
STRESS STATE OF A FINITE ELASTIC CYLINDER WITH A CIRCULAR CRACK

UNDERGOING TORSIONAL VIBRATIONS
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The stress intensity factors (SIF) for a plane circular crack in a finite cylinder undergoing torsional

vibrations are determined. The vibrations are generated by a rigid circular plate attached to one end of

the cylinder and subjected to a harmonic moment. The boundary-value problem is reduced to the

Fredholm equation of the second kind. This equation is solved numerically, and the solution is used to

derive a highly accurate approximate formula to calculate the SIFs. The calculated results are plotted

and analyzed
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Introduction. Elements of machines and structures often have cylindrical shape. Cracks considerably reduce their

performance and may lead to fracture, especially under dynamic loading. Therefore, it is important to analyze the stress

distribution in cylindrical bodies with cracks under dynamic loading.

A review of the modern scientific literature suggests that the stress state of finite and infinite cylindrical bodies with

cracks under static loading has been studied adequately. Examples of solving similar problems by various methods can be found

in [10, 11, 16–18, 22]. Dynamic problems have been mainly solved for unbounded bodies with cracks, mainly circular even in

the case of harmonic vibrations. The relevant results are detailed in [4, 19].

Recently, a new research area has been developed in dynamic fracture mechanics and presented in [6, 13–15]. These

papers propose a method for numerical solution of spatial problems for cracked bodies under harmonic loading that takes into

account the normal contact interaction of and the friction between the crack faces. The effect of these factors on the distribution

of stress intensity factors (SIFs) is assessed by comparing with the results obtained regardless of the interaction of the crack

faces. As regards the harmonic vibrations of cylindrical bodies with cracks, there are publications such as [20, 21] that address

circular cracks in plates and infinitely long cylinders.

Thus, the stress concentration around cracks in finite cylinders under dynamic loading has been studied inadequately.

Here we will determine the stress intensity factor (SIF) near a plane circular crack in a cylinder undergoing torsional vibrations.

1. Problem Formulation. Consider an elastic cylinder of finite length a and radius r
0

made of an isotropic material. To

describe the cylinder, we will use a cylindrical coordinate system with origin at the center of the lower end (Fig. 1). The lower

end is fixed, and the upper end is covered by a rigid plate of the same radius to which a harmonic torque Me
i t� �

is applied

(hereafter the factor e
i t� �

indicating dependence on time is omitted). The cylinder has a circular crack of radius b r�

0
with

center z c� ( )0 � �c a on the cylinder axis. The cylinder undergoes axisymmetric torsional deformation. Only the angular

displacement w r z( , ) is nonzero which can be found from the equation
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where 	 is density; G is the shear modulus of the material of the cylinder.

The following equalities hold at the ends of the cylinder:

w r( , )0 0� , w r a r( , ) � 
 , 0
0

� �r r , (1.2)

where 
 is the unknown angle of rotation of the cover plate.

To determine it, it is necessary to use the equation of the torsional vibrations of the cover plate:
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where j
0

is the moment of inertia of the plate about the axis; M
R

is the moment of reaction forces exerted by the cylinder on the

plate.

These moments are defined by
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where m
0

is the mass of the plate; �
�z

r a( , ) is the shear stress under the plate.

The lateral surface of the cylinder is free from stresses:
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The crack surface is free from stresses as well:
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0, 0 � �r b. (1.6)

The displacements discontinue on the crack surface:

w r c w r c r( , ) ( , ) ( )� � � �0 0 � , 0 � �r b. (1.7)

2. Solution of the Dynamic Problem. To solve the boundary-value problem, we will represent the angular

displacement of the cylinder as two terms:
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The first term is the displacement of the cylinder without the crack satisfying conditions (1.2), (1.5) on its surface. It is

defined by the formula

w r z r

z

a
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( , )
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. (2.2)

Then the second term in (2.1) is the solution of Eq. (1.1) for which the zero conditions at the ends are satisfied:

w r
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0 0( , ) � , w r a
1

0( , ) � ( )0
0

� �r r , (2.3)

and so is condition (1.5) on the lateral surface of the cylinder. Moreover, this solution undergoes discontinuity (1.7) on the crack

surface and satisfies the condition
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The solution of Eq. (1.1) for which conditions (1.5), (1.7), and (2.4) are satisfied is found by the method of integral

transforms generalized to discontinuous problems [7]. It is necessary to use the finite Fourier sine transform with respect to the

variable z [9]:
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Applying this integral transform yields the following one-dimensional problem:
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A partial solution of the inhomogeneous equation (2.5) is given by the following formula [8]:
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where g r
k

( , )� is the fundamental function of this equation,
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A solution bounded as r ! 0of the boundary-value problem (2.6) is given by

w r C I q r w r
k k k k1 1 1

( ) ( ) ( )� � , (2.8)

where C
k

is an arbitrary constant determined from the boundary condition (1.5):
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Substituting (2.9) into (2.8) and applying the inverse Fourier sine transform (2.5), we find
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Formulas (2.11) are derived using formula 1.445 (1) in [3] for the summation of trigonometric series.

To determine the angular displacement in the cylinder, it is necessary to find the unknown discontinuity � �( ). To this

end, we substitute (2.11) into Eq. (2.4) to obtain the integral equation
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where, according to (2.11), the following formulas are used:
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The integral equation (2.12) is reduced to the Fredholm equation of the second kind by introducing new unknown

functions and transforms similar to those detailed in [1, 2]. First, after integration by parts in (2.12) we obtain
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Next we introduce an unknown function:
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and apply the following operator to both sides of Eq. (2.13):

D f
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The following formulas should be used:
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After these transformations, Eq. (2.13) becomes

1 1

1

1

1

1




$




$ $g y F y dy g y R y G y dy( ) ( ) ( )[ ( , ) ( , )� � �

��

��

� � �

�

�

1

0 0

0 0

0

2

1

1





� �

� %

� %

$g y F y dy

d

( ) ( )
cos( )

sin( )
( )� � �1 1$ , (2.15)
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The above formulas indicate that the function F y( ) is represented by an improper integral that should be additionally

analyzed. The following asymptotic formula holds for the subintegral function:
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Thus, this integral is divergent and can be evaluated using the theory of distributions [5] as follows:
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where '( )y is the Dirac delta function, and Q y( ) is defined by uniformly converging integrals.

Substituting (2.16) into (2.15), we arrive at the Fredholm equation
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Note that the right-hand side of Eq. (2.17) includes the unknown angle 
 of rotation of the cover plate. This angle can be

calculated using (1.3) and (1.4). Substituting the expressions of the stresses and performing some transformations, we get
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is the ratio of the mass of the cover plate to the mass of the cylinder.

An approximate solution of Eq. (2.18) can be represented by the best interpolation polynomial:
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where P y
n

( ) is nth-order Legendre polynomial, and y
m

are the roots of this polynomial. A system of linear algebraic equations

for the values of the unknown function at interpolation nodes (as in [2]) is derived from (2.17) and (2.18):
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After solving system (2.20) and finding the unknown discontinuity, formulas (2.10) and (2.11) can be used to determine

the displacements and, hence, the stresses at any point of the cylinder. Of great interest for fracture mechanics is the SIF:

K r b r c

r b
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lim ( , )
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1
�

�

. (2.21)

The stresses appearing in (2.21) are subject to the asymptotics
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Substituting the last expression into (2.21) and passing to the limit using (2.19), we obtain an approximate expression

for the SIF in terms of the solution of system (2.19):

K G bk� �

1
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g
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( )
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. (2.22)

3. Numerical Results. We used formula (2.22) for the numerical analysis of the absolute value of the dimensionless SIF

k as a function of the frequency of vibration and the aspect ratio of the cylinder. It is assumed that the cover plate and cylinder

have equal masses ( )m
0

1� , the dimensionless moment applied to the plate M
0

1� , and the crack is located in the midsurface of

the cylinder ( / )�

0
1� �c a .

The numerical results (SIF versus wave number � �

0 2 0
� r ) are presented in Figs. 2, 3, and 4 for % �1, % �2, and % �3,

respectively.

Curves 1–5 correspond to the following values of the crack radius b b r
0 0
� / : 0.1, 0.25, 0.5, 0.75, 0.9.

Conclusions. Analyzing the results, we may draw the following conclusions.

1. A crack of even small relative radius (b
0
�0.1) changes the natural frequencies of the cylinder, which are defined by

� % 


0
� l, l �1 2, , …, % � a r/

0
.

2. As the relative crack radius increases toward unity, the SIF acquires additional resonant peaks.

3. An increase in the relative crack radius leads to an increase in the SIF in the subresonance frequency range.

4. As the relative length of the cylinder increases, the SIF decreases in the subresonant frequency range.
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