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The problem of the forced axisymmetric vibrations and self-heating of a clamped flexible circular plate

with piezoelectric actuators is solved. The aspects of mechanical and electric excitation of vibrations and

damping of mechanical vibrations with actuators are discussed. The effect of geometrical nonlinearity

on the frequency dependence of deflections and self-heating temperature under electromechanical

harmonic loading at the principal resonance of bending vibrations of the plate is studied
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Introduction. Thin plates made of viscoelastic materials are widely used as elements of modern engineering structures.

They are frequently subject to intensive harmonic loads at nearly resonant frequency, which cause vibrations with high

amplitudes [2, 15]. Because of hysteresis losses, self-heating may occur in plates under harmonic loading. High-amplitude

vibrations and self-heating may cause a structural member to lose its functions because of fatigue failure, high stresses, high

temperature, etc. In this connection, there is a need to damp the forced resonant vibrations of thin plates with large deflections.

Recent trends have been toward the use of not only the passive damping of the vibrations of thin-walled structures [14,

16] but also the active damping of vibrations with piezoelectric elements incorporated into the structure [16, 21, 22] to play the

role of actuators [12, 22, 23]. Determining the voltage that has to be applied to the actuator to balance the mechanical load is one

of the main tasks in using active damping. Issues related to the active damping of thin-walled elements were discussed in [10, 13,

18, 20, 21, etc.] using geometrically linear formulation of thermoviscoelastic problems. Aspects of modeling the

thermomechanical behavior of flexible viscoelastic plates with distributed actuators and solutions of some problems obtained

with the Bubnov–Galerkin method are addressed in [6, 7, 11, 24, etc.]. The solutions of specific problems disregarded the

thickness of the piezolayers of the actuator and the viscoelastic properties of the piezomaterial.

The present paper addresses the problem of the forced resonant vibrations and self-heating of a flexible circular plate

with piezoelectric actuators under axisymmetric electromechanical loading. The thickness of the actuators and the viscoelastic

properties of the piezoactive and passive materials will be taken into account. Geometrical nonlinearity appears as squared

angles of rotation in the governing equations. The solution in time is found by expanding the unknown deflection and the radial

displacement into harmonic series and retaining the first and second harmonics, respectively. The nonlinear equations of

harmonic vibrations are linearized by the quasilinearization method. The linearized equations are solved by the numerical

discrete-orthogonalization method.

1. Problem Formulation. Consider a sandwich plate of radius R with passive (no piezoelectric effect) isotropic core

layer of thickness h
0

perfectly bonded to piezoelectric face layers (actuators) of thickness h
1

each. The materials of the layers are

viscoelastic. The plate is described in a polar coordinate system r z, ,� with the origin at the center of the midsurface of the passive

layer. Let the piezolayers ( / / )h z h h
0 0 1

2 2� � � and ( / / )� � � � �h h z h
0 1 0

2 2 be polarized across the thickness in opposite

directions and characterized by piezoelectric moduli d
31

and �d
31

, respectively. Both faces of the piezolayers are covered with
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solid continuous infinitely thin electrodes. The inside electrodes are kept at zero potential. The edge r R� of the plate is clamped.

The mechanical vibrations of the plate are excited by axisymmetric surface pressure � ( )cosq q r t
z z

� � harmonically varying

with time t with nearly resonant circular frequency � . The potential difference �
1 0 1

2( / )h h� � � ��
1 0 1

2( / )h h � Re( )2V e
i t

A

�

applied to the actuator of radius r r�
0

has the same frequency as the mechanical load, which is weakened or amplified depending

on the amplitude and phase of this voltage. The electrodes are short-circuited ( )V
A

� 0 in the region r r	
0

. For active damping of

vibrations of the plate excited by a mechanical load, it is necessary to solve a mechanical problem to find the voltage that will

balance this load.

To model the electromechanical vibrations of the plate, we assume that the Kirchhoff–Love hypotheses for mechanical

variables are valid for the entire sandwich. As for the electric field variables, we assume that the following components of the

electric-flux density and electric-field intensity can be neglected in the plane of each piezolayer: D D
r

,
�

, E E
r

,
�

. Then it follows

from the electrostatic equations that the normal electric-flux density D
z

is constant throughout the thickness of the piezolayer [8,

11]. The self-heating temperature is assumed to be constant throughout the thickness of the plate. Let the strains be small, and the

deflections of the plate be such that the squared angles of rotation have to be kept in the kinematic equations. The equations of

motion are nonlinear as well.

With the above assumptions, the statement of the problem of the forced axisymmetric electromechanical vibrations of a

flexible circular plate in polar coordinates includes the equations of motion [4, 8]
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the constitutive equations of viscoelasticity
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the kinematic equations
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where the symbol “*” denotes an integral operator known from the linear theory of viscoelasticity [5]:

D f D f D t f

t

* ( ) ( )� � �

��

�

0 1

� � �,

which leads to the concept of complex moduli [8, 9] for harmonic deformation processes:

D f D iD f if* ( )( )� � � �� � � �� . (4)

In (1)–(3), the following notation is used:

C h B h B
E s

11 0 11 1 11
2� � , C h B h B

E

E

s

12 0 11 1 11
2� �� � ,

D
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33
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� � �� � , D
h

B h B
h

E

E

s

12

0

3

11

3

11

1

3

33
12 6
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,
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E33 33

2 2

31

2
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33
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, M h h b V Q Q N
E A r r r r
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0 1 31

, (5)

s s d
E E T

11 12 31 33
*, *, *, *
 are the temperature-independent complex compliances, piezoelectric modulus, and permittivity in the

piezoelectric layers; N N Q
r r

, ,
�

are forces; M M
r

,
�

are moments; u w
r

, ,� are displacements and angle of rotation; �
1
, �

0
are

the specific densities of the piezoactive and passive materials; E * is the viscoelastic Young’s modulus; � � const is Poisson’s

ratio of the passive material.

The energy equation averaged over a cycle of vibration and over the thickness of the shell and describing the

axisymmetric distribution of self-heating temperature is as follows:
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, (6)

where h h h� �2
1 0

, � � �
n

� �( ) /
1 2

2; � �
1 2

, are the heat-transfer coefficients on the surfaces z h h� ��( / )
0 1

2 ; � is the

average thermal conductivity; a is the thermal diffusivity;T
s

is the ambient temperature;
�W is the dissipation rate averaged over a

period of vibration.

The governing equations (1)–(6) should be supplemented with mechanical and thermal boundary conditions and initial

conditions. Since the central point r � 0of a circular solid plate is singular, for numerical purposes we consider the plate to have a

hole of rather small radius r � 
 on which regularity and symmetry conditions [4] for the electroelastic (1)–(3) and

heat-conduction (6) equations, respectively, are prescribed:

N
r

� 0, Q
r

� 0, � �
r

0 and 
 
 �T r/ 0 at r � 
. (7)

The mechanical boundary conditions on the outer edge that is free in the radial direction and clamped in the transverse

direction are

N
r

� 0, w � 0, � �
r

0 at r R� . (8)

The thermal boundary condition and the initial condition are

� �





� � �

T

r
T T

R s
( ) at r R� , T T�

0
at t � 0. (9)

2. Problem-Solving Method. To solve this problem, we will represent the equation of motion (1) and the kinematic

equations (3) for the unknowns u, w, �
r
, N

r
, Q

r
, M

r
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The constitutive equations (2) yield
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where

J C
c

� 1
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/ , J D
D

� 1
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/ , �
c

C C�
12 11

/ , �
D

D D� �
12 11

/ ,

B C D D
c D22 11

2

22 11

2
1 1� � � �( ), ( )� � . (12)

For monoharmonic loading

q q t q t q
z z z z

� � � �� �� �cos sin ( )� � 0 (13)

the solution of problem (10) includes not only the principal frequency (frequency of loading), but also other harmonics because

of geometrical nonlinearity, i.e., the vibratory process is polyharmonic. Solving the nonlinear problem in the single-mode

approximation for the variables A w
r

� �{ , , Q M M
r r

, ,
�

, �
r
} describing the bending of the plate and keeping the second

harmonics for the variables B u N
r

� { , , 

�r

N, }describing the plane deformation of the plate, we obtain

A A t A t� � � ��cos sin� � ,

B B B k t B k t

k

k

k

� � � � ��

�

�

0

1

2

( cos sin )� � . (14)

We first substitute (13) and (14) into the governing equations (10) and equate the coefficients of cos k t� and sin k t�

( , , )k � 0 1 2 . Then we eliminate the equilibrium quantities 

r

0

, N
�

0

and the amplitude variables ��
r

1

, ��k
r

1

, �M
�

1

, ��M
�

1

, �

r

k

, ��

r

k

, �N

k

�
,

�� �N k

k

�
( , )1 2 from the resulting relations. The quantities 


r

0

, N
�

0

are defined by the first and third formulas in (11) where the

asterisk is omitted and the quantities J
c
, �

c
B,

22
are calculated from formulas (5) and (12) where the viscoelastic moduli are

replaced by the equilibrium elastic moduli. The variables ��
r

1

,..., ��N

k

�
are found using procedure (4) and formulas (11) valid for

each harmonic [8]. The complex stiffnesses (5), (12) are calculated at frequency � for the index 1 and at frequency 2� for the

index 2. Finally, we obtain the following approximate system of nonlinear differential equations for amplitudes:
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The mechanical boundary conditions (7), (8) take the form

N N N N N Q Q r
r r r r r r r r r

0 2 2
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 ,

N N N N N w w r R
r r r r r r r

0 2 2

0� � � � � � � �� � � � �� � �� � ��� � �( ). (16)

The dissipation function
�W in the energy equation (6) for a flexible viscoelastic plate with a piezoelectric actuator is

expressed in terms of the unknown functions of the system of equations (15) as

2
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where � � �
� �

�

�� �� � �� � ��
� �

r
(the index 1 in Eqs. (15)–(17) is omitted for brevity).

The nonlinear problem (15), (16) is linearized using the quasilinearization method [4, 9], and the linearized system of

ordinary differential equations is integrated at each approximation using the discrete-orthogonalization method [4] and a

standard software program [3]. After the dissipation function (17) is found, the nonstationary heat-conduction problem (6), (9) is

solved by the explicit finite-difference method. For numerical implementation of the algorithm, we use the dimensionless space

and time coordinates, x r L� �( ) /
 ( )L R� � 
 and � � at L/
2

, and the dimensionless heat-transfer coefficients (�
n

, � �
r n

) (� ,

� �
R

L) / .

Let us consider three ways of exciting the harmonic vibrations of the plate:

(i) radially uniform surface pressure � �q q
z 0

,

(ii) voltage �V
A

applied to the actuator, and

(iii) combination of mechanical load q
0

and voltage 2V
A

.

To determine the voltageV
A

balancing the mechanical load q
0

, we will use the formula

V k x q
A A

� ( )
0 0

, (18)

where k
A

is the control ratio; x r L
0 0

� �( ) /
 is the dimensionless radius of the circular actuator.

By analogy with the linear problem [13], k
A

is the ratio of the maximum deflection amplitude w
p

caused by a unit

mechanical load (q
0

� 1 Pà) at linear resonance frequency to the maximum deflection w
E

caused by a unit voltage ( � �V
A

1 V,

�� �V
A

0) applied to the actuator:

k w w
p EA

� | |/| |
max max

. (19)

If the mechanical load varies with time as in (13), then the antiphase voltage defined by (18) should vary as

V t
A

cos( )� �� � �V t
A

cos � .

3. Calculated Results. For numeric purposes, we consider a circular plate made of passive polymer [17] with actuators

made of viscoelastic piezoceramics TsTStB-2 [1] with the following frequency-independent mechanical characteristics (5):

G G

k0

� � � 794.2 MPa = 73.1 MPa, � �

0

� �

k

0.3636, E G� �2 1( )� , � ��
E

k

0.37,

s
E

k

11
* � (12.5 – i0.02)�10

–12
m

2
/N, d

k

31
* � (–1.6 + i0.0064)�10

–10
C/m,



31

k

* � (21 + i0.735)�10
2



0
, 


0
� 8.854�10

–12
F/m, �� ��

E

k

0, � �
n R

� � 25.5,

�
0

� 929 kg/m
3
, �

1
� 7520 kg/m

3
, � � 0.47 W/(m�°C), T T

s0
� � 20 °C.
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The radius of the plate R � 0.2 m; 
 �
�

10
4

m; the thickness of the passive layer h
0

� 0.01 m.

Since the load causes mainly flexural vibrations of the plate and the deflections are maximum at the resonant frequency

of the first mode, which is most intensive, we will consider the neighborhood of the first resonant frequency of the bending mode.

Figure 1 shows (curves 1–5) the frequency dependence (AFR) of the maximum deflection
~

| ( )|/w w x h� � 0
0

of the plate

with piezolayers of thickness � � � �
�

h h
1 0

4
05 10/ . in the linear (dashed lines) and nonlinear (solid lines) problems for the

electric loadV
A

� 0and the following amplitudes of mechanical load: q
0

4
10� �

�
0.15, 0.25, 0.4, 0.5, 0.6 Pa. Figure 2 shows the

frequency dependence of the steady-state (� � 0.5) maximum self-heating temperature (TFR) T T T
m

� �( )
max 0

°C for the first

four values of the load (curves 1–4). It can be seen that the linear problem formulation is sufficient when
~
w � 0.2. These

heat-transfer conditions do not cause intensive heating. As the relative deflection (
~
w 	0.2) is increased with increasing load, the

contribution of geometrical nonlinearity is accompanied [2] by an increase in the resonant frequency and hard amplitude– and

temperature–frequency response. The geometrical nonlinearity causes an insignificant decrease in the maximum amplitude of

deflection and self-heating temperature at the resonant frequencies.

Figure 3 shows the control ratio k
A

of a circular piezoactuator as a function of the dimensionless radius x
0

of the

electrode calculated by formula (19) at linear resonance frequencies for the following values of the relative thickness of

piezolayers: � � 0,10
4�

, 10
3�

, 10
2�

. It appeared that the curves of k
A

versus x
0

for these values of �agree to three decimal digits.

This means that k
A

for an actuator with cut electrodes does not depend on the thickness of the piezolayers and can be determined

regardless of this dependence in the stiffness characteristics of the system. It can be seen that the parameter k
A

is minimum

within 0.54 � �x
0

0.74. The actuator with such parameters is the most effective because it balances the mechanical load at

minimum voltage. Figures 4 and 5 show how the thickness of the piezolayers of an actuator of radius x
0

�0.7 influences the AFR
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and TFR, respectively, of the plate under electric loading � �V
A

132 V. Curves 1–5 correspond to the following values of the

relative thickness of the piezolayer: � � 0, 10
5�

, 10
4�

, 10
3�

, 3 10
2

�
�

.

The vertical dash-and-dot lines in Fig. 4 represent the linear-resonance frequencies. An analysis of the AFR and TFR

suggests that an increase in the thickness of the actuator under electric loading leads to a decrease in the deflection amplitude and

an increase in the resonant frequency and self-heating temperature of the plate. The effect of the actuator thickness on the AFR

and TFR can be neglected when � � 10
4�

.

Figure 6 shows (solid lines 1–4) the maximum deflection
~
w of the plate with an actuator of radius x

0
� 0.7 and relative

thickness � � �
�

05 10
4

. subject to a mechanical load with amplitude q
0

4
10� �

�
(0.15, 0.25, 0.4, 0.5) Pa at short-circuited

electrodes ( )V
A

� 0 or to an electric load V
A

� 49.5, 82.5, 132, 165 V ( )q
0

0� applied to the actuator and balancing the

mechanical load. With such types of loading, the AFRs are visually indistinguishable (on the given scale). Figure 7 shows

(curves 1–4) the frequency dependence of the maximum self-heating temperature T
m

� �( )
max

T T
0

°C for electric (solid lines)

and mechanical (dashed lines) loading as in Fig. 6. It can be seen that the TFRs are distinguishable, unlike the AFRs (Fig. 4). For

example, the self-heating temperature under the electric loading (solid lines) is higher than that under the mechanical loading

(dashed lines). This is due to the contribution of the terms containing the piezoelectric and dielectric loss moduli to the

dissipation function (17).

An analysis of Figs. 6 and 7 suggests that the contribution of the geometrical nonlinearity to the AFR and TFR increases

with the amplitude of loading, accompanied by an increase in the self-heating temperature of the plate. The dash-and-dot curves

represent the frequency dependence of the deflection �

~
w w� �10

2
(Fig. 6) and the maximum temperature (Fig. 7) for a plate

subject to a harmonic mechanical load and an electric load applied in antiphase. It is seen that active damping reduces the

deflection amplitude by more than two orders of magnitude and the self-heating temperature to nearly initial level.

Conclusions. We have studied the thermomechanical processes in a clamped viscoelastic flexible circular plate with

piezoactuators subjected to mechanical and electric loading. If the piezolayers of equal thickness are polarized in opposite

directions, mechanical and balancing electric loads, acting separately, cause equal deflections and slightly different self-heating

temperatures. This factor provides a basis for the development of a method for active damping of the mechanical vibrations of

plates with piezoelectric actuators. In this case, the geometrical nonlinearity does not affect the control ratio of the actuator and

can be determined by solving the linear problem.
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