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MODELING A CRACK WITH A FRACTURE PROCESS ZONE
IN A NONLINEAR ELASTIC BODY

A. A. Kaminsky and E. E. Kurchakov

The role of the fracture process zone near the tip of a mode I crack in a nonlinear elastic body is studied.
A boundary-value problem is solved numerically to examine the effect of the fracture process zone on the
size and shape of the nonlinear zone near the crack tip
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Introduction. As the experiments [5, 6, 11] show, fracture occurs within a local region (fracture process zone) near the
crack tip where submicrocracks occur due to very high stresses. The parameters of this zone depend on the properties of the body
and the magnitude of the external load.

Because of the inadequate understanding of fracture behavior, fracture process zone models are widely used [10]. The
fracture process zone is commonly shorter than the crack and is often located on its continuation. Therefore, if the external load is
tensile, the fracture process zone is usually modeled, developing the Leonov—Panasyuk model [7], by a cut with stresses applied
to its faces.

The experiments [5, 6, 11] show that the fracture process zone occurs within a nonlinear (deformation) zone near the
crack tip. This zone affects both the crack opening displacement [13] and the nonlinear zone.

The present paper examines the effect of the fracture process zone on the nonlinear zone. As in [13], we will use the
model [4, 11] that assumes that the length of the fracture process zone (and, hence, the cut) remains constant under increasing
external load. It is the stresses applied to the faces of the cut that change. They are assumed to be finite and continuous in the
fracture process and nonlinear zones [1, 2, 7, 8] and determined by solving a boundary-value problem. Using this model, we will
study the role of the fracture process zone near the crack tip in a nonlinear elastic body in a generalized plane stress state. Strains
are assumed small. The boundary-value problem is formulated in terms of the displacement components. By solving a
boundary-value problem numerically, we will describe how the fracture process zone affects the size and shape of the nonlinear
zone.

1. Preliminaries. To formulate the boundary-value problem, we will use constitutive equations relating the stress (.5)
and strain (D) tensors.

1.1. Constitutive Equations. We will use the following linear tensor constitutive equations [13]:
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The constants p and 6 may be expressed in terms of the Lame constants [13].
Following [12], we introduce the constant v >0 and define the function ¢(Q)as

Q—U+p—%/w/q3 +72 —r+%/w/q3 +r2 +r

6(Q)‘QS\) =0, (NP(Q)<Q>U B O (1.4)
b | 1
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where v, b, and ¢ are assumed known.
1.2. Nonlinearity Criterion. Considering (1.4), we conclude that relationship (1.1) between the tensors .S and D is linear
if Q <v and nonlinear if Q > v, i.e.,

Q=vu. (1.6)

Introducing a variable @, we represent the components of the strain tensor D as

Dy =0g . (1.7)
Substituting (1.7) into (1.3) yields
E=3a Y =307, (1.8)
where
Y-E?/3=0 (1.9)

This means that, according to (1.2), the components of the tensor D given by (1.7) cannot satisfy criterion (1.6).
2. Generalities. Let us introduce an orthogonal coordinate system x!,x%,x3 for which the components of the metric

tensor g are given by

15 = b
g% z{ e=¢ @1
0, e#c

2.1. Basic Equations. Let us derive the basic equations for the components of the displacement vector u. The
components of the strain tensor D and the components of the displacement vector u are related as follows [9]:

s (e.c) (22)
= g, .
% xS :
where symmetrization over the indices € and ¢ is assumed.
Using (1.3), (2.1), and (2.2), we get
3 ou 3 3 (ou ) ou o
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Let us consider a generalized plane stress state:
S =gB ! x2) (a=12 B=12), (2.5)
S -0 (a=12 B=3 a=3 =12 a=3, p=3) (2.6)
Considering that $(Q) # land using formula (2.1) and the first four equalities in (2.6), we reduce Eq. (2.4) to the form

5“ Oug
— 4020 (y=1,2, 8=3, y=3, §=1,2). 2.7
oxd ot

Using the last equality in (2.6), the first formula in (2.3), and Eqgs. (2.1) and (2.4), we get

Ouy 3p+o| p (%+%J+15(g{26u3_6ul_6u2j_ (2.8)
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With (2.5) and (2.6), the equilibrium equations for the components of the stress tensor S [9] reduce to

11 12 21 22
os + ) =0, ) + as =0 (2.10)
ox! ox? ox! ox?

Assume that the constants p and o are independent of the coordinates x' and x?.
Using (2.1), (2.3), (2.4), (2.8), and (2.9), we reduce Egs. (2.10) to

82u1 82u2 2y
2(p+0) +0 +(2p+0) Q
oxlox!  oxlox? ox 26x =
2u 52 2
(2p+0) 2 .o +2(p+0) =0? (2.11)
axlox!  ox 6x2 ox 26x =

11 12 21 22
[Ql_ar Lor 2 _or” or J 2.12)

ox! o2 - ox! ox?

Thus, we have derived second-order partial differential equations for u; and u, with respect to x! and x2.

Let us specify a stress vector P on the surfaces of the body, crack, and cut (with a unit outward normal ).
According to (2.6), the boundary conditions for the components of the stress tensor S [9] are
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Fig. 1
SUn, +82n, =P, §2n +5%2n, =P2. (2.13)
Using the notation
26(2p+0)P* =P* (a=12), (2.14)

conditions (2.13), Egs. (2.4), equalities (2.1), the first formula in (2.3), and formulas (2.8), and (2.9), we get

Ou, Ouy Ou;  Ou, 1 1
(p+c)—1—p—2 n+(2p+o ~o T =P +R’,
ox ox

Oox Oox
ou ou ou ou
(2p+0{2+1jn1 +2{(p+0)2—p1}n2 =£2 +Bz (2.15)
ol ox? ox? ox!
(Bl :Illnl +I12n23 EZ :IZInl +I22n2 ) (216)

Thus, we have derived first-order partial differential equations for u; and u, with respect to x! and x2.

Equations (2.11) and (2.15) can be integrated by I1’yushin’s method of successive approximations [3]. The quantities

Ql , Qz and El ,R 2 should be equated to zero in the first approximation. In the subsequent approximations, they should be

calculated from the previous approximation. If ¢(Q2) =0, then Ql , Qz and Bl ,R 2 are equal to zero (according to (2.9), (2.12),

and (2.16)), and integrating Eqs. (2.11) and (2.15) yields the solution of the linear elastic boundary-value problem as the first
approximation.

2.2. Boundary-Value Problem Formulation. Consider a thin rectangular body with a central crack (Fig. 1). The axes of
symmetry of the body are aligned with the x'- and x?-axes. As the body is stretched along the x'-axis, a narrow zone (fracture
process zone) occurs near each crack tip. This zone cannot be described by the above equations. Let us model this zone by a cut
with uniformly distributed stresses applied to its faces. These stresses can be determined by solving a boundary-value problem.

We specify the components P! and P? on the surfaces of the body, crack, and cut, symmetrically about the x!- and
x2-axes. Then it is sufficient to analyze a quarter of the body. We choose the quarter located in the first quadrant (Fig. 1).

On the upper surface of this part of the body, n; =1, n, =0, and Egs. (2.15) have the form
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where Bl =[11, 52 :IZI according to (2.16).
On the lateral surface of this part of the body, n; =0, 7, =1and Egs. (2.15) have the form

0 0
@p+6{ —L+ ”2]=P‘+RR

ox o

2{(pﬂf)—pzul} =P% +R?, (2.18)

X

where 51 :le, R? :Izz according to (2.16).

On the upper face of the crack, —n; =1, n, =0and Egs. (2.15) have the form

0 0
2{(pw)ul—puz} P +R',
ox o2
ou ou
4m+6{6f+alj P? +R?, 2.19)
X X

where —El :Z“, —Bz :[21 according to (2.16).

Since there is symmetry about the x!- and x?-axes, we have
u; (x1 ,—x2 )—ul(x1 ,+x2 )=0, u, (x1 ,—x2 )+, (xl, +x2 )=0,
u, (—xl ,x2 )+ (+xl , x> )=0, u, (—xl ,x2 )~y (+x1 ,x2 )=0. (2.20)

Moreover, by symmetry about the x2-axis, we have
u; =0 (2.21)

at the tip of the cut.
Let us derive an equation containing u, . To this end, we choose an arbitrary point (a', a? )near the cut tip. Let all partial

derivatives (up to the second order) of u, with respect to x! and x? exist at this point. The coordinates of the cut tip are a +¢!

and a? +&2.

Let us expand u, into a multiple Taylor series in powers of el and g2:

2 ou 2 2 5%
U, =142(a1,c12)+Z:—2 ZZ 5 2 Per, (2.22)
p=10x (al,a) 2p21yo1 OxP oY (@ .a®)
whence
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Note that Egs. (2.11), (2.17)~2.21), and (2.23) are the governing equations for u; and u,.
2.3. Transformation of the Governing Equations. We introduce a coordinate mesh with a spacing 4 (Fig. 2):

X =-2n  (i=12,..,d),
1

P =(-2h (=12...,e) (2.24)
J

Let the tips of the crack and the cut be points 4 and B with coordinates x! , x2 and x' , x2, respectively.
A

g
Denote
() =y, uy(x)=y, (2.25)
i i
(s:2[(1‘—1)e+j—g]+1,t:Z[(i—l)e+j—g]+2). (2.26)

Expressing the partial derivatives of u; and u, with respect to x! and x? in terms of finite differences (using formulas

(2.24)—(2.26)), using Egs. (2.11), (2.17)—(2.21), and (2.23), and setting —¢! =¢% =h, we obtain n linear algebraic equations with
unknowns y;, ¥y ,..., ¥,:

Assys + ASS+ 2e¢ Vst 2e + Ass—Zeys—2e + ASS+2 Y2 + Ass—2 Ys—2
Aoy Vi 26er1) T Astr 20e-1) Ver 2(e-1) T Ast—2(e-1) Vi—2(e=1) T Ast=2(e+ 1) Yi-2(e41) =By
Ay Vit AyieViire Y Au—2eVi2e T Ayr2 Ve Y Ay_2 V2

A2 er ) Yse 200+ 1) T A s 2(e=1) Vst 20e=1) T Ats—2(e=1) Vs=2(e=1) T Ais—2(e+1) Vs=2(e+1) ¥ B4
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(i=2, j=g+l...,e—1 i=3,...,d—1,j=2,..,e-1)
AVt Ay pe Vg oot Ay geVyget A 60V 6e
A oV g T A g Vgt Ay 6 Voot Ay Vi T Ag 0Vt Ay 4y
Ay 20 Vi2e T Ay ey Vim2(er 1) T Asi—2(e+2) Vi-2(e42)
tAg_seVicse T Ag20es1yVi—22e+1) T Asi—a(er 1) Vi-a(e+1y ¥ By
Ay + Ay 2V 9ot Ay_aeVicse T Ay_geVi-ge
tAy oV ot Ay 4V gt Ay 6Vie T Ayt A oot A 4V 4
Ay 20 Vsne T A a(er ) Vso2(er1) T Ats—2(e+2) Vs-2(ex2)
Ay 4o Vsse T A 202011y V520204 1) F Ais—a(er 1) Vs—d(er) B, (i=d, j=e),

Assys +Ass—29ys—26 +Ass—4eys—4e +Asl+2yt+2 + Ast—2 Yi—2 zBs’

Ay v+ Ay 2,V et Ay aeVisge v Ao Voro T Ay 2V =B, (i=d, j=2,.. e~

Assys +Ass—2 Vs—2 + Ass—4 Vs—4 +Ast+2eyt+2e +Ast—2eyt—2e zBs’

1),

Ay + Ay Vi g Ay 4V g+ Ao Voo YA 20 Vs2e ®B,  ((=2,...,d =1, j=e),

Assys + Ass+26ys+2e +Ass+4eys+4e +Ast+2yt+2 + As172 Yi-2 zBs’

Ay + Ay 0eViae T ApyraeVivae T Ao Voo T Ay 2V n =B, (=2, j=2,..., ¢

A + A =B A + A4

s—2es—2eVs—2e s—2es+2e Vst 2e s—2e’ (—2et—2eYi-2e

(i=2, j=g,...,e)

Agys =By Ayy, Ay 4V g+ Ay 2V

_1)’
Ay ng Vs o ¥ Ag g0V =Bs oy Ap g Vi o+ A o0V =B, (i=2,....d, j=2)

(=2et+2eVi+2e :Bt72e

Ay ey Vi 2e-1) YV Aur2eVieze T Aurae-Visae-) T dusaeVivae B, (=2, j=2)

(~A,, =8(4p+30), A, ,, =8(p+0),

Ass—ZeZS(p+6)’ ASS+2=4(2p+G), ASS_2=4(2p+G),

-4, =84p+30), 4,,,,=42p+0), 4, ,,=42p+0),

A, ,=8p+0), A, ,=8p+oc)

22,1
Aygioery =0 Aoy =% Ay o1y =0 Ay yer1y =0 B, =4h7Q0 ()l.‘ ’

(i=2, j=g+Ll...,e-1 i=3,...,d=1 j=2,...,e—1),

A, =8(4p+30), —A, ,,=40(p+0c), 4

ss—2e ss—4e

~Ay 5 =202p+0), A, ,=16p+c), -A, ;=42p+0)

A, =9, -A, ,=125, A, , =36, -4

st st—2e ~ 120, Ast—2(e+l) =160,

=32p+0), ~Ay ¢, =8(p+0),

21,1 2
Agirerty =0 Agine-1y =0 Ay 21y =0 Ay g1y =0 By=4h"Q0 ()l? ’]‘ )

x2)
J

(2.27)



A

21,1 2
st-d(er)) =0 By =4hT0 (x - )

Ay 2(er2) =40 Ay 4. =30 Ay r0e41) =40

4y =8(4p+30), -4, ,,=20p+0), A, 4, =16Pp+0), -4, 4 =42p+0),
-4, ,=40p+o), A, ,=32p+0c), -4, (=8p+oc) A,=9,

=4c,

Ay =120, Ay 4 =30, —Ai,, =120, A 5 =160, A 50

2,2,1 2 . .
4 =30, Ay r0er1) =40 Ay 4oy =0 B, =4h70 ()ic ’)J?) (i=d, j=e),

ts—4e
Ay =6p+0) Ay o =8p o) Ay 4 =2pro) Ay, =20 Ay =2

B, :2{1,1(?1’);2 )+Bl(?1’§2 )}
Ay =3Cp+o), -4, ,,=42p+0), Ay 4,=%pto, Ay, =pto, -4 ,=p+o,

J

2,1 2 2,1 2 . .
Bt:ZhI:P ()lc 7)16 )+B (-)IC s X ):l (l=d, J=29'--7 e_l)’

Ass =3(2p +0), _Ass72 =4(2p +o0), Assf4 =2 +o, Ast+ 2e =2 +o, _Asthe =2 +o,
1,1 2 1,1 2
BS=2h{P (x",x7)+R (x,x )},
rJ o
Ay, =6(p+oc), A, ,=8p+0c), A, 4=2Ap+0), —dy.,, =2, Ay, =2,

_ 2,1 .2 2,1 2 o o
Bt—Zh{P ()l_c ,)Jg )+ R ()ic ,)]g )} (i=2,...,d-1, j=e),

A =06p+0), Ay, o, =8(p+0), Ay 4, =2p+0), Ay, =2, -A, ,=2p,
B, =21{P‘ C3 »f J+R G ,3;2 )},
A, =32Pp+0), —Ay,,=402p+0), Ay 4, =2p+0, —A,,=Pp+0o, A, ,=2p+o,
Bt=2h[P2(?1,§2)+R2(;;1,§2)} (i=2, j=2,..., g—1),
=L B ,=0 4,5 ,=L 4,_5.,=L B,_,=0

As—25—2 =1 _As—2s+2
(i=2,....d, j=2)

Asf2es72e =1, As72es+2e =1, Bsf2e =0, At72et72e =1 _At72et+26 =1 Bt72e =0

(=2, j=g,...,e)
A =1 B =0 -4,=3 -4, ,=1 A4,,=4

-4 y=4 Ay =% Ayiae =t Ayge =L B, =0

(i=2 j=g)) (2.28)

t+2(e—1
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Note that the quantities Ql , Qz and R ! ,R 2 should be expressed in terms of the unknowns y,,..., y, by representing
the first-order partial derivatives of u; and u, with respect to x! and x? in terms of finite differences (using (2.20) and

(2.24)—(2.26)). To solve Egs. (2.27), we use the modified Gaussian elimination method [12].

3. Numerical Example. Let us study how the fracture process zone affects the size and shape of the nonlinear zone in
the case of a generalized plane stress state. To this end, we will examine the deformation of a nonlinear elastic body with a crack
and compare it with the behavior of a linear elastic body. Let the lengths of the crack and cut be the same in both bodies.

3.1. Solution of the Boundary-Value Problem. To solve the problem, we will use the following input data from [13]:

£ =0046-10"1"pPa!,  5=0222-10710 pa !,
L=325-10% Pa'?,  H=01964347-102 Pa "2, ¢=05632820-10"* Pa”,
h=002-102m, d=302 e=152 [f=62 g=72
Using the second formula in (2.24), we find the lengths of the crack and the cut, respectively: x2-x? = (f-2)h=
o2
120-1072 m; x> —x2 =(g— £)h=020-10"2 m.
g f
Note that only P! (on the upper surfaces of the body and cut) is nonzero and independent of x2:

Pl(ilcl,)]gz):P(ll) (j=2,...,e—1)
PLaY ) =Py (=g =D
J

The boundary-value problem is solved assuming that the component S T at the tip of the cut has the same value as at all
other points on its upper face:

1 2
S“(zzc X )=IPhy (3.1)

Expressing the partial derivatives of u; and u, with respect to x!' and x?2, respectively, in terms of central differences

(using (2.24)—(2.26)) and using Egs. (2.4), the first formula in (2.3), the first formula in (2.9), and expression (2.8), we obtain

1 1
sl Uy~ —|: G( . - . )
()2€ ’j? 26(2p+o) [ A (P P2ex jmg)+1 y2(]—g)+1

560



x110%, m x1 102, m
3
S~
0.2
L\
0.1 /—_\ 0.6 i

. \ .
I/ 0

1.1 1.2 13 %2105 m 0.6 1.2 1.8 x2:105,m
Fig. 4 Fig. 5

1.2

11 .
_p(y2(6+j—g)+4_y2(e+j_g))]_z (z)g,sz)} (j=g,....e=-1) (3.2)

We examine two cases for linear and nonlinear elastic bodies: absence and presence of the fracture process zone.
The values of y;,..., y, are determined from Egs. (2.27) using 15 approximations (and formulas (2.28) with notation

(2.14)). The quantities Ql , QZ and R ! ,R 2 are equal to zero in the first approximation. In the subsequent approximations, they

are calculated (using (2.9), (1.4), (1.5), (2.3), (2.7), (2.8), (2.25), and (2.26)) from the values of y,,..., y, found in the previous
approximation.

If the fracture process zone is present, the solution of the boundary-value problem is found in several iterations. The
value of P(lz) is initially specified and then is corrected (until condition (3.1) is satisfied) using the value of S T at the cut tip

found by formula (3.2) from the values of y,, ., ¥, Va(er2)> Vae and the corresponding value of T " We use
P(ll) =500-107 Pa. When the fracture process zone is present, —P(lz) =1590-107 Pa for the linear elastic body and

—PL. =14.14-107 Pa for the nonlinear elastic body.

2
3.2. Analysis of the Results. The value of S ' on the upper face of the cut (S ! (x1 , x? )= |P(12) | j=/f,...,g—1))inthe
27

linear elastic body is much greater than in the nonlinear elastic body.
The values of S'! ahead of the cut tip are determined by formula (3.2) from the values of Ya2e+ j—g)+ 12 V2(j—g)+ 17

Va(et j—g)+4> V2(er j-g) and the corresponding values of[“. Figures 3a and 3b show S as a function of x? for x! :yzcl for

linear and nonlinear elastic bodies, respectively (curves / correspond to the absence of the fracture process zone and curves 2 to
the presence of this zone).

With distance from the cut tip, the difference of the values of S ' for linear and nonlinear elastic bodies with fracture
process zone first decreases becoming negative and then increases remaining negative. It is equal to 176- 107 Pa at
x? =140-1072 m, to —0.74-107 Paatx? =154-1072 m, and to —~0.73-107 Paatx? =156-102 m.

As expected, the difference between the values of P(lz) for linear and nonlinear elastic bodies decreases with decreasing

value of P(]l)' If P(]l) =4.00-107 Pa, then —P(lz) =1272-107 Pa for the linear elastic body and —P(lz) =1231-107 Pa for the

nonlinear elastic body. This is because the nonlinear zone contracts with decreasing value of P(ll).

In solving the boundary-value problem for the nonlinear body at several values of P(ll), we discoverd points at which
criterion (1.6) is satisfied, i.e., we identify the boundaries of the nonlinear zone. The length of the nonlinear zones along the
x?-axis equals 022-107> m if P}y <353-107 Pa and exceeds 022-107 m if 7} >3.53-107 Pa.

Figures 4 and 5 illustrate the boundaries of the nonlinear zones for the values of P(ll) satisfying the above conditions.

Curves /, 2, and 3 in Fig. 4 correspond to P(ll) =-320-107,-3.40-107,-3.53-10" Pa, respectively, which, in turn, correspond to
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—P(lz) =1017- 107, 10.77- 107, 1114-107 Pa. As is seen, the nonlinear zones substantially differ in both size and shape. Indeed,

their lengths are equal along the x? -axis and different along the x!-axis. The height of these zones is equal to 0.14- 1072 m (curve
1), 020-1072 m (curve 2), and 024-1072 m (curve 3).

As the coordinate x! increases, the width of the first zone decreases, the width of the second zone does not change, and
the width of the third zone first increases and then decreases. When x! = 0.04-1072 m, the width is equal to 0.18- 1072 ,022- 1072 )
024-107% m, respectively.

Curves [ and 2 in Fig. 5 correspond to P(ll) =-4.00-107, =500-107 Pa, respectively, which, in turn, correspond to

—P(lz) =1231-107,14.14-107 Pa. These nonlinear zones are similar in shape but substantially different in size. For example, they

extend to 036-1072 m (curve 7) and 072:102 m (curve 2) along the x!-axis and to 026-107% and 044-10% m along the
2 .
X“-axis.

Determining the boundaries of the nonlinear zone for P(l1 ) =4.00-107, 500-107 Pa in the absence and presence of the

fracture process zone shows that the latter has a weak effect on the size and shape of the former.

Conclusions. We have studied the deformation of a nonlinear elastic body with a central mode I crack. The fracture
process zone occurring near each crack tips under tension has been modeled by a cut with some stresses applied to its faces. A
generalized plane stress state has been considered. A boundary-value problem has been formulated (for the components of the
displacement vector), and linear tensor constitutive equations have been used. By solving this boundary-value problem
numerically, we have determined the effect of the fracture process zone on the size and shape of the nonlinear zone. At the initial
stage of deformation, the length of the nonlinear zone changes weakly along the crack and changes substantially in the
perpendicular direction with increasing external load, i.e., there is a significant change in the shape of the zone. With further
increase in the load, the nonlinear zone grows considerably in both directions, but its shape remains almost the same.
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