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The stress–strain state of nonthin conical shells with thickness varying in two coordinate directions is

examined using the approach developed to solve boundary-value problems. Displacement and stress

fields in such shells are determined and analyzed
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Introduction. Thin and nonthin conical shells with variable thickness are used as structural elements in many fields of

engineering and construction [4, 8, 10, 15, 18]. Varying the pattern of variation in the thickness of the shell, while keeping the

volume of the structure constant, it is possible to find the rational parameters of shells [1, 2, 5, 6].

Here we analyze the stress–strain state of nonthin conical shells with thickness varying in two coordinate directions by

using the approach [3] based on the spline-approximation and discrete-orthogonalization methods. To solve boundary-value

problems, we will use the refined theory of conical shells based on the straight-line hypothesis [4, 11–13, 16, 17].

1. Problem Formulation. We will use an orthogonal coordinate system s,�, �, where s is the longitudinal coordinate on

the datum surface, � is the azimuth angle, and � is the normal (to the surface) coordinate. The radius of the circular cross-section is

given by

r s r s( ) cos� �
0

�, (1)

where r
0

is the radius of the datum plane; � is the angle between the normal and the axis of revolution.

The radius of curvature R
�

in the �-direction is given by

R r
�

�� / sin . (2)

Let the thickness of the shell vary in the circumferential direction as follows:
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For the shell of constant thickness, we set h H� �const. For the volume of the shell to remain constant while the

parameters � and � are varied, it is necessary that

h s ds d Hds d

L L

( , )� � �

� �

0

2

0 0

2

0

�� ��� , (4)

whence
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2. Governing Equations. The system of governing equations for nonthin conical shells with thickness varying in both

directions can be written as follows using (1)–(4) [3]:
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where u v, , and w are the displacements of particles of the coordinate surface; �
s
, �

�
are the complete angles of rotation of the

straight-line element; q
�

is the surface load. The coefficients b
ij

depend on s and � (see [3] for their expressions). The elasticity

relations are
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TABLE 1

� � s L/

wE q/
0

� � –0.3 � � –0.2 � � 0 � � 0.2 � � 0.3

0

0

0.2 439.79 382.58 303.39 251.56 231.9

0.4 625.48 550.607 444.90 373.39 345.55

0.6 849.87 46.07 597.42 496.15 456.82

0.8 960.30 818.09 626.58 505.38 460.42

0.2

0.2 448.94 400.14 327.39 276.62 256.73

0.4 599.23 539.11 448.22 382.80 356.53

0.6 798.73 708.86 575.86 482.70 446.04

0.8 882.20 755.38 583.27 473.42 432.46

0.3

0.2 452.42 410.17 342.56 292.83 272.87

0.4 582.29 531.55 450.03 388.47 363.18

0.6 770.29 688.48 564.44 475.87 440.68

0.8 842.28 723.59 561.58 457.56 418.64

�

2

0

0.2 304.50 304.00 303.39 303.27 303.4

0.4 446.27 445.67 444.90 444.67 444.77

0.6 597.93 597.87 597.41 596.47 595.82

0.8 626.58 626.87 626.58 625.14 624.00

0.2

0.2 332.33 329.71 327.39 328.89 331.09

0.4 454.14 451.01 448.22 449.98 452.57

0.6 579.73 577.80 575.86 576.42 577.64

0.8 584.89 584.26 583.27 582.65 582.48

0.3

0.2 350.02 346.00 342.56 345.13 348.67

0.4 458.68 454.04 450.03 452.99 457.05

0.6 570.21 567.22 564.44 565.86 568.13

0.8 564.10 562.96 561.58 561.41 561.77
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h h s� ( , )� is the thickness of the shell wall; E E
s s
, , ,

� �
� � are Young’s moduli and Poisson’s ratios along the coordinate axes s

and �; G G G
s s� � ��

, , are the shear moduli.

Supplementing the governing equations (6) with boundary conditions at the ends, we arrive at a two-dimensional

boundary-value problem.

3. Problem-Solving Method. To solve problems of this class, we will use the spline-collocation method [7, 9, 14] to

separate variables and use the stable numerical discrete-orthogonalization method [4] to solve the resulting boundary-value

problem for a system of ordinary differential equations.

Note that system (6) contains no higher than second-order derivatives of the unknown functions with respect to the

coordinate s. Then we can use cubic spline-functions [9]. If the following boundary conditions are set at the ends s � 0and s L� :

u v w
s

� � � � �� �
�

0, (9)

then the solution of the boundary-value problem (6) can be represented as

u s u s
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TABLE 1 (continued)

� � s L/

wE q/
0

� � –0.3 � � –0.2 � � 0 � � 0.2 � � 0.3

�

0

0.2 231.92 251.57 303.39 382.55 439.73

0.4 345.58 373.40 444.90 550.56 625.41

0.6 456.85 496.17 597.41 746.03 849.79

0.8 460.44 505.39 626.58 818.06 960.24

0.2

0.2 256.77 276.65 327.39 400.09 448.82

0.4 356.58 382.84 448.21 539.04 599.10

0.6 446.08 482.73 575.86 708.80 798.61

0.8 432.49 473.44 583.27 755.34 882.12

0.3

0.2 272.92 292.87 342.56 410.09 452.28

0.4 363.24 388.52 450.03 531.46 582.12

0.6 440.73 475.91 564.44 688.41 770.15

0.8 418.67 457.59 561.58 723.55 842.20
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TABLE 2

� � s L/

�
s

�

� � –0.3 � � –0.2 � � 0 � � 0.2 � � 0.3

0

0

0 –27.663 –23.526 –17.908 –14.32 –12.982

0.2 4.633 3.834 2.614 1.780 1.469

0.4 6.094 5.291 4.297 3.717 3.502

0.6 11.117 10.258 8.981 7.988 7.555

0.8 24.805 21.627 16.864 13.553 12.272

1.0 –35.003 –28.747 –20.334 –15.043 –13.098

0.2

0 –30.752 –26.658 –20.809 –16.886 –15.385

0.2 5.084 4.539 3.549 2.770 2.456

0.4 6.080 5.427 4.609 4.113 3.922

0.6 11.152 10.294 8.973 7.932 7.479

0.8 23.469 20.289 15.611 12.419 11.196

1.0 –31.001 –25.566 –18.208 –13.550 –11.834

0.3

0 –32.938 –28.907 –22.914 –18.755 –17.134

0.2 5.183 4.848 4.056 3.359 3.057

0.4 6.050 5.476 4.748 4.296 4.118

0.6 11.182 10.306 8.944 7.868 7.403

0.8 22.808 19.617 14.972 11.834 10.639

1.0 –28.953 –23.957 –17.158 –12.833 –11.235

�

2

0

0 –18.003 –17.958 –17.908 –17.907 –17.926

0.2 –18.003 2.601 2.615 2.591 2.564

0.4 4.290 4.296 4.298 4.287 4.276

0.6 8.953 8.970 8.981 8.957 8.933

0.8 16.840 16.861 16.864 16.816 16.772

1.0 –20.321 –20.342 –20.334 –20.266 –20.208

0.2

0 –21.103 –20.948 –20.809 –20.886 –21.009

0.2 3.564 3.558 3.549 3.546 3.547

0.4 4.635 4.622 4.609 4.614 4.622
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TABLE 2 (continued)

� � s L/

�
s

�

� � –0.3 � � –0.2 � � 0 � � 0.2 � � 0.3

�

2

0.2

0.6 8.945 8.964 8.973 8.950 8.925

0.8 15.567 15.599 15.611 15.556 15.503

1.0 –18.279 –18.251 –18.208 –18.181 –18.174

0.3

0 –23.336 –23.112 –22.914 –23.043 –23.229

0.2 4.119 4.092 4.056 4.079 4.099

0.4 4.791 4.770 4.749 4.761 4.777

0.6 8.913 8.933 8.944 8.919 8.892

0.8 14.913 14.952 14.972 14.911 14.851

1.0 –17.278 –17.223 –17.158 –17.157 –17.180

�

0

0 –12.984 –14.322 –17.908 –23.524 –27.659

0.2 –12.984 1.780 2.615 3.835 4.633

0.4 3.502 3.716 4.298 5.291 6.095

0.6 7.556 7.988 8.981 10.258 11.116

0.8 12.273 13.554 16.864 21.626 24.805

1.0 –13.099 –15.043 –20.334 –28.746 –35.001

0.2

0 –15.388 –16.889 –20.808 –26.654 –30.743

0.2 2.457 2.771 3.549 4.539 5.084

0.4 3.923 4.113 4.609 5.426 6.079

0.6 7.479 7.932 8.973 10.293 11.151

0.8 11.196 12.419 15.611 20.289 23.469

1.0 –11.835 –13.551 –18.208 –25.564 –30.999

0.3

0 –17.138 –18.758 –22.914 –28.901 –32.927

0.2 3.057 3.360 4.056 4.847 5.182

0.4 4.119 4.297 4.749 5.475 6.049

0.6 7.403 7.868 8.944 10.307 11.182

0.8 10.638 11.834 14.972 19.617 22.808

1.0 –11.236 –12.834 –17.158 –23.955 –28.949
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TABLE 3

� � s L/

�
s

	

� � –0.3 � � –0.2 � � 0 � � 0.2 � � 0.3

0

0

0 27.096 22.821 17.083 13.469 12.133

0.2 0.753 0.698 0.801 0.948 1.010

0.4 7.353 6.384 4.932 3.909 3.512

0.6 9.702 7.947 5.561 4.109 3.600

0.8 2.792 2.451 2.292 2.332 2.361

1.0 64.565 54.523 40.837 32.052 28.769

0.2

0 31.542 26.832 20.363 16.183 14.617

0.2 0.902 0.652 0.545 0.611 0.656

0.4 7.668 6.631 5.056 3.945 3.515

0.6 9.426 7.689 5.371 3.986 3.505

0.8 3.197 2.851 2.653 2.643 2.647

1.0 59.388 50.122 37.518 29.441 26.428

0.3

0 34.686 29.702 22.742 18.173 16.442

0.2 1.126 0.732 0.458 0.447 0.473

0.4 7.886 6.810 5.167 4.006 3.557

0.6 9.326 7.589 5.300 3.946 3.478

0.8 3.457 3.086 2.846 2.800 2.788

1.0 56.828 47.947 35.877 28.153 25.274

�

2

0

0 17.131 17.113 17.083 17.061 17.054

0.2 0.814 0.806 0.801 0.809 0.817

0.4 4.968 4.950 4.932 4.936 4.946

0.6 5.633 5.597 5.561 5.575 5.601

0.8 2.360 2.322 2.292 2.322 2.359

1.0 40.909 40.890 40.837 40.765 40.722

0.2

0 20.581 20.469 20.363 20.406 20.486

0.2 0.545 0.544 0.5447 0.545 0.546

0.4 5.079 5.068 5.0563 5.054 5.058
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TABLE 3 (continued)

� � s L/

�
s

	

� � –0.3 � � –0.2 � � 0 � � 0.2 � � 0.3

�

2

0.2

0.6 5.431 5.401 5.371 5.381 5.401

0.8 2.704 2.676 2.653 2.676 2.704

1.0 37.615 37.58 37.518 37.465 37.443

0.3

0 23.095 22.909 22.742 22.839 22.987

0.2 0.445 0.451 0.458 0.451 0.445

0.4 5.184 5.176 5.167 5.161 5.161

0.6 5.354 5.327 5.300 5.307 5.325

0.8 2.888 2.864 2.845 2.864 2.888

1.0 35.989 35.946 35.877 35.836 35.825

�

0

0 12.134 13.470 17.083 22.820 27.093

0.2 1.010 0.948 0.801 0.699 0.754

0.4 3.512 3.910 4.932 6.383 7.353

0.6 3.601 4.109 5.560 7.946 9.701

0.8 2.361 2.332 2.293 2.450 2.792

1.0 28.771 32.053 40.837 54.521 64.561

0.2

0 14.618 16.185 20.363 26.831 31.539

0.2 0.656 0.610 0.545 0.653 0.903

0.4 3.515 3.945 5.056 6.630 7.668

0.6 3.505 3.986 5.371 7.687 9.425

0.8 2.647 2.643 2.653 2.851 3.198

1.0 26.430 29.443 37.518 50.120 59.384

0.3

0 16.444 18.174 22.742 29.699 34.681

0.2 0.472 0.447 0.458 0.733 1.128

0.4 3.557 4.006 5.167 6.810 7.888

0.6 3.477 3.945 5.301 7.590 9.327

0.8 2.788 2.799 2.845 3.086 3.457

1.0 25.275 28.154 35.877 47.945 56.823
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N

i
s s( , ) ( ) ( )�

�

�
0

4
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� �
( , ) ( ) ( )s t s

i i

i o

N

�
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where u v w
i i i
( ), ( ), ( )� � � , � �

si
( ), � �

�i
( ) are the unknown functions of �; �

ji
s( ), j �1 5, are linear combinations of cubic

B-splines on a uniform mesh  : 0
0 1

� ! ! ! �s s s L
N

� that satisfy the boundary conditions.

Since the unknown functions are equal to zero at the ends, we have

�
j

s B s B s
0 3

1

3

0
4( ) ( ) ( )� 	 �

	
,

�
j

s B s B s B s
1 3

1

3

0

3

1
1

2

( ) ( ) ( ) ( )� 	 �
	

,

�
ji

i
s B s i N( ) ( ) ( , , , )� � 	

3
2 3 2� ,

�
j N

N N N
s B s B s B s

,
( ) ( ) ( ) ( )

	

� 	
� 	 �

1 3

1

3 3

1
1

2

,

�
jN

N N
s B s B s( ) ( ) ( )� 	 �

�
4

3

1

3
. (11)

Substituting expressions (10) with (11) into (6), using the spline-collocation method, and requiring them to be satisfied

on N + 1 lines s
i

� " (i N	 �1 1, ), we arrive at a system of ordinary differential equations of order 10(N + 1) that has the following

Cauchy form:

dR

d

A R f

�
� �� �( ) ( ), (12)

R u u u v v v w w w
N N N s s sN

� # #{ , , , , , , , , , , , , , ,
0 1 0 1 0 1 0 1

� � � �� � � � � �
� � �0 1

, }# #�

N

T
is a vector function of �; f ( )� is

the vector of right-hand sides; A is a square matrix whose elements depend on �.

Let us consider circumferentially closed shells using the symmetry conditions for � � 0and � �� / 2. Then the boundary

conditions can be represented as

A R a
1 1

0� �( )� ,

A R a
2 2

2� �( / )� � , (13)

where À
1

and À
2

are rectangular matrices; a
1

and a
2

are the associated vectors.

To solve the boundary-value problem for the system of equations (12) with the boundary conditions (13), we use the

stable numerical discrete-orthogonalization method [1, 6]. Substituting u v w
i i i
( ), ( ), ( )� � � , � �

si
( ), � �

�i
( ) into (10), we find

the displacements and complete angles of rotation of the normal in the original problem and use them to determine the

stress–strain state of the shell.

4. Analysis of the Numerical Results. Consider a closed nonthin conical shell with thickness varying in two coordinate

directions, its volume being constant.

The shell is under a surface load q
�
� const and is made of a transversally isotropic material with the following

parameters G
s�

= G
��

= $G = E/40, where E
s

= E
�

= Å is Young’s modulus in the isotropy plane, and Poisson’s ratio �
s

= �
�

= � =

0.3. The shell ends s = 0 and s = L are clamped. The input data: L = 30, r
0

= 12.5; half-cone angle � = �/6.

If H = 1, then for � � 0, 0.2, 0.3, we have h
o

= 1, 1.07, 1.11, respectively.

Table 1 collects the values of deflection for � � 0, � /2, �, different values of � and�, and different values of s. As is seen,

the deflection increases with the parameter � for all values of thickness and angle �.

As the parameter � varies within 	 � �0 3 0 3. .� , the deflection almost doubles for � � 0 and decreases for � �� . When

� �� / 2, the influence of�on the deflection is weak (the thickness of the shell remains constant with variation in this parameter).
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Table 2 summarizes the values of stress�
s

�
on the outside surface of the shell for � � 0, �/2, �, different values of� and�,

and different values of s. It can be seen that the stress �
s

�
is negative near the ends and positive in the middle of the shell. The

stress �
s

�
first increases to s L/ � 0.8 and then abruptly decreases. The parameter � has a stronger effect on the stress than the

parameter � at the ends. As the parameter � varies within 	 � �0 3 0 3. .� , the stress on the outside surface decreases by a factor

of 3.

Table 3 shows how the parameters � and� influence the distribution of the stress �
s

	
over the outside surface for � � 0,

�/2, � and different values of s.

The stress �
s

	
on the inside surface is tensile (unlike the stress on the outside surface) for all values of s. The stresses at

the ends are maximum.

The parameter �has a stronger effect on the stress on the inside surface than � does. The stress �
s

	
at s L/ � 0 is lower

than at s L/ �1by a factor of 2.4 for � � 0, a factor of 1.85 for � � 0.2, and a factor of 1.6 for � � 0.3.

Figures 1, 2, 3 show three-dimensional distributions of the deflection for � = 0, 0.2, 0.3, respectively, and�= 0.3. They

qualitatively demonstrate the mutual influence of the parameters� and�. For example, as the thickness parameter increases from

0 to 0.2 in the s-direction, the maximum deflection decreases in the �-direction by 10%, and as the thickness parameter increases

from 0 to 0.3, the maximum deflection decreases by 15%.

Thus, varying the values of the parameters � and� in (3) and keeping the volume of the shell constant, we can find the

rational distributions of deflections and stresses.

Conclusions. Using an approach developed, we have analyzed the stress–strain state of nonthin conical shells with

thickness varying in two coordinate directions. The distributions of displacements and stresses presented as tables and plots have

been analyzed.
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