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The role of the fracture process zone near the tip of a mode I crack in a nonlinear elastic body is studied.

A boundary-value problem is solved numerically to examine the effect of the fracture process zone on the

size and shape of the nonlinear zone near the crack tip
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Introduction. As the experiments [5, 6, 11] show, fracture occurs within a local region (fracture process zone) near the

crack tip where submicrocracks occur due to very high stresses. The parameters of this zone depend on the properties of the body

and the magnitude of the external load.

Because of the inadequate understanding of fracture behavior, fracture process zone models are widely used [10]. The

fracture process zone is commonly shorter than the crack and is often located on its continuation. Therefore, if the external load is

tensile, the fracture process zone is usually modeled, developing the Leonov–Panasyuk model [7], by a cut with stresses applied

to its faces.

The experiments [5, 6, 11] show that the fracture process zone occurs within a nonlinear (deformation) zone near the

crack tip. This zone affects both the crack opening displacement [13] and the nonlinear zone.

The present paper examines the effect of the fracture process zone on the nonlinear zone. As in [13], we will use the

model [4, 11] that assumes that the length of the fracture process zone (and, hence, the cut) remains constant under increasing

external load. It is the stresses applied to the faces of the cut that change. They are assumed to be finite and continuous in the

fracture process and nonlinear zones [1, 2, 7, 8] and determined by solving a boundary-value problem. Using this model, we will

study the role of the fracture process zone near the crack tip in a nonlinear elastic body in a generalized plane stress state. Strains

are assumed small. The boundary-value problem is formulated in terms of the displacement components. By solving a

boundary-value problem numerically, we will describe how the fracture process zone affects the size and shape of the nonlinear

zone.

1. Preliminaries. To formulate the boundary-value problem, we will use constitutive equations relating the stress (S)

and strain (D) tensors.

1.1. Constitutive Equations. We will use the following linear tensor constitutive equations [13]:
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The constants � and �may be expressed in terms of the Lame constants [13].

Following [12], we introduce the constant � � 0and define the function
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where �, b, and c are assumed known.

1.2. Nonlinearity Criterion. Considering (1.4), we conclude that relationship (1.1) between the tensors S and D is linear

if � � � and nonlinear if � � �, i.e.,

� 	 �. (1.6)

Introducing a variable � , we represent the components of the strain tensor D as

D g
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�	 . (1.7)

Substituting (1.7) into (1.3) yields
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This means that, according to (1.2), the components of the tensor D given by (1.7) cannot satisfy criterion (1.6).

2. Generalities. Let us introduce an orthogonal coordinate system x x x
1 2 3

, , for which the components of the metric

tensor g are given by
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2.1. Basic Equations. Let us derive the basic equations for the components of the displacement vector u. The

components of the strain tensor D and the components of the displacement vector u are related as follows [9]:
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where symmetrization over the indices � and  is assumed.

Using (1.3), (2.1), and (2.2), we get
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With (2.2), Eqs. (1.1) become:
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Let us consider a generalized plane stress state:
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Considering that
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( )� � ! 1and using formula (2.1) and the first four equalities in (2.6), we reduce Eq. (2.4) to the form
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Using the last equality in (2.6), the first formula in (2.3), and Eqs. (2.1) and (2.4), we get

%

%

	

�

� �

%

%

�

%

%



�

�
�

�

�

�
�
�

u

x

u

x

u

x

3

3

1

1

2

2

3

2 3

1

3

2

� �

� �

�

� �

�
~

( )�

%

%




%

%




%

%



�

�
�

�

�

�
�

�

�

�

�

�

�

u

x

u

x

u

x

3

3

1

1

2

2

. (2.8)

Let

T
u

x

u

x

u

x

11 1

1

2

2

3

3

2

3

3 2 3	 �

%

%


 �

%

%




%

%

�

�

�

�

�

~
( ) ( ) ( )� � � � � ��

�
,

T
u

x

u

x

T
12 1

2

2

1

21

2 2	 �

%

%

�

%

%



�

�
�

�

�

�
�

	 �( )
~

( ) , ( )
~

(� � � � � �� � )

%

%

�

%

%



�

�
�

�

�

�
�

u

x

u

x

2

1

1

2

,

T
u

x

u

x

u

x

22 2

2

1

1

3

3

2

3

3 2 3	 �

%

%


 �

%

%




%

%

�

�

�

�

�

~
( ) ( ) ( )� � � � � ��

�
. (2.9)

With (2.5) and (2.6), the equilibrium equations for the components of the stress tensor S [9] reduce to
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Assume that the constants � and � are independent of the coordinates x
1

and x
2

.

Using (2.1), (2.3), (2.4), (2.8), and (2.9), we reduce Eqs. (2.10) to
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Thus, we have derived second-order partial differential equations for u
1

and u
2

with respect to x
1

and x
2

.

Let us specify a stress vector P on the surfaces of the body, crack, and cut (with a unit outward normal n).

According to (2.6), the boundary conditions for the components of the stress tensor S [9] are
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Using the notation
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conditions (2.13), Eqs. (2.4), equalities (2.1), the first formula in (2.3), and formulas (2.8), and (2.9), we get
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Thus, we have derived first-order partial differential equations for u
1

and u
2

with respect to x
1

and x
2

.

Equations (2.11) and (2.15) can be integrated by Il’yushin’s method of successive approximations [3]. The quantities

Q Q
1 2

, and R R
1 2

, should be equated to zero in the first approximation. In the subsequent approximations, they should be

calculated from the previous approximation. If
~

( )� � 	 0, then Q Q
1 2

, and R R
1 2

, are equal to zero (according to (2.9), (2.12),

and (2.16)), and integrating Eqs. (2.11) and (2.15) yields the solution of the linear elastic boundary-value problem as the first

approximation.

2.2. Boundary-Value Problem Formulation. Consider a thin rectangular body with a central crack (Fig. 1). The axes of

symmetry of the body are aligned with the x
1
- and x

2
-axes. As the body is stretched along the x

1
-axis, a narrow zone (fracture

process zone) occurs near each crack tip. This zone cannot be described by the above equations. Let us model this zone by a cut

with uniformly distributed stresses applied to its faces. These stresses can be determined by solving a boundary-value problem.

We specify the components P
1

and P
2

on the surfaces of the body, crack, and cut, symmetrically about the x
1
- and

x
2

-axes. Then it is sufficient to analyze a quarter of the body. We choose the quarter located in the first quadrant (Fig. 1).

On the upper surface of this part of the body, n
1

1	 , n
2

0	 , and Eqs. (2.15) have the form
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where R T
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	 , R T
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	 according to (2.16).

On the lateral surface of this part of the body, n n
1 2

0 1	 	, and Eqs. (2.15) have the form
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On the upper face of the crack, 
 	n
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0	 and Eqs. (2.15) have the form
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according to (2.16).

Since there is symmetry about the x
1
- and x

2
-axes, we have
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Moreover, by symmetry about the x
2

-axis, we have

u
1

0	 (2.21)

at the tip of the cut.

Let us derive an equation containing u
2

. To this end, we choose an arbitrary point ( , )a a
1 2

near the cut tip. Let all partial

derivatives (up to the second order) of u
2

with respect to x
1

and x
2

exist at this point. The coordinates of the cut tip are a
1 1
� �

and a
2 2
� � .

Let us expand u
2

into a multiple Taylor series in powers of �
1

and �
2

:
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Note that Eqs. (2.11), (2.17)–(2.21), and (2.23) are the governing equations for u
1

and u
2

.

2.3. Transformation of the Governing Equations. We introduce a coordinate mesh with a spacing h (Fig. 2):
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Let the tips of the crack and the cut be points A and B with coordinates x x
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Expressing the partial derivatives of u
1

and u
2

with respect to x
1

and x
2

in terms of finite differences (using formulas

(2.24)–(2.26)), using Eqs. (2.11), (2.17)–(2.21), and (2.23), and setting 
 	 	� �
1 2
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Note that the quantities Q Q
1 2

, and R R
1 2

, should be expressed in terms of the unknowns y y
n1

, ,� by representing

the first-order partial derivatives of u
1

and u
2

with respect to x
1

and x
2

in terms of finite differences (using (2.20) and

(2.24)–(2.26)). To solve Eqs. (2.27), we use the modified Gaussian elimination method [12].

3. Numerical Example. Let us study how the fracture process zone affects the size and shape of the nonlinear zone in

the case of a generalized plane stress state. To this end, we will examine the deformation of a nonlinear elastic body with a crack

and compare it with the behavior of a linear elastic body. Let the lengths of the crack and cut be the same in both bodies.

3.1. Solution of the Boundary-Value Problem. To solve the problem, we will use the following input data from [13]:


 	 0



� 0046 10
10

. Pa
–1

, � 	 0



0222 10
10

. Pa
–1

,

� 	 0325 10
2

. Pa
1/2

, b 	 0



01964347 10
2

. Pa
–1/2

, c 	 0



05632820 10
4

. Pa
–1

,

h 	 0



002 10
2

. m, d 	 302, e 	152, f 	 62, g 	 72.

Using the second formula in (2.24), we find the lengths of the crack and the cut, respectively: x x f h
f

2

2

2

2
 	 
( ) =

120 10
2

. 0



m; x x g f h
g f

2 2


 	 
( ) = 020 10
2

. 0



m.

Note that only P
1

(on the upper surfaces of the body and cut) is nonzero and independent of x
2

:
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The boundary-value problem is solved assuming that the component S
11

at the tip of the cut has the same value as at all

other points on its upper face:

S x x P
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1
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Expressing the partial derivatives of u
1

and u
2

with respect to x
1

and x
2

, respectively, in terms of central differences

(using (2.24)–(2.26)) and using Eqs. (2.4), the first formula in (2.3), the first formula in (2.9), and expression (2.8), we obtain
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We examine two cases for linear and nonlinear elastic bodies: absence and presence of the fracture process zone.

The values of y y
n1

, ,� are determined from Eqs. (2.27) using 15 approximations (and formulas (2.28) with notation

(2.14)). The quantities Q Q
1 2

, and R R
1 2

, are equal to zero in the first approximation. In the subsequent approximations, they

are calculated (using (2.9), (1.4), (1.5), (2.3), (2.7), (2.8), (2.25), and (2.26)) from the values of y y
n1

. .� found in the previous

approximation.

If the fracture process zone is present, the solution of the boundary-value problem is found in several iterations. The

value of P
( )2

1
is initially specified and then is corrected (until condition (3.1) is satisfied) using the value of S

11
at the cut tip

found by formula (3.2) from the values of y y y y
e e e4 1 1 2 2 2� �

, , ,
( )

and the corresponding value of T
11

. We use

P
( )

.
1

1 7
500 10	 0 Pa. When the fracture process zone is present, 
 	 0P

( )
.

2

1 7
1590 10 Pa for the linear elastic body and


 	 0P
( )

.
2

1 7
1414 10 Pa for the nonlinear elastic body.

3.2. Analysis of the Results. The value of S
11

on the upper face of the cut (S x x P j f g
j

11

2

1 2

2

1
1( , ) | | ( ,... , ))

( )
	 	 
 in the

linear elastic body is much greater than in the nonlinear elastic body.

The values of S
11

ahead of the cut tip are determined by formula (3.2) from the values of y
e j g2 2 1( )� 
 �

, y
j g2 1( )
 �

,

y y
e j g e j g2 4 2( ) ( )

,
� 
 � � 


and the corresponding values of T
11

. Figures 3a and 3b show S
11

as a function of x
2

for x x
1

2

1

	 for

linear and nonlinear elastic bodies, respectively (curves 1 correspond to the absence of the fracture process zone and curves 2 to

the presence of this zone).

With distance from the cut tip, the difference of the values of S
11

for linear and nonlinear elastic bodies with fracture

process zone first decreases becoming negative and then increases remaining negative. It is equal to 176 10
7

. 0 Pa at

x
2 2

140 10	 0



. m, to 
 0074 10
7

. Pa at x
2 2

154 10	 0



. m, and to 
 0073 10
7

. Pa at x
2 2

156 10	 0



. m.

As expected, the difference between the values of P
( )2

1
for linear and nonlinear elastic bodies decreases with decreasing

value of P
( )1

1
. If P

( )
.

1

1 7
4 00 10	 0 Pa, then 
 	 0P

( )
.

2

1 7
1272 10 Pa for the linear elastic body and 
 	 0P

( )
.

2

1 7
1231 10 Pa for the

nonlinear elastic body. This is because the nonlinear zone contracts with decreasing value of P
( )1

1
.

In solving the boundary-value problem for the nonlinear body at several values of P
( )1

1
, we discoverd points at which

criterion (1.6) is satisfied, i.e., we identify the boundaries of the nonlinear zone. The length of the nonlinear zones along the

x
2

-axis equals 022 10
2

. 0



m if P
( )

.
1

1 7
353 10� 0 Pa and exceeds 022 10

2
. 0



m if P

( )
.

1

1 7
353 10� 0 Pa.

Figures 4 and 5 illustrate the boundaries of the nonlinear zones for the values of P
( )1

1
satisfying the above conditions.

Curves 1, 2, and 3 in Fig. 4 correspond to P
( )1

1
	
 0320 10

7
. , 
 0340 10

7
. , 
 0353 10

7
. Pa, respectively, which, in turn, correspond to
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 	P
( )2

1
1017 10

7
. 0 , 1077 10

7
. 0 , 1114 10

7
. 0 Pa. As is seen, the nonlinear zones substantially differ in both size and shape. Indeed,

their lengths are equal along the x
2

-axis and different along the x
1
-axis. The height of these zones is equal to 014 10

2
. 0



m (curve

1), 020 10
2

. 0



m (curve 2), and 024 10
2

. 0



m (curve 3).

As the coordinate x
1

increases, the width of the first zone decreases, the width of the second zone does not change, and

the width of the third zone first increases and then decreases. When x
1 2

004 10	 0



. m, the width is equal to 018 10
2

. 0



, 022 10
2

. 0



,

024 10
2

. 0



m, respectively.

Curves 1 and 2 in Fig. 5 correspond to P
( )1

1
	 
 04 00 10

7
. , 
 0500 10

7
. Pa, respectively, which, in turn, correspond to


 	P
( )2

1
1231 10

7
. 0 , 1414 10

7
. 0 Pa. These nonlinear zones are similar in shape but substantially different in size. For example, they

extend to 036 10
2

. 0



m (curve 1) and 072 10
2

. 0



m (curve 2) along the x
1
-axis and to 026 10

2
. 0



and 044 10

2
. 0



m along the

x
2

-axis.

Determining the boundaries of the nonlinear zone for P
( )1

1
	 4 00 10

7
. 0 , 500 10

7
. 0 Pa in the absence and presence of the

fracture process zone shows that the latter has a weak effect on the size and shape of the former.

Conclusions. We have studied the deformation of a nonlinear elastic body with a central mode I crack. The fracture

process zone occurring near each crack tips under tension has been modeled by a cut with some stresses applied to its faces. A

generalized plane stress state has been considered. A boundary-value problem has been formulated (for the components of the

displacement vector), and linear tensor constitutive equations have been used. By solving this boundary-value problem

numerically, we have determined the effect of the fracture process zone on the size and shape of the nonlinear zone. At the initial

stage of deformation, the length of the nonlinear zone changes weakly along the crack and changes substantially in the

perpendicular direction with increasing external load, i.e., there is a significant change in the shape of the zone. With further

increase in the load, the nonlinear zone grows considerably in both directions, but its shape remains almost the same.
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