frequency spectra for lower circumferential harmonics have been numerically analyzed for three types of boundary conditions,

different number of radial cuts in the electrode coating, and different ratios of inner and outer radii of the plate. The dependence

of the quasiradial and quasiazimuthal natural frequencies on the frequency number and the number of cuts in the electrode

coating has been examined. It has been established that the natural frequencies of the plate with one edge clamped are higher than

those of the plate with all edges free. For all types of boundary conditions, the natural frequencies of the plate can be changed

considerably by changing its geometry.
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TABLE 6

r r
0 1

/
N � 1

�
1 1,

N � 2

�
2 1,

N � 3

�
3 1,

N � 4

�
4 1,

0.1 1.56127 1.23169 2.00392 2.618

0.2 1.58725 1.05552 1.95461 2.61131

0.3 1.61479 0.86562 1.79267 2.55171

0.4 1.62666 0.69304 1.54389 2.35656

0.5 1.61051 0.54047 1.27326 2.04243

0.6 1.56808 0.4038 1.00296 1.67866

0.7 1.50873 0.28052 0.73471 1.28545

0.8 1.44201 0.17266 0.4703 0.8614

0.9 1.37384 0.07913 0.22072 0.41876
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